1
|
Gallagher R, Roger E, Packer J, Slatyer C, Rowley J, Cornwell W, Ens E, Legge S, Simpfendorfer C, Stephens R, Mesaglio T. Incorporating citizen science into IUCN Red List assessments. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2025; 39:e14329. [PMID: 39190609 PMCID: PMC11959339 DOI: 10.1111/cobi.14329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/02/2024] [Accepted: 05/16/2024] [Indexed: 08/29/2024]
Abstract
Many citizen scientists are highly motivated to help address the current extinction crisis. Their work is making valuable contributions to protecting species by raising awareness, identifying species occurrences, assessing population trends, and informing direct management actions, such as captive breeding. However, clear guidance is lacking about how to use existing citizen science data sets and how to design effective citizen science programs that directly inform extinction risk assessments and resulting conservation actions based on the International Union for Conservation of Nature (IUCN) Red List criteria. This may be because of a mismatch between what citizen science can deliver to address extinction risk and the reality of what is needed to inform threatened species listing based on IUCN criteria. To overcome this problem, we examined each IUCN Red List criterion (A-E) relative to the five major types of citizen science outputs relevant to IUCN assessments (occurrence data, presence-absence observations, structured surveys, physical samples, and narratives) to recommend which outputs are most suited to use when applying the IUCN extinction risk assessment process. We explored real-world examples of citizen science projects on amphibians and fungi that have delivered valuable data and knowledge for IUCN assessments. We found that although occurrence data are routinely used in the assessment process, simply adding more observations of occurrence from citizen science information may not be as valuable as inclusion of more nuanced data types, such as presence-absence data or information on threats from structured surveys. We then explored the characteristics of citizen science projects that have already delivered valuable data to support assessments. These projects were led by recognized experts who champion and validate citizen science data, thereby giving greater confidence in its accuracy. We urge increased recognition of the value of citizen science data within the assessment process.
Collapse
Affiliation(s)
- Rachael Gallagher
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNew South WalesAustralia
| | - Erin Roger
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Atlas of Living AustraliaCanberraAustralian Capital TerritoryAustralia
| | - Jasmin Packer
- Environment InstituteThe University of AdelaideAdelaideSouth AustraliaAustralia
- School of Biological SciencesThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Cameron Slatyer
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Atlas of Living AustraliaCanberraAustralian Capital TerritoryAustralia
| | - Jodi Rowley
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences (BEES)University of New South WalesSydneyNew South WalesAustralia
- Australian Museum Research InstituteAustralian MuseumSydneyNew South WalesAustralia
| | - Will Cornwell
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences (BEES)University of New South WalesSydneyNew South WalesAustralia
| | - Emilie Ens
- School of Natural SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Sarah Legge
- Research Institute of Environment and LivelihoodsCharles Darwin UniversityCasuarinaNorthern TerritoryAustralia
- Fenner School Environment and SocietyThe Australian National UniversityActonAustralian Capital TerritoryAustralia
| | - Colin Simpfendorfer
- College of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia
| | - Ruby Stephens
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNew South WalesAustralia
| | - Thomas Mesaglio
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Atlas of Living AustraliaCanberraAustralian Capital TerritoryAustralia
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences (BEES)University of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
2
|
Simaika JP, Stribling J, Lento J, Bruder A, Poikane S, Moretti MS, Rivers-Moore N, Meissner K, Macadam CR. Towards harmonized standards for freshwater biodiversity monitoring and biological assessment using benthic macroinvertebrates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170360. [PMID: 38311088 DOI: 10.1016/j.scitotenv.2024.170360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/19/2023] [Accepted: 01/20/2024] [Indexed: 02/06/2024]
Abstract
Monitoring programs at sub-national and national scales lack coordination, harmonization, and systematic review and analysis at continental and global scales, and thus fail to adequately assess and evaluate drivers of biodiversity and ecosystem degradation and loss at large spatial scales. Here we review the state of the art, gaps and challenges in the freshwater assessment programs for both the biological condition (bioassessment) and biodiversity monitoring of freshwater ecosystems using the benthic macroinvertebrate community. To assess the existence of nationally- and regionally- (sub-nationally-) accepted freshwater benthic macroinvertebrate protocols that are put in practice/used in each country, we conducted a survey from November 2022 to May 2023. Responses from 110 respondents based in 67 countries were received. Although the responses varied in their consistency, the responses clearly demonstrated a lack of biodiversity monitoring being done at both national and sub-national levels for lakes, rivers and artificial waterbodies. Programs for bioassessment were more widespread, and in some cases even harmonized among several countries. We identified 20 gaps and challenges, which we classed into five major categories, these being (a) field sampling, (b) sample processing and identification, (c) metrics and indices, (d) assessment, and (e) other gaps and challenges. Above all, we identify the lack of harmonization as one of the most important gaps, hindering efficient collaboration and communication. We identify the IUCN SSC Global Freshwater Macroinvertebrate Sampling Protocols Task Force (GLOSAM) as a means to address the lack of globally-harmonized biodiversity monitoring and biological assessment protocols.
