1
|
Li Z, Su M, Li Q, Zheng X, Song Y, Wang Y, Zhou B, Zhang L. The role of CDK8 gene polymorphisms in bladder cancer susceptibility and prognosis: a study in the Chinese Han population. BMC Cancer 2025; 25:714. [PMID: 40241036 PMCID: PMC12004600 DOI: 10.1186/s12885-025-14132-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 04/10/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Cyclin-dependent kinase 8 (CDK8) has been implicated in various tumors, with its role differing across tumor types. However, the association between CDK8 polymorphisms and bladder cancer (BC) remains unclear. This study investigated the association between CDK8 polymorphisms and BC susceptibility and prognosis. METHODS This case-control study included 271 patients with BC and 381 healthy controls. Two-tag single-nucleotide polymorphisms in the CDK8 gene (rs17083838 and rs7992670) were genotyped using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Statistical analyses were performed using SNPstats and SPSS software to assess genetic associations. RESULTS The AG/AA genotypes of rs17083838 were associated with a significantly reduced risk of BC under the dominant model (P < 0.001, odds ratio [95% confidence interval] = 0.50 [0.33-0.76]). Stratified analysis revealed that the AG genotype of rs17083838 increased the risk of postoperative recurrence in patients with stage IV BC (P = 0.007). For rs7992670, females with the AG/AA genotype exhibited a 2.07-fold higher risk of BC than males, whereas smokers with the same genotype showed a 2.13-fold higher risk than non-smokers. The GG genotype of rs7992670 was associated with better overall survival in patients with stage III BC (P = 0.023). Among patients with recurrent muscle-invasive BC, those with the GG/AA genotype showed significantly improved survival compared with those carrying the AG genotype (P = 0.023). CONCLUSIONS CDK8 polymorphisms influence BC susceptibility and prognosis, with rs17083838 showing a protective effect and rs7992670 being associated with increased risk and survival outcomes in specific subgroups. IMPACT This study highlights the potential of CDK8 polymorphisms as biomarkers for BC susceptibility and prognosis, emphasizing the need for further research.
Collapse
Affiliation(s)
- Zhilong Li
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Min Su
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Qin Li
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Xuelian Zheng
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Yaping Song
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Yanyun Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Bin Zhou
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
| | - Lin Zhang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
| |
Collapse
|
2
|
Barton WC, Kumari A, Mack ZT, Schools GP, Quintero LM, Choi AS, Rangavajhula K, Arend RC, Broude EV, Mythreye K. Targeting Mediator Kinase Cyclin-Dependent Kinases 8/19 Potentiates Chemotherapeutic Responses, Reverses Tumor Growth, and Prolongs Survival from Ovarian Clear Cell Carcinoma. Cancers (Basel) 2025; 17:941. [PMID: 40149277 PMCID: PMC11940259 DOI: 10.3390/cancers17060941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVE Ovarian clear cell carcinomas (OCCCs) are a rare histological subtype of epithelial ovarian cancer characterized by resistance to platinum-based therapy. CDK8/19, a component of the regulatory CDK module associated with Mediator complex, has been implicated in transcriptional reprogramming and drug resistance in various solid tumors. Our study aimed to investigate the therapeutic potential of CDK8/19 kinase inhibition using selective inhibitors SNX631 and SNX631-6 in OCCC treatment, both as monotherapy and in combination with standard chemotherapeutics. METHODS CDK8 and Ki67 levels were evaluated via immunohistochemistry in benign, primary, and metastatic ovarian cancer tissues. The efficacy of SNX631 alone and in combination with cisplatin or paclitaxel was assessed in OCCC cell lines (ES-2, TOV-21-G, RMG-1). In vivo evaluation utilized xenograft models with subcutaneous and intraperitoneal delivery of the OCCC ES2 cells and oral delivery of SNX631-6, with the monitoring of tumor growth, metastatic spread, and survival. RESULTS CDK8 protein levels were elevated in OC tissues, particularly in OCCC primary and metastatic lesions compared to benign tissue. While CDK8/19 inhibition showed limited effects on in vitro cell proliferation, SNX631-6 demonstrated significant antitumor and anti-metastatic activity in vivo. Notably, SNX631-6 enhanced the efficacy of cisplatin, substantially inhibiting tumor growth and extending overall survival. CONCLUSIONS Therapeutically achievable doses of CDK8/19 inhibitors may provide clinical benefit for OCCC patients by inhibiting tumor growth and reversing platinum resistance, potentially addressing a critical treatment challenge in this rare ovarian cancer subtype.
