1
|
Rowe JH, Josse M, Tang B, Jones AM. Quantifying Plant Biology with Fluorescent Biosensors. ANNUAL REVIEW OF PLANT BIOLOGY 2025; 76:285-315. [PMID: 40153610 DOI: 10.1146/annurev-arplant-061824-090615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2025]
Abstract
Plant biology is undergoing a spatial omics revolution, but these approaches are limited to snapshots of a plant's state. Direct, genetically encoded fluorescent biosensors complement the omics approaches, giving researchers tools to assess energetic, metabolic, and signaling molecules at multiple scales, from fast subcellular dynamics to organismal patterns in living plants. This review focuses on how biosensors illuminate plant biology across these scales and the major discoveries to which they have contributed. We also discuss the core principles and common pitfalls affecting biosensor engineering, deployment, imaging, and analysis to help aspiring biosensor researchers. Innovative technologies are driving forward developments both biological and technical with implications for synergizing biosensor research with other approaches and expanding the scope of in vivo quantitative biology.
Collapse
Affiliation(s)
- James H Rowe
- Sainsbury Laboratory Cambridge University, University of Cambridge, Cambridge, United Kingdom;
- Current affiliation: School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Max Josse
- Sainsbury Laboratory Cambridge University, University of Cambridge, Cambridge, United Kingdom;
| | - Bijun Tang
- Sainsbury Laboratory Cambridge University, University of Cambridge, Cambridge, United Kingdom;
| | - Alexander M Jones
- Sainsbury Laboratory Cambridge University, University of Cambridge, Cambridge, United Kingdom;
| |
Collapse
|
2
|
Miller ST, Macdonald CB, Raman S. Understanding, inhibiting, and engineering membrane transporters with high-throughput mutational screens. Cell Chem Biol 2025; 32:529-541. [PMID: 40168989 DOI: 10.1016/j.chembiol.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 01/20/2025] [Accepted: 03/10/2025] [Indexed: 04/03/2025]
Abstract
Promiscuous membrane transporters play vital roles across domains of life, mediating the uptake and efflux of structurally and chemically diverse substrates. Although many transporter structures have been solved, the fundamental rules of polyspecific transport remain inscrutable. In recent years, high-throughput genetic screens have solidified as powerful tools for comprehensive, unbiased measurements of variant function and hypothesis generation, but have had infrequent application and limited impact in the transporter field. In this primer, we describe the principles of high-throughput screening methods available for studying polyspecific transporters and comment on the necessity and potential of high-throughput methods for deciphering these transporters in particular. We present several screening approaches which could provide a fundamental understanding of the molecular basis of function and promiscuity in transporters. We further posit how this knowledge can be leveraged to design inhibitors that combat multidrug resistance and engineer transporters as needed tools for synthetic biology and biotechnology applications.
Collapse
Affiliation(s)
- Silas T Miller
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Christian B Macdonald
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Srivatsan Raman
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
3
|
Saito T, Kikuchi K, Ishikawa T. Glucose stockpile in the intestinal apical brush border in C. elegans. Biochem Biophys Res Commun 2024; 706:149762. [PMID: 38484572 DOI: 10.1016/j.bbrc.2024.149762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 03/24/2024]
Abstract
Revealing the mechanisms of glucose transport is crucial for studying pathological diseases caused by glucose toxicities. Numerous studies have revealed molecular functions involved in glucose transport in the nematode Caenorhabditis elegans, a commonly used model organism. However, the behavior of glucose in the intestinal lumen-to-cell remains elusive. To address that, we evaluated the diffusion coefficient of glucose in the intestinal apical brush border of C. elegans by using fluorescent glucose and fluorescence recovery after photobleaching. Fluorescent glucose taken in the intestine of worms accumulates in the apical brush border, and its diffusion coefficient of ∼10-8 cm2/s is two orders of magnitude slower than that in bulk. This result indicates that the intestinal brush border is a viscous layer. ERM-1 point mutations at the phosphorylation site, which shorten the microvilli length, did not significantly affect the diffusion coefficient of fluorescent glucose in the brush border. Our findings imply that glucose enrichment is dominantly maintained by the viscous layer composed of the glycocalyx and molecular complexes on the apical surface.
