1
|
Coughlin TM, Makarewich CA. Emerging roles for microproteins as critical regulators of endoplasmic reticulum function and cellular homeostasis. Semin Cell Dev Biol 2025; 170:103608. [PMID: 40245464 PMCID: PMC12065929 DOI: 10.1016/j.semcdb.2025.103608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/20/2025] [Accepted: 04/04/2025] [Indexed: 04/19/2025]
Abstract
The endoplasmic reticulum (ER) is a multifunctional organelle essential for key cellular processes including protein synthesis, calcium homeostasis, and the cellular stress response. It is composed of distinct domains, such as the rough and smooth ER, as well as membrane regions that facilitate direct communication with other organelles, enabling its diverse functions. While many well-characterized ER proteins contribute to these processes, recent studies have revealed a previously underappreciated class of small proteins that play critical regulatory roles. Microproteins, typically under 100 amino acids in length, were historically overlooked due to size-based biases in genome annotation and often misannotated as noncoding RNAs. Advances in ribosome profiling, mass spectrometry, and computational approaches have now enabled the discovery of numerous previously unrecognized microproteins, significantly expanding our understanding of the proteome. While some ER-associated microproteins, such as phospholamban and sarcolipin, were identified decades ago, newly discovered microproteins share similar fundamental characteristics, underscoring the need to refine our understanding of the coding potential of the genome. Molecular studies have demonstrated that ER microproteins play essential roles in calcium regulation, ER stress response, organelle communication, and protein translocation. Moreover, growing evidence suggests that ER microproteins contribute to cellular homeostasis and are implicated in disease processes, including cardiovascular disease and cancer. This review examines the shared and unique functions of ER microproteins, their implications for health and disease, and their potential as therapeutic targets for conditions associated with ER dysfunction.
Collapse
Affiliation(s)
- Taylor M Coughlin
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Pathobiology and Molecular Medicine Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Catherine A Makarewich
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
2
|
Han Z, Dong Q, Lu X, Liu S, Yang Y, Shao F, Tian L. TSH upregulates CYP4B1 through the PI3K/AKT/CREB pathway to promote cardiac hypertrophy. J Endocrinol Invest 2025:10.1007/s40618-025-02554-z. [PMID: 40056338 DOI: 10.1007/s40618-025-02554-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 02/09/2025] [Indexed: 03/10/2025]
Abstract
BACKGROUND Subclinical hypothyroidism (SCH) is closely associated with heart failure and cardiac hypertrophy, yet the underlying mechanism remains unclear. METHODS Cardiomyocytes treated with thyroid-stimulating hormone (TSH) were used as an in vitro model. Cardiac-specific TSHR knockout mice (CKO) were treated with isoproterenol (ISO) to induce cardiac hypertrophy in vivo. Serum FT4, TSH levels, heart weight, body weight and tibial length of mice were evaluated. Heart function was analyzed by M-mode cardiac ultrasonography. The pathological changes in cardiac tissues were detected by immunohistochemistry, hematoxylin-eosin and WGA staining. mRNA levels of ANP, BNP, α-MHC and β-MHC were evaluated by RT-PCR. Western blot was used to detect pathway related proteins. Besides, the transcriptome sequencing analysis and dual-luciferase reporter assays were used to verify the relevant molecular mechanisms. RESULTS TSH significantly promotes cardiomyocyte hypertrophy in cardiomyocytes. Meanwhile, cardiac-specific TSHR knockout significantly reduced ISO-induced cardiac hypertrophy. This was demonstrated by reductions in cell sizes, decreased HW/BW and HW/TL ratios, along with improved expression of hypertrophic genes. Further transcriptome sequencing results showed that TSH can significantly promote the expression of CYP4B1 in vitro. And the knockdown of CYP4B1 repressed TSH-induced cardiomyocyte hypertrophy. Further mechanistic studies revealed that TSH regulated the expression of CYP4B1 hypertrophy through the PI3K/AKT/CREB signaling pathway. Subsequently, the dual-luciferase assays demonstrated that CREB promotes the transcription of CYP4B1 by binding to its promoter region. CONCLUSION Overall, our findings highlight the direct impact of TSH/TSHR on cardiomyocyte hypertrophy and proposed CYP4B1 as a promising target for mitigating cardiac hypertrophy in SCH patients.
Collapse
Affiliation(s)
- Ziqi Han
- Gansu University of Chinese Medicine, Lanzhou, 730000, China
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Qianqian Dong
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Xiao Lu
- Gansu University of Chinese Medicine, Lanzhou, 730000, China
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Shanshan Liu
- Gansu University of Chinese Medicine, Lanzhou, 730000, China
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Yanlong Yang
- Gansu University of Chinese Medicine, Lanzhou, 730000, China
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Feifei Shao
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Limin Tian
- Gansu University of Chinese Medicine, Lanzhou, 730000, China.