Collapse
Affiliation(s)
- Wade C. Barton
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, Heersink School of Medicine, University of Alabama School of Medicine, Birmingham, AL 35294, USA; (W.C.B.); (R.C.A.)
| | - Asha Kumari
- Division of Molecular Cellular Pathology, Department of Pathology, Heersink School of Medicine and O’Neal Comprehensive Cancer Center, University of Alabama Birmingham, Birmingham, AL 35294, USA; (A.K.); (L.M.Q.); (A.S.C.)
| | - Zachary T. Mack
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA; (Z.T.M.); (G.P.S.); (K.R.)
| | - Gary P. Schools
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA; (Z.T.M.); (G.P.S.); (K.R.)
| | - Liz Macias Quintero
- Division of Molecular Cellular Pathology, Department of Pathology, Heersink School of Medicine and O’Neal Comprehensive Cancer Center, University of Alabama Birmingham, Birmingham, AL 35294, USA; (A.K.); (L.M.Q.); (A.S.C.)
| | - Alex Seok Choi
- Division of Molecular Cellular Pathology, Department of Pathology, Heersink School of Medicine and O’Neal Comprehensive Cancer Center, University of Alabama Birmingham, Birmingham, AL 35294, USA; (A.K.); (L.M.Q.); (A.S.C.)
| | - Karthik Rangavajhula
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA; (Z.T.M.); (G.P.S.); (K.R.)
| | - Rebecca C. Arend
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, Heersink School of Medicine, University of Alabama School of Medicine, Birmingham, AL 35294, USA; (W.C.B.); (R.C.A.)
| | - Eugenia V. Broude
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA; (Z.T.M.); (G.P.S.); (K.R.)
| | - Karthikeyan Mythreye
- Division of Molecular Cellular Pathology, Department of Pathology, Heersink School of Medicine and O’Neal Comprehensive Cancer Center, University of Alabama Birmingham, Birmingham, AL 35294, USA; (A.K.); (L.M.Q.); (A.S.C.)
| |
Collapse
|
3
|
Khamidullina AI, Yastrebova MA, Bruter AV, Nuzhina JV, Vorobyeva NE, Khrustaleva AM, Varlamova EA, Tyakht AV, Abramenko IE, Ivanova ES, Zamkova MA, Li J, Lim CU, Chen M, Broude EV, Roninson IB, Shtil AA, Tatarskiy VV. CDK8/19 inhibition attenuates G1 arrest induced by BCR-ABL antagonists and accelerates death of chronic myelogenous leukemia cells. Cell Death Discov 2025; 11:62. [PMID: 39955308 PMCID: PMC11830074 DOI: 10.1038/s41420-025-02339-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 01/20/2025] [Accepted: 02/04/2025] [Indexed: 02/17/2025] Open
Abstract
Imatinib mesylate (IM) and other BCR-ABL tyrosine kinase inhibitors (BCR-ABLi) are the mainstay of chronic myelogenous leukemia (CML) treatment. However, activation of circumventing signaling pathways and quiescence may limit BCR-ABLi efficacy. CDK8/19 Mediator kinases have been implicated in the emergence of non-genetic drug resistance. Dissecting the effects of pharmacological CDK8/19 inhibition on CML survival in response to BCR-ABLi, we found that a selective, non-toxic CDK8/19 inhibitor (CDK8/19i) Senexin B (SenB) and other CDK8/19i sensitized K562 cells to different BCR-ABLi via attenuation of cell cycle arrest. In particular, SenB prevented IM-induced upregulation of genes that negatively regulate cell cycle progression. SenB also antagonized IM-activated p27Kip1 elevation thereby diminishing the population of G1-arrested cells. After transient G1 arrest, cells treated with IM + SenB re-entered the S phase, where they were halted and underwent replicative stress. Consequently, the combination of IM and SenB intensified apoptotic cell death, measured by activation of caspase 9 and 3, subsequent cleavage of poly(ADPriboso)polymerase 1, positive Annexin V staining and increase of subG1 fraction. In contrast, IM-treated BCR-ABL-positive KU812 CML cells, which did not induce p27Kip1, readily died regardless of SenB treatment. Thus, CDK8/19i prevent the quiescence-mediated escape from BCR-ABLi-induced apoptosis, suggesting a strategy for avoiding the CML relapse.