Collapse
Affiliation(s)
- Takumi Saito
- Graduate School of Biomedical Engineering, Tohoku University, Miyagi, Japan; Department of Molecular Biophysics and Biochemistry, New Haven, Yale University, CT, USA; Nanobiology Institute, Yale University, West Haven, CT, USA.
| | - Kenji Kikuchi
- Graduate School of Engineering, Department of Finemechanics, Tohoku University, Miyagi, Japan; Graduate School of Biomedical Engineering, Tohoku University, Miyagi, Japan.
| | - Takuji Ishikawa
- Graduate School of Engineering, Department of Finemechanics, Tohoku University, Miyagi, Japan; Graduate School of Biomedical Engineering, Tohoku University, Miyagi, Japan
| |
Collapse
|
4
|
Gwon S, Park J, Huque AM, Cheung LS. The Arabidopsis SWEET1 and SWEET2 uniporters recognize similar substrates while differing in subcellular localization. J Biol Chem 2023; 299:105389. [PMID: 37890779 PMCID: PMC10694572 DOI: 10.1016/j.jbc.2023.105389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Sugars Will Eventually be Exported Transporters (SWEETs) are central for sugar allocation in plants. The SWEET family has approximately 20 homologs in most plant genomes, and despite extensive research on their structures and molecular functions, it is still unclear how diverse SWEETs recognize different substrates. Previous work using SweetTrac1, a biosensor constructed by the intramolecular fusion of a conformation-sensitive fluorescent protein in the plasma membrane transporter SWEET1 from Arabidopsis thaliana, identified common features in the transporter's substrates. Here, we report SweetTrac2, a new biosensor based on the Arabidopsis vacuole membrane transporter SWEET2, and use it to explore the substrate specificity of this second protein. Our results show that SWEET1 and SWEET2 recognize similar substrates but some with different affinities. Sequence comparison and mutagenesis analysis support the conclusion that the differences in affinity depend on nonspecific interactions involving previously uncharacterized residues in the substrate-binding pocket. Furthermore, SweetTrac2 can be an effective tool for monitoring sugar transport at vacuolar membranes that would be otherwise challenging to study.
Collapse
Affiliation(s)
- Sojeong Gwon
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Jihyun Park
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Akm Mahmudul Huque
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Lily S Cheung
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.
| |
Collapse
|
5
|
Park J, Abramowitz RG, Gwon S, Cheung LS. Exploring the Substrate Specificity of a Sugar Transporter with Biosensors and Cheminformatics. ACS Synth Biol 2023; 12:565-571. [PMID: 36719856 PMCID: PMC9942192 DOI: 10.1021/acssynbio.2c00571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Sugars will eventually be exported transporters (SWEETs) are conserved sugar transporters that play crucial roles in plant physiology and biotechnology. The genomes of flowering plants typically encode about 20 SWEET paralogs that can be classified into four clades. Clades I, II, and IV have been reported to favor hexoses, while clade III SWEETs prefer sucrose. However, the molecular features of substrates required for recognition by members of this family have not been investigated in detail. Here, we show that SweetTrac1, a previously reported biosensor constructed from the Clade I Arabidopsis thaliana SWEET1, can provide insight into the structural requirements for substrate recognition. The biosensor translates substrate binding to the transporter into a change in fluorescence, and its application in a small-molecule screen combined with cheminformatics uncovered 12 new sugars and their derivatives capable of eliciting a response. Furthermore, we confirmed that the wild-type transporter mediates cellular uptake of three of these species, including the diabetes drugs 1-deoxynojirimycin and voglibose. Our results show that SWEETs can recognize different furanoses, pyranoses, and acyclic sugars, illustrating the potential of combining biosensors and computational techniques to uncover the basis of substrate specificity.
Collapse
Affiliation(s)
- Jihyun Park
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ryan G. Abramowitz
- School
of Biological Sciences, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Sojeong Gwon
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Lily S. Cheung
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States,
| |
Collapse
|
6
|
Yang Y, Chaffin TA, Ahkami AH, Blumwald E, Stewart CN. Plant synthetic biology innovations for biofuels and bioproducts. Trends Biotechnol 2022; 40:1454-1468. [PMID: 36241578 DOI: 10.1016/j.tibtech.2022.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/26/2022] [Accepted: 09/15/2022] [Indexed: 01/21/2023]
Abstract
Plant-based biosynthesis of fuels, chemicals, and materials promotes environmental sustainability, which includes decreases in greenhouse gas emissions, water pollution, and loss of biodiversity. Advances in plant synthetic biology (synbio) should improve precision and efficacy of genetic engineering for sustainability. Applicable synbio innovations include genome editing, gene circuit design, synthetic promoter development, gene stacking technologies, and the design of environmental sensors. Moreover, recent advancements in developing spatially resolved and single-cell omics contribute to the discovery and characterization of cell-type-specific mechanisms and spatiotemporal gene regulations in distinct plant tissues for the expression of cell- and tissue-specific genes, resulting in improved bioproduction. This review highlights recent plant synbio progress and new single-cell molecular profiling towards sustainable biofuel and biomaterial production.