- Department of Endocrinology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610000, China.
| |
Collapse
|
3
|
Chen HX, Ma YZ, Xie PP, Huang JY, Li LQ, Zhang W, Zhu Y, Zhuang SM, Lin YF. Micropeptide MPM regulates cardiomyocyte proliferation and heart growth via the AKT pathway. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119820. [PMID: 39163918 DOI: 10.1016/j.bbamcr.2024.119820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/26/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024]
Abstract
The role of micropeptide in cardiomyocyte proliferation remains unknown. We found that MPM (micropeptide in mitochondria) was highly expressed in cardiomyocytes. Compared to MPM+/+ mice, MPM knockout (MPM-/-) mice exhibited reduction in left ventricular (LV) mass, myocardial thickness and LV fractional shortening. RNA-sequencing analysis in H9c2, a rat cardiomyocyte cell line, identified downregulation of cell cycle-promoting genes as the most significant alteration in MPM-silencing cells. Consistently, gain- and loss-of-function analyses in H9c2 cells revealed that cardiomyocyte proliferation was repressed by silencing MPM but was promoted by overexpressing MPM. Moreover, the cardiomyocytes in the hearts of MPM-/- mice displayed reduced proliferation rates. Mechanism investigations disclosed that MPM is crucial for AKT activation in cardiomyocytes. We also identified an interaction between MPM and PTPMT1, and found that silencing PTPMT1 attenuated the effect of MPM in activating the AKT pathway, whereas inhibition of the AKT pathway abrogated the role of MPM in promoting cardiomyocyte proliferation. Collectively, these results indicate that MPM may promote cardiomyocyte proliferation and thus heart growth by interacting with PTPMT1 to activate the AKT pathway. Our findings identify the novel function and regulatory network of MPM and highlight the importance of micropeptides in cardiomyocyte proliferation and heart growth.
Collapse
Affiliation(s)
- Hua-Xing Chen
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Yan-Zhen Ma
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Peng-Peng Xie
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jie-Yi Huang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Lan-Qi Li
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Wei Zhang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Ying Zhu
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Shi-Mei Zhuang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University, Guangzhou 510275, PR China; Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, PR China.
| | - Yi-Fang Lin
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University, Guangzhou 510275, PR China; Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, PR China.
| |
Collapse
|
4
|
Li R, Qin T, Guo Y, Zhang S, Guo X. CEAM is a mitochondrial-localized, amyloid-like motif-containing microprotein expressed in human cardiomyocytes. Biochem Biophys Res Commun 2024; 734:150737. [PMID: 39388734 DOI: 10.1016/j.bbrc.2024.150737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/22/2024] [Accepted: 09/22/2024] [Indexed: 10/12/2024]
Abstract
Microproteins synthesized through non-canonical translation pathways are frequently found within mitochondria. However, the functional significance of these mitochondria-localized microproteins in energy-intensive organs such as the heart remains largely unexplored. In this study, we demonstrate that the long non-coding RNA CD63-AS1 encodes a mitochondrial microprotein. Notably, in ribosome profiling data of human hearts, there is a positive correlation between the expression of CD63-AS1 and genes associated with cardiomyopathy. We have termed this microprotein CEAM (CD63-AS1 encoded amyloid-like motif containing microprotein), reflecting its sequence characteristics. Our biochemical assays show that CEAM forms protease-resistant aggregates within mitochondria, whereas deletion of the amyloid-like motif transforms CEAM into a soluble cytosolic protein. Overexpression of CEAM triggers mitochondrial stress responses and adversely affect mitochondrial bioenergetics in cultured cardiomyocytes. In turn, the expression of CEAM is reciprocally inhibited by the activation of mitochondrial stresses induced by oligomycin. When expressed in mouse hearts via adeno-associated virus, CEAM impairs cardiac function. However, under conditions of pressure overload-induced cardiac hypertrophy, CEAM expression appears to offer a protective benefit and mitigates the expression of genes associated with cardiac remodeling, presumably through a mechanism that suppresses stress-induced translation reprogramming. Collectively, our study uncovers a hitherto unexplored amyloid-like microprotein expressed in the human cardiomyocytes, offering novel insights into myocardial hypertrophy pathophysiology.
Collapse
Affiliation(s)
- Ruobing Li
- Department of Cardiology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Ti Qin
- Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yabo Guo
- Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Shan Zhang
- Department of Cardiology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China; Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Xiaogang Guo
- Department of Cardiology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
5
|
Čunátová K, Fernández‐Vizarra E. Pathological variants in nuclear genes causing mitochondrial complex III deficiency: An update. J Inherit Metab Dis 2024; 47:1278-1291. [PMID: 39053894 PMCID: PMC11586608 DOI: 10.1002/jimd.12751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/24/2024] [Accepted: 05/02/2024] [Indexed: 07/27/2024]
Abstract
Mitochondrial disorders are a group of clinically and biochemically heterogeneous genetic diseases within the group of inborn errors of metabolism. Primary mitochondrial diseases are mainly caused by defects in one or several components of the oxidative phosphorylation system (complexes I-V). Within these disorders, those associated with complex III deficiencies are the least common. However, thanks to a deeper knowledge about complex III biogenesis, improved clinical diagnosis and the implementation of next-generation sequencing techniques, the number of pathological variants identified in nuclear genes causing complex III deficiency has expanded significantly. This updated review summarizes the current knowledge concerning the genetic basis of complex III deficiency, and the main clinical features associated with these conditions.
Collapse
Affiliation(s)
- Kristýna Čunátová
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
- Veneto Institute of Molecular MedicinePadovaItaly
| | - Erika Fernández‐Vizarra
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
- Veneto Institute of Molecular MedicinePadovaItaly
| |
Collapse
|
6
|
Nichols C, Do-Thi VA, Peltier DC. Noncanonical microprotein regulation of immunity. Mol Ther 2024; 32:2905-2929. [PMID: 38734902 PMCID: PMC11403233 DOI: 10.1016/j.ymthe.2024.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/19/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024] Open
Abstract
The immune system is highly regulated but, when dysregulated, suboptimal protective or overly robust immune responses can lead to immune-mediated disorders. The genetic and molecular mechanisms of immune regulation are incompletely understood, impeding the development of more precise diagnostics and therapeutics for immune-mediated disorders. Recently, thousands of previously unrecognized noncanonical microprotein genes encoded by small open reading frames have been identified. Many of these microproteins perform critical functions, often in a cell- and context-specific manner. Several microproteins are now known to regulate immunity; however, the vast majority are uncharacterized. Therefore, illuminating what is often referred to as the "dark proteome," may present opportunities to tune immune responses more precisely. Here, we review noncanonical microprotein biology, highlight recently discovered examples regulating immunity, and discuss the potential and challenges of modulating dysregulated immune responses by targeting microproteins.