Collapse
Affiliation(s)
- Alvina I Khamidullina
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334, Moscow, Russia.
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334, Moscow, Russia.
| | - Margarita A Yastrebova
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334, Moscow, Russia
| | - Alexandra V Bruter
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334, Moscow, Russia
| | - Julia V Nuzhina
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334, Moscow, Russia
| | - Nadezhda E Vorobyeva
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334, Moscow, Russia
| | - Anastasia M Khrustaleva
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334, Moscow, Russia
| | - Ekaterina A Varlamova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334, Moscow, Russia
| | - Alexander V Tyakht
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334, Moscow, Russia
| | - Iaroslav E Abramenko
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334, Moscow, Russia
| | - Ekaterina S Ivanova
- Blokhin National Medical Research Center of Oncology, 24 Kashirskoye shosse, 115522, Moscow, Russia
| | - Maria A Zamkova
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334, Moscow, Russia
- Blokhin National Medical Research Center of Oncology, 24 Kashirskoye shosse, 115522, Moscow, Russia
| | - Jing Li
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, 715 Sumter Street, Columbia, SC, 29208, USA
| | - Chang-Uk Lim
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, 715 Sumter Street, Columbia, SC, 29208, USA
| | - Mengqian Chen
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, 715 Sumter Street, Columbia, SC, 29208, USA
| | - Eugenia V Broude
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, 715 Sumter Street, Columbia, SC, 29208, USA
| | - Igor B Roninson
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, 715 Sumter Street, Columbia, SC, 29208, USA
| | - Alexander A Shtil
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334, Moscow, Russia
- Blokhin National Medical Research Center of Oncology, 24 Kashirskoye shosse, 115522, Moscow, Russia
| | - Victor V Tatarskiy
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334, Moscow, Russia.
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334, Moscow, Russia.
| |
Collapse
|
4
|
Pellarin I, Dall'Acqua A, Favero A, Segatto I, Rossi V, Crestan N, Karimbayli J, Belletti B, Baldassarre G. Cyclin-dependent protein kinases and cell cycle regulation in biology and disease. Signal Transduct Target Ther 2025; 10:11. [PMID: 39800748 PMCID: PMC11734941 DOI: 10.1038/s41392-024-02080-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/16/2024] [Accepted: 11/13/2024] [Indexed: 01/18/2025] Open
Abstract
Cyclin Dependent Kinases (CDKs) are closely connected to the regulation of cell cycle progression, having been first identified as the kinases able to drive cell division. In reality, the human genome contains 20 different CDKs, which can be divided in at least three different sub-family with different functions, mechanisms of regulation, expression patterns and subcellular localization. Most of these kinases play fundamental roles the normal physiology of eucaryotic cells; therefore, their deregulation is associated with the onset and/or progression of multiple human disease including but not limited to neoplastic and neurodegenerative conditions. Here, we describe the functions of CDKs, categorized into the three main functional groups in which they are classified, highlighting the most relevant pathways that drive their expression and functions. We then discuss the potential roles and deregulation of CDKs in human pathologies, with a particular focus on cancer, the human disease in which CDKs have been most extensively studied and explored as therapeutic targets. Finally, we discuss how CDKs inhibitors have become standard therapies in selected human cancers and propose novel ways of investigation to export their targeting from cancer to other relevant chronic diseases. We hope that the effort we made in collecting all available information on both the prominent and lesser-known CDK family members will help in identify and develop novel areas of research to improve the lives of patients affected by debilitating chronic diseases.