Collapse
Affiliation(s)
- John P Simaika
- Department of Water Resources and Ecosystems, IHE Delft Institute for Water Education, the Netherlands.
| | - James Stribling
- Tetra Tech, Inc., Center for Ecological Sciences, Owings Mills, MD, USA
| | - Jennifer Lento
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Andreas Bruder
- Institute of Microbiology, University of Applied Sciences and Arts of Southern Switzerland. Mendrisio, Switzerland
| | | | - Marcelo S Moretti
- Laboratory of Aquatic Insect Ecology, University of Vila Velha, Vila Velha, Espirito Santo, Brazil
| | - Nick Rivers-Moore
- Centre for Water Resources Research, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | | | - Craig R Macadam
- Buglife - The Invertebrate Conservation Trust, United Kingdom
| |
Collapse
|
3
|
Edelsparre AH, Fitzpatrick MJ, Saastamoinen M, Teplitsky C. Evolutionary adaptation to climate change. Evol Lett 2024; 8:1-7. [PMID: 38370543 PMCID: PMC10872154 DOI: 10.1093/evlett/qrad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 02/20/2024] Open
Abstract
When the notion of climate change emerged over 200 years ago, few speculated as to the impact of rising atmospheric temperatures on biological life. Tens of decades later, research clearly demonstrates that the impact of climate change on life on Earth is enormous, ongoing, and with foreseen effects lasting well into the next century. Responses to climate change have been widely documented. However, the breadth of phenotypic traits involved with evolutionary adaptation to climate change remains unclear. In addition, it is difficult to identify the genetic and/or epigenetic bases of phenotypes adaptive to climate change, in part because it often is not clear whether this change is plastic, genetic, or some combination of the two. Adaptive responses to climate-driven selection also interact with other processes driving genetic changes in general, including demography as well as selection driven by other factors. In this Special Issue, we explore the factors that will impact the overall outcome of climate change adaptation. Our contributions explain that traits involved in climate change adaptation include not only classic phenomena, such as range shifts and environmentally dependent sex determination, but also often overlooked phenomena such as social and sexual conflicts and the expression of stress hormones. We learn how climate-driven selection can be mediated via both natural and sexual selection, effectively influencing key fitness-related traits such as offspring growth and fertility as well as evolutionary potential. Finally, we explore the limits and opportunities for predicting adaptive responses to climate change. This contribution forms the basis of 10 actions that we believe will improve predictions of when and how organisms may adapt genetically to climate change. We anticipate that this Special Issue will inform novel investigations into how the effects of climate change unfold from phenotypes to genotypes, particularly as methodologies increasingly allow researchers to study selection in field experiments.
Collapse
Affiliation(s)
- Allan H Edelsparre
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Mark J Fitzpatrick
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Marjo Saastamoinen
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Life Sciences, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
4
|
Chowdhury S, Aich U, Rokonuzzaman M, Alam S, Das P, Siddika A, Ahmed S, Labi MM, Marco MD, Fuller RA, Callaghan CT. Increasing biodiversity knowledge through social media: A case study from tropical Bangladesh. Bioscience 2023; 73:453-459. [PMID: 37397834 PMCID: PMC10308356 DOI: 10.1093/biosci/biad042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 07/04/2023] Open
Abstract
Citizen science programs are becoming increasingly popular among naturalists but remain heavily biased taxonomically and geographically. However, with the explosive popularity of social media and the near-ubiquitous availability of smartphones, many post wildlife photographs on social media. Here, we illustrate the potential of harvesting these data to enhance our biodiversity understanding using Bangladesh, a tropical biodiverse country, as a case study. We compared biodiversity records extracted from Facebook with those from the Global Biodiversity Information Facility (GBIF), collating geospatial records for 1013 unique species, including 970 species from Facebook and 712 species from GBIF. Although most observation records were biased toward major cities, the Facebook records were more evenly spatially distributed. About 86% of the Threatened species records were from Facebook, whereas the GBIF records were almost entirely Of Least Concern species. To reduce the global biodiversity data shortfall, a key research priority now is the development of mechanisms for extracting and interpreting social media biodiversity data.