Collapse
Affiliation(s)
- Cydney Nichols
- Morris Green Scholars Program, Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Van Anh Do-Thi
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Daniel C Peltier
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
7
|
Romero-Becera R, Santamans AM, Arcones AC, Sabio G. From Beats to Metabolism: the Heart at the Core of Interorgan Metabolic Cross Talk. Physiology (Bethesda) 2024; 39:98-125. [PMID: 38051123 DOI: 10.1152/physiol.00018.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/26/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023] Open
Abstract
The heart, once considered a mere blood pump, is now recognized as a multifunctional metabolic and endocrine organ. Its function is tightly regulated by various metabolic processes, at the same time it serves as an endocrine organ, secreting bioactive molecules that impact systemic metabolism. In recent years, research has shed light on the intricate interplay between the heart and other metabolic organs, such as adipose tissue, liver, and skeletal muscle. The metabolic flexibility of the heart and its ability to switch between different energy substrates play a crucial role in maintaining cardiac function and overall metabolic homeostasis. Gaining a comprehensive understanding of how metabolic disorders disrupt cardiac metabolism is crucial, as it plays a pivotal role in the development and progression of cardiac diseases. The emerging understanding of the heart as a metabolic and endocrine organ highlights its essential contribution to whole body metabolic regulation and offers new insights into the pathogenesis of metabolic diseases, such as obesity, diabetes, and cardiovascular disorders. In this review, we provide an in-depth exploration of the heart's metabolic and endocrine functions, emphasizing its role in systemic metabolism and the interplay between the heart and other metabolic organs. Furthermore, emerging evidence suggests a correlation between heart disease and other conditions such as aging and cancer, indicating that the metabolic dysfunction observed in these conditions may share common underlying mechanisms. By unraveling the complex mechanisms underlying cardiac metabolism, we aim to contribute to the development of novel therapeutic strategies for metabolic diseases and improve overall cardiovascular health.
Collapse
Affiliation(s)
| | | | - Alba C Arcones
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| |
Collapse
|
8
|
Lu Y, Ran Y, Li H, Wen J, Cui X, Zhang X, Guan X, Cheng M. Micropeptides: origins, identification, and potential role in metabolism-related diseases. J Zhejiang Univ Sci B 2023; 24:1106-1122. [PMID: 38057268 PMCID: PMC10710913 DOI: 10.1631/jzus.b2300128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/06/2023] [Indexed: 12/08/2023]
Abstract
With the development of modern sequencing techniques and bioinformatics, genomes that were once thought to be noncoding have been found to encode abundant functional micropeptides (miPs), a kind of small polypeptides. Although miPs are difficult to analyze and identify, a number of studies have begun to focus on them. More and more miPs have been revealed as essential for energy metabolism homeostasis, immune regulation, and tumor growth and development. Many reports have shown that miPs are especially essential for regulating glucose and lipid metabolism and regulating mitochondrial function. MiPs are also involved in the progression of related diseases. This paper reviews the sources and identification of miPs, as well as the functional significance of miPs for metabolism-related diseases, with the aim of revealing their potential clinical applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Min Cheng
- School of Basic Medicine Sciences, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
9
|
Sahgal A, Uversky V, Davé V. Microproteins transitioning into a new Phase: Defining the undefined. Methods 2023; 220:38-54. [PMID: 37890707 DOI: 10.1016/j.ymeth.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
Recent advancements in omics technologies have unveiled a hitherto unknown group of short polypeptides called microproteins (miPs). Despite their size, accumulating evidence has demonstrated that miPs exert varied and potent biological functions. They act in paracrine, juxtracrine, and endocrine fashion, maintaining cellular physiology and driving diseases. The present study focuses on biochemical and biophysical analysis and characterization of twenty-four human miPs using distinct computational methods, including RIDAO, AlphaFold2, D2P2, FuzDrop, STRING, and Emboss Pep wheel. miPs often lack well-defined tertiary structures and may harbor intrinsically disordered regions (IDRs) that play pivotal roles in cellular functions. Our analyses define the physicochemical properties of an essential subset of miPs, elucidating their structural characteristics and demonstrating their propensity for driving or participating in liquid-liquid phase separation (LLPS) and intracellular condensate formation. Notably, miPs such as NoBody and pTUNAR revealed a high propensity for LLPS, implicating their potential involvement in forming membrane-less organelles (MLOs) during intracellular LLPS and condensate formation. The results of our study indicate that miPs have functionally profound implications in cellular compartmentalization and signaling processes essential for regulating normal cellular functions. Taken together, our methodological approach explains and highlights the biological importance of these miPs, providing a deeper understanding of the unusual structural landscape and functionality of these newly defined small proteins. Understanding their functions and biological behavior will aid in developing targeted therapies for diseases that involve miPs.