Collapse
Affiliation(s)
- Ilenia Pellarin
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Alessandra Dall'Acqua
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Andrea Favero
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Ilenia Segatto
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Valentina Rossi
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Nicole Crestan
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Javad Karimbayli
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Barbara Belletti
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Gustavo Baldassarre
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy.
| |
Collapse
|
5
|
Chou CH, Huang WJ, Hsu KC, Hsu JY, Lin TE, Yang CR. The Cyclin-Dependent Kinase 8 Inhibitor E966-0530-45418 Attenuates Pulmonary Fibrosis In Vitro and In Vivo. Int J Biol Sci 2025; 21:685-707. [PMID: 39781457 PMCID: PMC11705631 DOI: 10.7150/ijbs.105826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/08/2024] [Indexed: 01/12/2025] Open
Abstract
Pulmonary fibrosis (PF) is a high-mortality lung disease with limited treatment options, highlighting the need for new therapies. Cyclin-dependent kinase 8 (CDK8) is a promising target due to its role in regulating transcription via the TGF-β/Smad pathway, though CDK8 inhibitors have not been thoroughly studied for PF. This study aims to evaluate the potential of E966-0530-45418, a novel CDK8 inhibitor, in mitigating PF progression and explores its underlying mechanisms. We discovered that CDK8 is upregulated in lung tissues from idiopathic pulmonary fibrosis patients and in a bleomycin-induced PF mouse model. Our study further revealed that E966-0530-45418 inhibits PF progression by attenuating the activity of the transcription factor Smad3, which is involved in TGF-β1/Smad signaling, along with RNA polymerase II to downregulate fibrosis-associated protein expression in alveolar epithelia and lung fibroblasts and consequently mitigate myofibroblast differentiation and collagen deposition. E966-0530-45418 also blocks STAT3 signaling to obstruct M2 macrophage polarization, further suppressing PF progression. Moreover, E966-0530-45418 administration ameliorated lung function deterioration and lung parenchymal destruction in the bleomycin-induced PF mouse model. These findings indicate that E966-0530-45418 holds promise as a pioneering CDK8 inhibitor for treating PF.
Collapse
Affiliation(s)
- Ching-Hsuan Chou
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Jan Huang
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Jui-Yi Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Tony Eight Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chia-Ron Yang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
6
|
Koroleva OA, Kurkin AV, Shtil AA. The Hippo pathway as an antitumor target: time to focus on. Expert Opin Investig Drugs 2024; 33:1177-1185. [PMID: 39592955 DOI: 10.1080/13543784.2024.2432395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
INTRODUCTION The Hippo signaling governs the expression of genes critically important for cell proliferation and survival. The components of this pathway are considered antitumor drug targets. However, the design of Hippo inhibitors is a challenge given the complexity of the network and redundancy of its elements. AREAS COVERED We review the current state-of-the-art in the structure of the Hippo pathway, the microenvironment-induced extracellular cues, the strategies to design pharmacological instruments for inactivation of the Hippo signaling using small molecular weight modulators, as well as the results of initial clinical trials. EXPERT OPINION One special characteristic of the Hippo signaling is the adverse role of phosphorylation: opposite to classical kinase cascades that activate the transcription factors, the Hippo kinases retain their partners in a transcriptionally inactive state. Therefore, approaches for pharmacological or genetic inhibition of Hippo protein kinases are counterproductive. The developing alternatives such as disruption of protein-protein interactions or PROTAC techniques are straightforward for preventing the Hippo signaling in cancer therapy.