Collapse
Affiliation(s)
- Yongil Yang
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA; Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Timothy Alexander Chaffin
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA; Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Amir H Ahkami
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, USA
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Charles Neal Stewart
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA; Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
7
|
OzTracs: Optical Osmolality Reporters Engineered from Mechanosensitive Ion Channels. Biomolecules 2022; 12:biom12060787. [PMID: 35740912 PMCID: PMC9221499 DOI: 10.3390/biom12060787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/18/2022] [Accepted: 06/02/2022] [Indexed: 02/01/2023] Open
Abstract
Interactions between physical forces and membrane proteins underpin many forms of environmental sensation and acclimation. Microbes survive osmotic stresses with the help of mechanically gated ion channels and osmolyte transporters. Plant mechanosensitive ion channels have been shown to function in defense signaling. Here, we engineered genetically encoded osmolality sensors (OzTracs) by fusing fluorescent protein spectral variants to the mechanosensitive ion channels MscL from E. coli or MSL10 from A. thaliana. When expressed in yeast cells, the OzTrac sensors reported osmolality changes as a proportional change in the emission ratio of the two fluorescent protein domains. Live-cell imaging revealed an accumulation of fluorescent sensors in internal aggregates, presumably derived from the endomembrane system. Thus, OzTrac sensors serve as osmolality-dependent reporters through an indirect mechanism, such as effects on molecular crowding or fluorophore solvation.
Collapse
|
8
|
Xue X, Wang J, Shukla D, Cheung LS, Chen LQ. When SWEETs Turn Tweens: Updates and Perspectives. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:379-403. [PMID: 34910586 DOI: 10.1146/annurev-arplant-070621-093907] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sugar translocation between cells and between subcellular compartments in plants requires either plasmodesmata or a diverse array of sugar transporters. Interactions between plants and associated microorganisms also depend on sugar transporters. The sugars will eventually be exported transporter (SWEET) family is made up of conserved and essential transporters involved in many critical biological processes. The functional significance and small size of these proteins have motivated crystallographers to successfully capture several structures of SWEETs and their bacterial homologs in different conformations. These studies together with molecular dynamics simulations have provided unprecedented insights into sugar transport mechanisms in general and into substrate recognition of glucose and sucrose in particular. This review summarizes our current understanding of the SWEET family, from the atomic to the whole-plant level. We cover methods used for their characterization, theories about their evolutionary origins, biochemical properties, physiological functions, and regulation. We also include perspectives on the future work needed to translate basic research into higher crop yields.
Collapse
Affiliation(s)
- Xueyi Xue
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
| | - Jiang Wang
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Lily S Cheung
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Li-Qing Chen
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
| |
Collapse
|
9
|
Dinant S, Le Hir R. Delving deeper into the link between sugar transport, sugar signaling, and vascular system development. PHYSIOLOGIA PLANTARUM 2022; 174:e13684. [PMID: 35396718 DOI: 10.1111/ppl.13684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Plant growth and development rely on the transport and use of sugars produced during photosynthesis. Sugars have a dual function as nutrients and signal molecules in the cell. Many factors maintaining sugar homeostasis and signaling are now identified, but our understanding of the mechanisms involved in coordinating intracellular and intercellular sugar translocation is still limited. We also know little about the interplay between sugar transport and signaling and the formation of the vascular system, which controls long-distance sugar translocation. Sugar signaling has been proposed to play a role; however, evidence to support this hypothesis is still limited. Here, we exploited recent transcriptomics datasets produced in aerial organs of Arabidopsis to identify genes coding for sugar transporters or signaling components expressed in the vascular cells. We identified genes belonging to sugar transport and signaling for which no information is available regarding a role in vasculature development. In addition, the transcriptomics datasets obtained from sugar-treated Arabidopsis seedlings were used to assess the sugar-responsiveness of known genes involved in vascular differentiation. Interestingly, several key regulators of vascular development were found to be regulated by either sucrose or glucose. Especially CLE41, which controls the procambial cell fate, was oppositely regulated by sucrose or glucose in these datasets. Even if more experimental data are necessary to confirm these findings, this survey supports a link between sugar transport/signaling and vascular system development.
Collapse
Affiliation(s)
- Sylvie Dinant
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Rozenn Le Hir
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| |
Collapse
|