Collapse
Affiliation(s)
- Aayushi Sahgal
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States; Biotechnology Graduate Program, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Vladimir Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States; USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Vrushank Davé
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States; Biotechnology Graduate Program, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States; Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States; Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States.
| |
Collapse
|
10
|
Kamradt ML, Makarewich CA. Mitochondrial microproteins: critical regulators of protein import, energy production, stress response pathways, and programmed cell death. Am J Physiol Cell Physiol 2023; 325:C807-C816. [PMID: 37642234 PMCID: PMC11540166 DOI: 10.1152/ajpcell.00189.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
Mitochondria rely upon the coordination of protein import, protein translation, and proper functioning of oxidative phosphorylation (OXPHOS) complexes I-V to sustain the activities of life for an organism. Each process is dependent upon the function of profoundly large protein complexes found in the mitochondria [translocase of the outer mitochondrial membrane (TOMM) complex, translocase of the inner mitochondrial membrane (TIMM) complex, OXPHOS complexes, mitoribosomes]. These massive protein complexes, in some instances more than one megadalton, are built up from numerous protein subunits of varying sizes, including many proteins that are ≤100-150 amino acids. However, these small proteins, termed microproteins, not only act as cogs in large molecular machines but also have important steps in inhibiting or promoting the intrinsic pathway of apoptosis, coordinate responses to cellular stress, and even act as hormones. This review focuses on microproteins that occupy the mitochondria and are critical for its function. Although the microprotein field is relatively new, researchers have long recognized the existence of these mitochondrial proteins as critical components of virtually all aspects of mitochondrial biology. Thus, recent studies estimating that hundreds of new microproteins of unknown function exist and are missing from current genome annotations suggests that the mitochondrial "microproteome" is a rich area for future biological investigation.
Collapse
Affiliation(s)
- Michael L Kamradt
- Division of Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Catherine A Makarewich
- Division of Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| |
Collapse
|
11
|
Jacobs HT, Szibor M, Rathkolb B, da Silva-Buttkus P, Aguilar-Pimentel JA, Amarie OV, Becker L, Calzada-Wack J, Dragano N, Garrett L, Gerlini R, Hölter SM, Klein-Rodewald T, Kraiger M, Leuchtenberger S, Marschall S, Östereicher MA, Pfannes K, Sanz-Moreno A, Seisenberger C, Spielmann N, Stoeger C, Wurst W, Fuchs H, Hrabě de Angelis M, Gailus-Durner V. AOX delays the onset of the lethal phenotype in a mouse model of Uqcrh (complex III) disease. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166760. [PMID: 37230398 DOI: 10.1016/j.bbadis.2023.166760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/24/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
The alternative oxidase, AOX, provides a by-pass of the cytochrome segment of the mitochondrial respiratory chain when the chain is unavailable. AOX is absent from mammals, but AOX from Ciona intestinalis is benign when expressed in mice. Although non-protonmotive, so does not contribute directly to ATP production, it has been shown to modify and in some cases rescue phenotypes of respiratory-chain disease models. Here we studied the effect of C. intestinalis AOX on mice engineered to express a disease-equivalent mutant of Uqcrh, encoding the hinge subunit of mitochondrial respiratory complex III, which results in a complex metabolic phenotype beginning at 4-5 weeks, rapidly progressing to lethality within a further 6-7 weeks. AOX expression delayed the onset of this phenotype by several weeks, but provided no long-term benefit. We discuss the significance of this finding in light of the known and hypothesized effects of AOX on metabolism, redox homeostasis, oxidative stress and cell signaling. Although not a panacea, the ability of AOX to mitigate disease onset and progression means it could be useful in treatment.
Collapse
Affiliation(s)
- Howard T Jacobs
- Faculty of Medicine and Health Technology, FI-33014 Tampere University, Finland; Department of Environment and Genetics, La Trobe University, Melbourne, Victoria 3086, Australia.
| | - Marten Szibor
- Faculty of Medicine and Health Technology, FI-33014 Tampere University, Finland; Department of Cardiothoracic Surgery, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Friedrich Schiller University of Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Birgit Rathkolb
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany; Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University München, Feodor-Lynen Str. 25, 81377 Munich, Germany; German Center for Diabetes Research (DZD), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Patricia da Silva-Buttkus
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Juan Antonio Aguilar-Pimentel
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Oana V Amarie
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Lore Becker
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Julia Calzada-Wack
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Nathalia Dragano
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Lillian Garrett
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Raffaele Gerlini
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Sabine M Hölter
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany; Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Tanja Klein-Rodewald
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Markus Kraiger
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Stefanie Leuchtenberger
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Susan Marschall
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Manuela A Östereicher
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Kristina Pfannes
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Adrián Sanz-Moreno
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Claudia Seisenberger
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Nadine Spielmann
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Claudia Stoeger
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany; Chair of Developmental Genetics, TUM School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany; Deutsches Institut für Neurodegenerative Erkrankungen (DZNE) Site Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Martin Hrabě de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany; Chair of Experimental Genetics, TUM School of Life Sciences, Technische Universität München, Alte Akademie 8, 85354 Freising, Germany.
| | - Valérie Gailus-Durner
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| |
Collapse
|
12
|
Luqman-Fatah A, Miyoshi T. Human LINE-1 retrotransposons: impacts on the genome and regulation by host factors. Genes Genet Syst 2023; 98:121-154. [PMID: 36436935 DOI: 10.1266/ggs.22-00038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Genome sequencing revealed that nearly half of the human genome is comprised of transposable elements. Although most of these elements have been rendered inactive due to mutations, full-length intact long interspersed element-1 (LINE-1 or L1) copies retain the ability to mobilize through RNA intermediates by a so-called "copy-and-paste" mechanism, termed retrotransposition. L1 is the only known autonomous mobile genetic element in the genome, and its retrotransposition contributes to inter- or intra-individual genetic variation within the human population. However, L1 retrotransposition also poses a threat to genome integrity due to gene disruption and chromosomal instability. Moreover, recent studies suggest that aberrant L1 expression can impact human health by causing diseases such as cancer and chronic inflammation that might lead to autoimmune disorders. To counteract these adverse effects, the host cells have evolved multiple layers of defense mechanisms at the epigenetic, RNA and protein levels. Intriguingly, several host factors have also been reported to facilitate L1 retrotransposition, suggesting that there is competition between negative and positive regulation of L1 by host factors. Here, we summarize the known host proteins that regulate L1 activity at different stages of the replication cycle and discuss how these factors modulate disease-associated phenotypes caused by L1.