Collapse
Affiliation(s)
- Shawan Chowdhury
- School of Biological Sciences, University of Queensland, in Saint Lucia, Queensland, Australia
- Institute of Biodiversity, Friedrich Schiller University Jena, in Jena, Germany
- Helmholtz Centre for Environmental Research—UFZ, Department of Ecosystem Services, in Leipzig, Germany
- German Centre for Integrative Biodiversity Research, in Leipzig, Germany
| | - Upama Aich
- School of Biological Sciences, Monash University, in Clayton, Victoria, Australia
| | - Md Rokonuzzaman
- Department of Zoology, University of Dhaka, in Dhaka, Bangladesh
| | - Shofiul Alam
- Department of Zoology, University of Dhaka, in Dhaka, Bangladesh
| | - Priyanka Das
- Department of Zoology, University of Dhaka, in Dhaka, Bangladesh
| | - Asma Siddika
- Department of Zoology, University of Dhaka, in Dhaka, Bangladesh
| | - Sultan Ahmed
- Department of Zoology, University of Dhaka, in Dhaka, Bangladesh
| | | | - Moreno Di Marco
- Department of Biology and Biotechnologies, Sapienza University of Rome, in Rome, Italy
| | - Richard A Fuller
- School of Biological Sciences, University of Queensland, in Saint Lucia, Queensland, Australia
| | - Corey T Callaghan
- Department of Wildlife Ecology and Conservation, Fort Lauderdale, Florida, United States
- Research and Education Center, University of Florida, Davie, Florida, United States
| |
Collapse
|
5
|
Schmidt C, Hoban S, Hunter M, Paz-Vinas I, Garroway CJ. Genetic diversity and IUCN Red List status. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2023:e14064. [PMID: 36751982 DOI: 10.1111/cobi.14064] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
The International Union for Conservation of Nature (IUCN) Red List is an important and widely used tool for conservation assessment. The IUCN uses information about a species' range, population size, habitat quality and fragmentation levels, and trends in abundance to assess extinction risk. Genetic diversity is not considered, although it affects extinction risk. Declining populations are more strongly affected by genetic drift and higher rates of inbreeding, which can reduce the efficiency of selection, lead to fitness declines, and hinder species' capacities to adapt to environmental change. Given the importance of conserving genetic diversity, attempts have been made to find relationships between red-list status and genetic diversity. Yet, there is still no consensus on whether genetic diversity is captured by the current IUCN Red List categories in a way that is informative for conservation. To assess the predictive power of correlations between genetic diversity and IUCN Red List status in vertebrates, we synthesized previous work and reanalyzed data sets based on 3 types of genetic data: mitochondrial DNA, microsatellites, and whole genomes. Consistent with previous work, species with higher extinction risk status tended to have lower genetic diversity for all marker types, but these relationships were weak and varied across taxa. Regardless of marker type, genetic diversity did not accurately identify threatened species for any taxonomic group. Our results indicate that red-list status is not a useful metric for informing species-specific decisions about the protection of genetic diversity and that genetic data cannot be used to identify threat status in the absence of demographic data. Thus, there is a need to develop and assess metrics specifically designed to assess genetic diversity and inform conservation policy, including policies recently adopted by the UN's Convention on Biological Diversity Kunming-Montreal Global Biodiversity Framework.
Collapse
Affiliation(s)
- Chloé Schmidt
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- Center for Biodiversity and Global Change, Yale University, New Haven, Connecticut, USA
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Sean Hoban
- The Center for Tree Science, The Morton Arboretum, Lisle, Illinois, USA
| | - Margaret Hunter
- Wetland and Aquatic Research Center, U.S. Geological Survey, Gainesville, Florida, USA
| | - Ivan Paz-Vinas
- Laboratoire Evolution et Diversité Biologique (EDB), UMR5174, Université Toulouse 3 Paul Sabatier, CNRS, IRD, Toulouse, France
| | - Colin J Garroway
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
6
|
Viteri MC, Hadly EA. Spatiotemporal impacts of the Anthropocene on small mammal communities, and the role of small biological preserves in maintaining biodiversity. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.916239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The multi-faceted impacts of the Anthropocene are increasingly modifying natural ecosystems and threatening biodiversity. Can small protected spaces conserve small mammal diversity across spatial and temporal scales of human impact? We identified small mammal remains from modern raptor pellets and Holocene archeological sites along a human modification gradient in the San Francisco Bay Area, CA and evaluated alpha and beta diversity across sites and time periods. We found that Shannon diversity, standardized species richness, and evenness decrease across modern sites based on level of human modification, with no corresponding change between Holocene sites. Additionally, the alpha diversity of modern sites with moderate and high levels of human modification was significantly lower than the diversity of modern sites with low levels of human modification as well as all Holocene sites. On the other hand, the small mammal communities from Jasper Ridge Biological Preserve, a small protected area, retain Holocene levels of alpha diversity. Jasper Ridge has also changed less over time in terms of overall community composition (beta diversity) than more modified sites. Despite this, Holocene and Anthropocene communities are distinct regardless of study area. Our results suggest that small mammal communities today are fundamentally different from even a few centuries ago, but that even relatively small protected spaces can partially conserve native faunal communities, highlighting their important role in urban conservation.