Collapse
Affiliation(s)
- Olga A Koroleva
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Alexander V Kurkin
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Alexander A Shtil
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation
- Institute of Carcinogenesis, Blokhin National Medical Research Center of Oncology, Moscow, Russian Federation
| |
Collapse
|
7
|
Ding X, Liang J, Sharko AC, Hilimire TA, Li J, Loskutov J, Mack ZT, Ji H, Schools GP, Cai C, Pugacheva EN, Chen M, Roninson IB, Broude EV. Mediator kinase inhibitors suppress triple-negative breast cancer growth and extend tumor suppression by mTOR and AKT inhibitors. Proc Natl Acad Sci U S A 2024; 121:e2414501121. [PMID: 39541354 PMCID: PMC11588072 DOI: 10.1073/pnas.2414501121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Triple-negative breast cancers (TNBC) are treated primarily by chemotherapy and lack clinically validated therapeutic targets. In particular, inhibitors of the PI3K/AKT/mTOR pathway, abnormally activated in many breast cancers, failed to achieve clinical efficacy in TNBC due to the development of adaptive drug resistance, which is largely driven by the transcriptomic plasticity of TNBC. Expression of CDK8/19 Mediator kinases that control transcriptional reprogramming correlates with relapse-free survival and treatment failure in breast cancer patients, including TNBC. We now investigated how CDK8/19 inhibitors affect the growth of TNBC tumors and their response to mTOR and AKT inhibitors. In contrast to the effects of most anticancer drugs, all the tested human TNBC models (including patient-derived xenografts) responded to CDK8/19 inhibitors in vivo even when they did not respond in vitro. Furthermore, CDK8/19 inhibition extended the host survival of established lung metastases in a murine TNBC model, where the primary tumors were not significantly affected. CDK8/19 inhibitors synergized with an mTORC1 inhibitor everolimus and a pan-AKT inhibitor capivasertib in vitro and strongly potentiated these drugs in long-term in vivo studies. Transcriptomic analysis of tumors that responded or became adapted to everolimus revealed that drug adaptation in vivo was associated with major transcriptional changes in both tumor and stromal cells. Combining everolimus with a CDK8/19 inhibitor counteracted many of these changes and induced combination-specific effects on the expression of multiple genes that affect tumor growth. These results warrant the exploration of CDK8/19 Mediator kinase inhibitors as a new type of drugs for TNBC therapy.
Collapse
Affiliation(s)
- Xiaokai Ding
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC29208
| | - Jiaxin Liang
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC29208
| | - Amanda C. Sharko
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC29208
| | - Thomas A. Hilimire
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC29208
- Senex Biotechnology, Inc., Columbia, SC29208
| | - Jing Li
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC29208
| | - Jürgen Loskutov
- Department of Biochemistry and Molecular Medicine, West Virginia University Cancer Institute, School of Medicine, Morgantown, WV26506
| | - Zachary T. Mack
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC29208
| | - Hao Ji
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC29208
| | - Gary P. Schools
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC29208
| | - Chao Cai
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, SC29208
| | - Elena N. Pugacheva
- Department of Biochemistry and Molecular Medicine, West Virginia University Cancer Institute, School of Medicine, Morgantown, WV26506
| | - Mengqian Chen
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC29208
- Senex Biotechnology, Inc., Columbia, SC29208
| | - Igor B. Roninson
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC29208
| | - Eugenia V. Broude
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC29208
| |
Collapse
|
8
|
Jiang RY, Zhu JY, Zhang HP, Yu Y, Dong ZX, Zhou HH, Wang X. STAT3: Key targets of growth-promoting receptor positive breast cancer. Cancer Cell Int 2024; 24:356. [PMID: 39468521 PMCID: PMC11520424 DOI: 10.1186/s12935-024-03541-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024] Open
Abstract
Breast cancer has become the malignant tumor with the first incidence and the second mortality among female cancers. Most female breast cancers belong to luminal-type breast cancer and HER2-positive breast cancer. These breast cancer cells all have different driving genes, which constantly promote the proliferation and metastasis of breast cancer cells. Signal transducer and activator of transcription 3 (STAT3) is an important breast cancer-related gene, which can promote the progress of breast cancer. It has been proved in clinical and basic research that over-expressed and constitutively activated STAT3 is involved in the progress, proliferation, metastasis and chemotherapy resistance of breast cancer. STAT3 is an important key target in luminal-type breast cancer and HER2-positive cancer, which has an important impact on the curative effect of related treatments. In breast cancer, the activation of STAT3 will change the spatial position of STAT3 protein and cause different phenotypic changes of breast cancer cells. In the current basic research and clinical research, small molecule inhibitors activated by targeting STAT3 can effectively treat breast cancer, and enhance the efficacy level of related treatment methods for luminal-type and HER2-positive breast cancers.