Collapse
Affiliation(s)
- Ahmad Luqman-Fatah
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University
- Department of Stress Response, Radiation Biology Center, Graduate School of Biostudies, Kyoto University
| | - Tomoichiro Miyoshi
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University
- Department of Stress Response, Radiation Biology Center, Graduate School of Biostudies, Kyoto University
| |
Collapse
|
13
|
Zhang S, Guo Y, Fidelito G, Robinson DR, Liang C, Lim R, Bichler Z, Guo R, Wu G, Xu H, Zhou QD, Singh BK, Yen P, Kappei D, Stroud DA, Ho L. LINC00116-encoded microprotein mitoregulin regulates fatty acid metabolism at the mitochondrial outer membrane. iScience 2023; 26:107558. [PMID: 37664623 PMCID: PMC10469944 DOI: 10.1016/j.isci.2023.107558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 07/04/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023] Open
Abstract
LINC00116 encodes a microprotein first identified as Mitoregulin (MTLN), where it was reported to localize to the inner membrane of mitochondria to regulate fatty acid oxidation and oxidative phosphorylation. These initial discoveries were followed by reports with differing findings about its molecular functions and submitochondrial localization. To clarify the apparent discrepancies, we constructed multiple orthogonal methods of determining the localization of MTLN, including split GFP-based reporters that enable efficient and reliable topology analyses for microproteins. These methods unequivocally demonstrate MTLN primarily localizes to the outer membrane of mitochondria, where it interacts with enzymes of fatty acid metabolism including CPT1B and CYB5B. Loss of MTLN causes the accumulation of very long-chain fatty acids (VLCFAs), especially docosahexaenoic acid (DHA). Intriguingly, loss of MTLN protects mice against western diet/fructose-induced insulin-resistance, suggests a protective effect of VLCFAs in this context. MTLN thus serves as an attractive target to control the catabolism of VLCFAs.
Collapse
Affiliation(s)
- Shan Zhang
- Department of Biochemistry, Department of Cardiology of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Cardiovascular and Metabolic Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Yabo Guo
- Department of Biochemistry, Department of Cardiology of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Gio Fidelito
- Cardiovascular and Metabolic Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - David R.L. Robinson
- Department of Biochemistry and Pharmacology, The Bio21 Molecular Science & Biotechnology Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Chao Liang
- Cardiovascular and Metabolic Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Radiance Lim
- Cardiovascular and Metabolic Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Zoë Bichler
- Behavioral Neuroscience Laboratory, National Neuroscience Institute, Singapore 308433, Singapore
| | - Ruiyang Guo
- Department of Biochemistry, Department of Cardiology of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Gaoqi Wu
- Institute of Immunology, Department of Surgical Oncology of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - He Xu
- Institute of Immunology, Department of Surgical Oncology of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Quan D. Zhou
- Institute of Immunology, Department of Surgical Oncology of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Brijesh K. Singh
- Cardiovascular and Metabolic Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Paul Yen
- Cardiovascular and Metabolic Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Dennis Kappei
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - David A. Stroud
- Department of Biochemistry and Pharmacology, The Bio21 Molecular Science & Biotechnology Institute, University of Melbourne, Melbourne, VIC 3010, Australia
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3010, Australia
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC 3010, Australia
| | - Lena Ho
- Cardiovascular and Metabolic Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
14
|
Li K, Li B, Zhang D, Du T, Zhou H, Dai G, Yan Y, Gao N, Zhuang X, Liao X, Liu C, Dong Y, Chen D, Qu LH, Ou J, Yang JH, Huang ZP. The translational landscape of human vascular smooth muscle cells identifies novel short open reading frame-encoded peptide regulators for phenotype alteration. Cardiovasc Res 2023; 119:1763-1779. [PMID: 36943764 DOI: 10.1093/cvr/cvad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/09/2023] [Accepted: 01/19/2023] [Indexed: 03/23/2023] Open
Abstract
AIMS The plasticity of vascular smooth muscle cells (VSMCs) enables them to alter phenotypes under various physiological and pathological stimuli. The alteration of VSMC phenotype is a key step in vascular diseases, including atherosclerosis. Although the transcriptome shift during VSMC phenotype alteration has been intensively investigated, uncovering multiple key regulatory signalling pathways, the translatome dynamics in this cellular process, remain largely unknown. Here, we explored the genome-wide regulation at the translational level of human VSMCs during phenotype alteration. METHODS AND RESULTS We generated nucleotide-resolution translatome and transcriptome data from human VSMCs undergoing phenotype alteration. Deep sequencing of ribosome-protected fragments (Ribo-seq) revealed alterations in protein synthesis independent of changes in messenger ribonucleicacid levels. Increased translational efficiency of many translational machinery components, including ribosomal proteins, eukaryotic translation elongation factors and initiation factors were observed during the phenotype alteration of VSMCs. In addition, hundreds of candidates for short open reading frame-encoded polypeptides (SEPs), a class of peptides containing 200 amino acids or less, were identified in a combined analysis of translatome and transcriptome data with a high positive rate in validating their coding capability. Three evolutionarily conserved SEPs were further detected endogenously by customized antibodies and suggested to participate in the pathogenesis of atherosclerosis by analysing the transcriptome and single cell RNA-seq data from patient atherosclerotic artery samples. Gain- and loss-of-function studies in human VSMCs and genetically engineered mice showed that these SEPs modulate the alteration of VSMC phenotype through different signalling pathways, including the mitogen-activated protein kinase pathway and p53 pathway. CONCLUSION Our study indicates that an increase in the capacity of translation, which is attributable to an increased quantity of translational machinery components, mainly controls alterations of VSMC phenotype at the level of translational regulation. In addition, SEPs could function as important regulators in the phenotype alteration of human VSMCs.