Collapse
|
7
|
Chowdhury S, Gonzalez K, Aytekin MÇK, Baek S, Bełcik M, Bertolino S, Duijns S, Han Y, Jantke K, Katayose R, Lin M, Nourani E, Ramos DL, Rouyer M, Sidemo‐Holm W, Vozykova S, Zamora‐Gutierrez V, Amano T. Growth of non-English-language literature on biodiversity conservation. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36:e13883. [PMID: 34981574 PMCID: PMC9539909 DOI: 10.1111/cobi.13883] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
English is widely recognized as the language of science, and English-language publications (ELPs) are rapidly increasing. It is often assumed that the number of non-ELPs is decreasing. This assumption contributes to the underuse of non-ELPs in conservation science, practice, and policy, especially at the international level. However, the number of conservation articles published in different languages is poorly documented. Using local and international search systems, we searched for scientific articles on biodiversity conservation published from 1980 to 2018 in English and 15 non-English languages. We compared the growth rate in publications across languages. In 12 of the 15 non-English languages, published conservation articles significantly increased every year over the past 39 years, at a rate similar to English-language articles. The other three languages showed contrasting results, depending on the search system. Since the 1990s, conservation science articles in most languages increased exponentially. The variation in the number of non-English-language articles identified among the search systems differed markedly (e.g., for simplified Chinese, 11,148 articles returned with local search system and 803 with Scopus). Google Scholar and local literature search systems returned the most articles for 11 and 4 non-English languages, respectively. However, the proportion of peer-reviewed conservation articles published in non-English languages was highest in Scopus, followed by Web of Science and local search systems, and lowest in Google Scholar. About 20% of the sampled non-English-language articles provided no title or abstract in English; thus, in theory, they were undiscoverable with English keywords. Possible reasons for this include language barriers and the need to disseminate research in countries where English is not widely spoken. Given the known biases in statistical methods and study characteristics between English- and non-English-language studies, non-English-language articles will continue to play an important role in improving the understanding of biodiversity and its conservation.
Collapse
Affiliation(s)
- Shawan Chowdhury
- School of Biological SciencesUniversity of QueenslandBrisbaneQueenslandAustralia
- Centre for Biodiversity and Conservation Science, School of Biological SciencesUniversity of QueenslandBrisbaneQueenslandAustralia
| | - Kristofer Gonzalez
- School of Biological SciencesUniversity of QueenslandBrisbaneQueenslandAustralia
- Environmental Science and Resource ManagementCalifornia State University Channel IslandsCamarilloCaliforniaUSA
| | | | - Seung‐Yun Baek
- Graduate School of Agricultural ScienceTokyo University of Agriculture and TechnologyFuchuJapan
| | - Michał Bełcik
- Institute of Nature Conservation, Polish Academy of SciencesKrakówPoland
| | - Sandro Bertolino
- Department of Life Sciences and Systems BiologyUniversity of TurinTorinoItaly
| | - Sjoerd Duijns
- Sovon Dutch Centre for Field OrnithologyNijmegenThe Netherlands
| | - Yuqing Han
- State Key Laboratory of Biocontrol, Department of Ecology/School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Kerstin Jantke
- Center for Earth System Research and SustainabilityUniversity of HamburgHamburgGermany
| | - Ryosuke Katayose
- Graduate School of Agricultural ScienceTokyo University of Agriculture and TechnologyFuchuJapan
| | - Mu‐Ming Lin
- School of Environmental Science and EngineeringSouthern University of Science and TechnologyShenzhenChina
| | - Elham Nourani
- Department of MigrationMax Planck Institute of Animal BehaviorRadolfzellGermany
- Department of BiologyUniversity of KonstanzKonstanzGermany
| | - Danielle Leal Ramos
- Plant Technology and Environmental Monitoring LtdTechnological Park of São José dos CamposSão José dos CamposBrazil
| | | | | | - Svetlana Vozykova
- Faculty of Energy and Ecotechnology (GreenTech)ITMO UniversitySt PetersburgRussia
| | - Veronica Zamora‐Gutierrez
- CONACYT ‐ Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Durango (CIIDIR)Instituto Politécnico NacionalCiudad de MéxicoMéxico
| | - Tatsuya Amano
- School of Biological SciencesUniversity of QueenslandBrisbaneQueenslandAustralia
- Centre for Biodiversity and Conservation Science, School of Biological SciencesUniversity of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|