Collapse
Affiliation(s)
- Rui-Yuan Jiang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, NO.548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Jia-Yu Zhu
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, NO.548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Huan-Ping Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- Department of Graduate Student, Wenzhou Medical University, No.270, Xueyuan West Road, Lucheng District, Wenzhou, 325027, Zhejiang, China
| | - Yuan Yu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Zhi-Xin Dong
- Department of Oncology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, No.89-9, Dongge Road, Qingxiu District, Nanning, 530000, Guangxi, China
| | - Huan-Huan Zhou
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, NO.548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China.
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| | - Xiaojia Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
9
|
Voutsadakis IA. Mediator kinase module proteins, genetic alterations and expression of super-enhancer regulated genes in colorectal cancer. Pharmacol Rep 2024; 76:535-556. [PMID: 38602606 DOI: 10.1007/s43440-024-00589-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Genetic alterations are well characterized as contributors to the pathogenesis of cancers. Epigenetic abnormalities can lead to perturbations of the expression of genes in cancer cells without structural defects. Deregulation of proteins of the transcription machinery may result in perturbations of target genes. Mediator, a multiprotein component of the transcription machinery facilitates the function of RNA polymerase II, which transcribes most human genes. A part of the mediator with kinase activity, called the Mediator kinase module shows genetic alterations in a sub-set of colorectal cancers. METHODS Data from publicly available genomic series of colorectal cancer patients were examined to determine alterations of Mediator kinase module component genes, including MED12, MED12L, MED13, MED13L, CDK8, CDK19, and CCNC. The prevalence of alterations in genomically defined colorectal cancer sub-sets was also interrogated. The effect of Mediator kinase module member gene expression on colorectal cancer relapse-free survival was investigated. RESULTS Mutations in genes of the Mediator kinase module were present in a small percentage of colorectal cancers, ranging between 2 to 10% for MED12 and MED13 and alternative units MED12L and MED13L and below 2% for kinases CDK8 and CDK19 and cyclin C. Amplifications of the CDK8 gene were observed in 3% to 5% of colorectal cancers. The highest prevalence of mutations was observed in MSI cancers and the equivalent CMS1 group, with other genomic groups showing much lower frequency. An association of higher expression of MED12 with inferior relapse-free survival was observed. In contrast, higher expression of cyclin C was associated with improved survival. Colorectal cancer cell lines with CDK8 amplifications displayed sensitivity to several small molecule inhibitors of the KRAS/PI3K pathway but not to BET inhibitors. CONCLUSION The Mediator kinase module is deregulated in a sub-set of colorectal cancers with differences observed in genomically defined groups. These variations may result in differences in sensitivity to targeted therapies and may have to be taken into consideration as such therapies are developed.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Algoma District Cancer Program, Sault Area Hospital, Sault Ste Marie, ON, P6B 0A8, Canada.
- Division of Clinical Sciences, Section of Internal Medicine, Northern Ontario School of Medicine, 750 Great Northern Road, Sudbury, ON, Canada.
| |
Collapse
|
10
|
Shtil AA. Special Issue "Novel Chemical Tools for Targeted Cancer Therapy". Int J Mol Sci 2024; 25:6044. [PMID: 38892232 PMCID: PMC11172516 DOI: 10.3390/ijms25116044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
When, in 2022, the International Journal of Molecular Sciences asked me to edit the Special Issue, I was quick to propose the title 'Novel Chemical Tools for Targeted Cancer Therapy' [...].