Collapse
Affiliation(s)
- Kang Li
- 1Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Er Road, Guangzhou 510080, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), 58 Zhongshan Er Road, Guangzhou 510080, China
| | - Bin Li
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, 135 Xingang Xi Road, Guangzhou 510275, China
| | - Dihua Zhang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Er Road, Guangzhou 510080, China
| | - Tailai Du
- 1Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Er Road, Guangzhou 510080, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), 58 Zhongshan Er Road, Guangzhou 510080, China
| | - Huimin Zhou
- 1Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Er Road, Guangzhou 510080, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), 58 Zhongshan Er Road, Guangzhou 510080, China
| | - Gang Dai
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), 58 Zhongshan Er Road, Guangzhou 510080, China
| | - Youchen Yan
- 1Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Er Road, Guangzhou 510080, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), 58 Zhongshan Er Road, Guangzhou 510080, China
| | - Nailin Gao
- 1Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Er Road, Guangzhou 510080, China
| | - Xiaodong Zhuang
- 1Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Er Road, Guangzhou 510080, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), 58 Zhongshan Er Road, Guangzhou 510080, China
| | - Xinxue Liao
- 1Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Er Road, Guangzhou 510080, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), 58 Zhongshan Er Road, Guangzhou 510080, China
| | - Chen Liu
- 1Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Er Road, Guangzhou 510080, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), 58 Zhongshan Er Road, Guangzhou 510080, China
| | - Yugang Dong
- 1Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Er Road, Guangzhou 510080, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), 58 Zhongshan Er Road, Guangzhou 510080, China
| | - Demeng Chen
- 1Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Er Road, Guangzhou 510080, China
| | - Liang-Hu Qu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, 135 Xingang Xi Road, Guangzhou 510275, China
| | - Jingsong Ou
- 1Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Er Road, Guangzhou 510080, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), 58 Zhongshan Er Road, Guangzhou 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases (Sun Yat-sen University), 58 Zhongshan Er Road, Guangzhou 510080, China
| | - Jian-Hua Yang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, 135 Xingang Xi Road, Guangzhou 510275, China
| | - Zhan-Peng Huang
- 1Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Er Road, Guangzhou 510080, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), 58 Zhongshan Er Road, Guangzhou 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases (Sun Yat-sen University), 58 Zhongshan Er Road, Guangzhou 510080, China
| |
Collapse
|
15
|
Hassel KR, Brito-Estrada O, Makarewich CA. Microproteins: Overlooked regulators of physiology and disease. iScience 2023; 26:106781. [PMID: 37213226 PMCID: PMC10199267 DOI: 10.1016/j.isci.2023.106781] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023] Open
Abstract
Ongoing efforts to generate a complete and accurate annotation of the genome have revealed a significant blind spot for small proteins (<100 amino acids) originating from short open reading frames (sORFs). The recent discovery of numerous sORF-encoded proteins, termed microproteins, that play diverse roles in critical cellular processes has ignited the field of microprotein biology. Large-scale efforts are currently underway to identify sORF-encoded microproteins in diverse cell-types and tissues and specialized methods and tools have been developed to aid in their discovery, validation, and functional characterization. Microproteins that have been identified thus far play important roles in fundamental processes including ion transport, oxidative phosphorylation, and stress signaling. In this review, we discuss the optimized tools available for microprotein discovery and validation, summarize the biological functions of numerous microproteins, outline the promise for developing microproteins as therapeutic targets, and look forward to the future of the field of microprotein biology.
Collapse
Affiliation(s)
- Keira R. Hassel
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Omar Brito-Estrada
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Catherine A. Makarewich
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
16
|
Meng K, Lu S, Li Y, Hu L, Zhang J, Cao Y, Wang Y, Zhang CZ, He Q. LINC00493-encoded microprotein SMIM26 exerts anti-metastatic activity in renal cell carcinoma. EMBO Rep 2023; 24:e56282. [PMID: 37009826 PMCID: PMC10240204 DOI: 10.15252/embr.202256282] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/08/2023] [Accepted: 03/17/2023] [Indexed: 04/04/2023] Open
Abstract
Human microproteins encoded by long non-coding RNAs (lncRNA) have been increasingly discovered, however, complete functional characterization of these emerging proteins is scattered. Here, we show that LINC00493-encoded SMIM26, an understudied microprotein localized in mitochondria, is tendentiously downregulated in clear cell renal cell carcinoma (ccRCC) and correlated with poor overall survival. LINC00493 is recognized by RNA-binding protein PABPC4 and transferred to ribosomes for translation of a 95-amino-acid protein SMIM26. SMIM26, but not LINC00493, suppresses ccRCC growth and metastatic lung colonization by interacting with acylglycerol kinase (AGK) and glutathione transport regulator SLC25A11 via its N-terminus. This interaction increases the mitochondrial localization of AGK and subsequently inhibits AGK-mediated AKT phosphorylation. Moreover, the formation of the SMIM26-AGK-SCL25A11 complex maintains mitochondrial glutathione import and respiratory efficiency, which is abrogated by AGK overexpression or SLC25A11 knockdown. This study functionally characterizes the LINC00493-encoded microprotein SMIM26 and establishes its anti-metastatic role in ccRCC, and therefore illuminates the importance of hidden proteins in human cancers.
Collapse
Affiliation(s)
- Kun Meng
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan UniversityGuangzhouChina
- The First Affiliated Hospital of Jinan University and MOE Key Laboratory of Tumor Molecular Biology, Jinan UniversityGuangzhouChina
| | - Shaohua Lu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan UniversityGuangzhouChina
- Sino‐French Hoffmann Institute, School of Basic Medical Sciences, State Key Laboratory of Respiratory DiseaseGuangzhou Medical UniversityGuangzhouChina
| | - Yu‐Ying Li
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan UniversityGuangzhouChina
| | - Li‐Ling Hu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan UniversityGuangzhouChina
| | - Jing Zhang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan UniversityGuangzhouChina
- The First Affiliated Hospital of Jinan University and MOE Key Laboratory of Tumor Molecular Biology, Jinan UniversityGuangzhouChina
| | - Yun Cao
- Department of Pathology, State Key Laboratory of Oncology in South ChinaSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yang Wang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan UniversityGuangzhouChina
| | - Chris Zhiyi Zhang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan UniversityGuangzhouChina
| | - Qing‐Yu He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan UniversityGuangzhouChina
- The First Affiliated Hospital of Jinan University and MOE Key Laboratory of Tumor Molecular Biology, Jinan UniversityGuangzhouChina
| |
Collapse
|
17
|
A lncRNA-encoded mitochondrial micropeptide exacerbates microglia-mediated neuroinflammation in retinal ischemia/reperfusion injury. Cell Death Dis 2023; 14:126. [PMID: 36792584 PMCID: PMC9932084 DOI: 10.1038/s41419-023-05617-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/17/2023]
Abstract
As a common pathology of many ocular disorders such as diabetic retinopathy and glaucoma, retinal ischemia/reperfusion (IR) triggers inflammation and microglia activation that lead to irreversible retinal damage. The detailed molecular mechanism underlying retinal IR injury, however, remains poorly understood at present. Here we report the bioinformatic identification of a lncRNA 1810058I24Rik (181-Rik) that was shown to encode a mitochondrion-located micropeptide Stmp1. Its deficiency in mice protected retinal ganglion cells from retinal IR injury by attenuating the activation of microglia and the Nlrp3 inflammasome pathway. Moreover, its genetic knockout in mice or knockdown in primary microglia promoted mitochondrial fusion, impaired mitochondrial membrane potential, and reactive oxygen species (ROS) production, diminished aerobic glycolysis, and ameliorated inflammation. It appears that 181-Rik may trigger the Nlrp3 inflammasome activation by controlling mitochondrial functions through inhibiting expression of the metabolic sensor uncoupling protein 2 (Ucp2) and activating expression of the Ca2+ sensors S100a8/a9. Together, our findings shed new light on the molecular pathogenesis of retinal IR injury and may provide a fresh therapeutic target for IR-associated neurodegenerative diseases.
Collapse
|
18
|
Cassidy L, Kaulich PT, Tholey A. Proteoforms expand the world of microproteins and short open reading frame-encoded peptides. iScience 2023; 26:106069. [PMID: 36818287 PMCID: PMC9929600 DOI: 10.1016/j.isci.2023.106069] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Microproteins and short open reading frame-encoded peptides (SEPs) can, like all proteins, carry numerous posttranslational modifications. Together with posttranscriptional processes, this leads to a high number of possible distinct protein molecules, the proteoforms, out of a limited number of genes. The identification, quantification, and molecular characterization of proteoforms possess special challenges to established, mainly bottom-up proteomics (BUP) based analytical approaches. While BUP methods are powerful, proteins have to be inferred rather than directly identified, which hampers the detection of proteoforms. An alternative approach is top-down proteomics (TDP) which allows to identify intact proteoforms. This perspective article provides a brief overview of modified microproteins and SEPs, introduces the proteoform terminology, and compares present BUP and TDP workflows highlighting their major advantages and caveats. Necessary future developments in TDP to fully accentuate its potential for proteoform-centric analytics of microproteins and SEPs will be discussed.
Collapse
Affiliation(s)
- Liam Cassidy
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Philipp T. Kaulich
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany,Corresponding author
| |
Collapse
|
19
|
Phillips TA, Hauck GT, Pribadi MP, Cho EE, Cleary SR, Robia SL. Micropeptide hetero-oligomerization adds complexity to the calcium pump regulatory network. Biophys J 2023; 122:301-309. [PMID: 36523160 PMCID: PMC9892615 DOI: 10.1016/j.bpj.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/24/2022] [Accepted: 12/09/2022] [Indexed: 12/16/2022] Open
Abstract
The sarco(endo)plasmic reticulum calcium ATPase (SERCA) is an ion transporter that creates and maintains intracellular calcium stores. SERCA is inhibited or stimulated by several membrane micropeptides including another-regulin, dwarf open reading frame, endoregulin, phospholamban (PLB), and sarcolipin. We previously showed that these micropeptides assemble into homo-oligomeric complexes with varying affinity. Here, we tested whether different micropeptides can interact with each other, hypothesizing that coassembly into hetero-oligomers may affect micropeptide bioavailability to regulate SERCA. We quantified the relative binding affinity of each combination of candidates using automated fluorescence resonance energy transfer microscopy. All pairs were capable of interacting with good affinity, similar to the affinity of micropeptide self-binding (homo-oligomerization). Testing each pair at a 1:5 ratio and a reciprocal 5:1 ratio, we noted that the affinity of hetero-oligomerization of some micropeptides depended on whether they were the minority or majority species. In particular, sarcolipin was able to join oligomers when it was the minority species but did not readily accommodate other micropeptides in the reciprocal experiment when it was expressed in fivefold excess. The opposite was observed for endoregulin. PLB was a universal partner for all other micropeptides tested, forming avid hetero-oligomers whether it was the minority or majority species. Increasing expression of SERCA decreased PLB-dwarf open reading frame hetero-oligomerization, suggesting that SERCA-micropeptide interactions compete with micropeptide-micropeptide interactions. Thus, micropeptides populate a regulatory network of diverse protein assemblies. The data suggest that the complexity of this interactome increases exponentially with the number of micropeptides that are coexpressed in a particular tissue.