Collapse
Affiliation(s)
- Alexander A Shtil
- Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Shosse, 115522 Moscow, Russia
| |
Collapse
|
11
|
Xu J, Qi H, Wang Z, Wang L, Steurer B, Cai X, Liu J, Aliper A, Zhang M, Ren F, Zhavoronkov A, Ding X. Discovery of a Novel and Potent Cyclin-Dependent Kinase 8/19 (CDK8/19) Inhibitor for the Treatment of Cancer. J Med Chem 2024; 67:8161-8171. [PMID: 38690856 DOI: 10.1021/acs.jmedchem.4c00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
The mediator kinases CDK8 and CDK19 control the dynamic transcription of selected genes in response to various signals and have been shown to be hijacked to sustain hyperproliferation by various solid and liquid tumors. CDK8/19 is emerging as a promising anticancer therapeutic target. Here, we report the discovery of compound 12, a novel small molecule CDK8/19 inhibitor. This molecule demonstrated not only decent enzymatic and cellular activities but also remarkable selectivity in CDK and kinome panels. Besides, compound 12 also displayed favorable ADME profiles including low CYP1A2 inhibition, acceptable clearance, and high oral bioavailability in multiple preclinical species. Robust in vivo PD and efficacy studies in mice models further demonstrated its potential use as mono- and combination therapy for the treatment of cancers.
Collapse
Affiliation(s)
- Jianyu Xu
- Insilico Medicine Shanghai Ltd, Suite 902, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Hongyun Qi
- Insilico Medicine Shanghai Ltd, Suite 902, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Zhen Wang
- Insilico Medicine Shanghai Ltd, Suite 902, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Ling Wang
- Insilico Medicine Shanghai Ltd, Suite 902, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Barbara Steurer
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong 999077, China
| | - Xin Cai
- Insilico Medicine Shanghai Ltd, Suite 902, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Jinxin Liu
- Insilico Medicine Shanghai Ltd, Suite 902, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Alex Aliper
- Insilico Medicine AI Limited, Masdar City, Abu Dhabi 145748, UAE
| | - Man Zhang
- Insilico Medicine Shanghai Ltd, Suite 902, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Feng Ren
- Insilico Medicine Shanghai Ltd, Suite 902, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Alex Zhavoronkov
- Insilico Medicine Shanghai Ltd, Suite 902, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
- Insilico Medicine AI Limited, Masdar City, Abu Dhabi 145748, UAE
| | - Xiao Ding
- Insilico Medicine Shanghai Ltd, Suite 902, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| |
Collapse
|
12
|
Li J, Hilimire TA, Liu Y, Wang L, Liang J, Gyorffy B, Sikirzhytski V, Ji H, Zhang L, Cheng C, Ding X, Kerr KR, Dowling CE, Chumanevich AA, Mack ZT, Schools GP, Lim CU, Ellis L, Zi X, Porter DC, Broude EV, McInnes C, Wilding G, Lilly MB, Roninson IB, Chen M. Mediator kinase inhibition reverses castration resistance of advanced prostate cancer. J Clin Invest 2024; 134:e176709. [PMID: 38546787 DOI: 10.1172/jci176709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/22/2024] [Indexed: 04/17/2024] Open
Abstract
Mediator kinases CDK19 and CDK8, pleiotropic regulators of transcriptional reprogramming, are differentially regulated by androgen signaling, but both kinases are upregulated in castration-resistant prostate cancer (CRPC). Genetic or pharmacological inhibition of CDK8 and CDK19 reverses the castration-resistant phenotype and restores the sensitivity of CRPC xenografts to androgen deprivation in vivo. Prolonged CDK8/19 inhibitor treatment combined with castration not only suppressed the growth of CRPC xenografts but also induced tumor regression and cures. Transcriptomic analysis revealed that Mediator kinase inhibition amplified and modulated the effects of castration on gene expression, disrupting CRPC adaptation to androgen deprivation. Mediator kinase inactivation in tumor cells also affected stromal gene expression, indicating that Mediator kinase activity in CRPC molded the tumor microenvironment. The combination of castration and Mediator kinase inhibition downregulated the MYC pathway, and Mediator kinase inhibition suppressed a MYC-driven CRPC tumor model even without castration. CDK8/19 inhibitors showed efficacy in patient-derived xenograft models of CRPC, and a gene signature of Mediator kinase activity correlated with tumor progression and overall survival in clinical samples of metastatic CRPC. These results indicate that Mediator kinases mediated androgen-independent in vivo growth of CRPC, supporting the development of CDK8/19 inhibitors for the treatment of this presently incurable disease.