Collapse
Affiliation(s)
- Taylor A Phillips
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois
| | - Garrett T Hauck
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois
| | - Marsha P Pribadi
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois
| | - Ellen E Cho
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois
| | - Sean R Cleary
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois
| | - Seth L Robia
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois.
| |
Collapse
|
20
|
Zheng X, Guo Y, Zhang R, Chen H, Liu S, Qiu S, Xiang M. The mitochondrial micropeptide Stmp1 promotes retinal cell differentiation. Biochem Biophys Res Commun 2022; 636:79-86. [DOI: 10.1016/j.bbrc.2022.10.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 10/20/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
21
|
Zheng X, Xiang M. Mitochondrion-located peptides and their pleiotropic physiological functions. FEBS J 2022; 289:6919-6935. [PMID: 35599630 DOI: 10.1111/febs.16532] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/12/2022] [Accepted: 05/20/2022] [Indexed: 01/13/2023]
Abstract
With the development of advanced technologies, many small open reading frames (sORFs) have been found to be translated into micropeptides. Interestingly, a considerable proportion of micropeptides are located in mitochondria, which are designated here as mitochondrion-located peptides (MLPs). These MLPs often contain a transmembrane domain and show a high degree of conservation across species. They usually act as co-factors of large proteins and play regulatory roles in mitochondria such as electron transport in the respiratory chain, reactive oxygen species (ROS) production, metabolic homeostasis, and so on. Deficiency of MLPs disturbs diverse physiological processes including immunity, differentiation, and metabolism both in vivo and in vitro. These findings reveal crucial functions for MLPs and provide fresh insights into diverse mitochondrion-associated biological processes and diseases.
Collapse
Affiliation(s)
- Xintong Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
22
|
Brito-Estrada O, Hassel KR, Makarewich CA. An Integrated Approach for Microprotein Identification and Sequence Analysis. J Vis Exp 2022:10.3791/63841. [PMID: 35913170 PMCID: PMC9521633 DOI: 10.3791/63841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
Next-generation sequencing (NGS) has propelled the field of genomics forward and produced whole genome sequences for numerous animal species and model organisms. However, despite this wealth of sequence information, comprehensive gene annotation efforts have proven challenging, especially for small proteins. Notably, conventional protein annotation methods were designed to intentionally exclude putative proteins encoded by short open reading frames (sORFs) less than 300 nucleotides in length to filter out the exponentially higher number of spurious noncoding sORFs throughout the genome. As a result, hundreds of functional small proteins called microproteins (<100 amino acids in length) have been incorrectly classified as noncoding RNAs or overlooked entirely. Here we provide a detailed protocol to leverage free, publicly available bioinformatic tools to query genomic regions for microprotein-coding potential based on evolutionary conservation. Specifically, we provide step-by-step instructions on how to examine sequence conservation and coding potential using Phylogenetic Codon Substitution Frequencies (PhyloCSF) on the user-friendly University of California Santa Cruz (UCSC) Genome Browser. Additionally, we detail steps to efficiently generate multiple species alignments of identified microprotein sequences to visualize amino acid sequence conservation and recommend resources to analyze microprotein characteristics, including predicted domain structures. These powerful tools can be used to help identify putative microprotein-coding sequences in noncanonical genomic regions or to rule out the presence of a conserved coding sequence with translational potential in a noncoding transcript of interest.
Collapse
Affiliation(s)
- Omar Brito-Estrada
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center
| | - Keira R Hassel
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center
| | - Catherine A Makarewich
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine;
| |
Collapse
|
23
|
|
24
|
Zhang Z, Li Y, Yuan W, Wang Z, Wan C. Proteomic-driven identification of short open reading frame-encoded peptides. Proteomics 2022; 22:e2100312. [PMID: 35384297 DOI: 10.1002/pmic.202100312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/10/2022]
Abstract
Accumulating evidence has shown that a large number of short open reading frames (sORFs) also have the ability to encode proteins. The discovery of sORFs opens up a new research area, leading to the identification and functional study of sORF encoded peptides (SEPs) at the omics level. Besides bioinformatics prediction and ribosomal profiling, mass spectrometry (MS) has become a significant tool as it directly detects the sequence of SEPs. Though MS-based proteomics methods have proved to be effective for qualitative and quantitative analysis of SEPs, the detection of SEPs is still a great challenge due to their low abundance and short sequence. To illustrate the progress in method development, we described and discussed the main steps of large-scale proteomics identification of SEPs, including SEP extraction and enrichment, MS detection, data processing and quality control, quantification, and function prediction and validation methods. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zheng Zhang
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, People's Republic of China
| | - Yujie Li
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, People's Republic of China
| | - Wenqian Yuan
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, People's Republic of China
| | - Zhiwei Wang
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, People's Republic of China
| | - Cuihong Wan
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, People's Republic of China
| |
Collapse
|