Collapse
Affiliation(s)
- Jing Li
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Thomas A Hilimire
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
- Senex Biotechnology Inc., Columbia, South Carolina, USA
| | - Yueying Liu
- Division of Hematology-Oncology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Lili Wang
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Jiaxin Liang
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Balazs Gyorffy
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary
- Department of Biophysics, Medical School, University of Pecs, Pecs, Hungary
| | - Vitali Sikirzhytski
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Hao Ji
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Li Zhang
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Chen Cheng
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Xiaokai Ding
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Kendall R Kerr
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Charles E Dowling
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Alexander A Chumanevich
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Zachary T Mack
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Gary P Schools
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Chang-Uk Lim
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Leigh Ellis
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences; Walter Reed National Military Medical Center; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc.; Bethesda, Maryland, USA
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Xiaolin Zi
- Departments of Urology and Pharmaceutical Sciences, University of California, Irvine, California, USA
| | | | - Eugenia V Broude
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Campbell McInnes
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | | | - Michael B Lilly
- Division of Hematology-Oncology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Igor B Roninson
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Mengqian Chen
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
- Senex Biotechnology Inc., Columbia, South Carolina, USA
| |
Collapse
|
13
|
Yin X, He Z, Chen K, Ouyang K, Yang C, Li J, Tang H, Cai M. Unveiling the impact of CDK8 on tumor progression: mechanisms and therapeutic strategies. Front Pharmacol 2024; 15:1386929. [PMID: 38606172 PMCID: PMC11006979 DOI: 10.3389/fphar.2024.1386929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/14/2024] [Indexed: 04/13/2024] Open
Abstract
CDK8 is an important member of the cyclin-dependent kinase family associated with transcription and acts as a key "molecular switch" in the Mediator complex. CDK8 regulates gene expression by phosphorylating transcription factors and can control the transcription process through Mediator complex. Previous studies confirmed that CDK8 is an important oncogenic factor, making it a potential tumor biomarker and a promising target for tumor therapy. However, CDK8 has also been confirmed to be a tumor suppressor, indicating that it not only promotes the development of tumors but may also be involved in tumor suppression. Therefore, the dual role of CDK8 in the process of tumor development is worth further exploration and summary. This comprehensive review delves into the intricate involvement of CDK8 in transcription-related processes, as well as its role in signaling pathways related to tumorigenesis, with a focus on its critical part in driving cancer progression.
Collapse
Affiliation(s)
- Xiaomin Yin
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhilong He
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Kun Chen
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Kai Ouyang
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Changxuan Yang
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jianjun Li
- Department of Urological Surgical, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Manbo Cai
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
14
|
Monavarian M, Page EF, Rajkarnikar R, Kumari A, Macias LQ, Massicano F, Lee NY, Sahoo S, Hempel N, Jolly MK, Ianov L, Worthey E, Singh A, Broude EV, Mythreye K. Development of adaptive anoikis resistance promotes metastasis that can be overcome by CDK8/19 Mediator kinase inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.04.569970. [PMID: 38106208 PMCID: PMC10723298 DOI: 10.1101/2023.12.04.569970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Anoikis resistance or evasion of cell death triggered by cell detachment into suspension is a hallmark of cancer that is concurrent with cell survival and metastasis. The effects of frequent matrix detachment encounters on the development of anoikis resistance in cancer remains poorly defined. Here we show using a panel of ovarian cancer models, that repeated exposure to suspension stress in vitro followed by attached recovery growth leads to the development of anoikis resistance paralleling in vivo development of anoikis resistance in ovarian cancer ascites. This resistance is concurrent with enhanced invasion, chemoresistance and the ability of anoikis adapted cells to metastasize to distant sites. Adapted anoikis resistant cells show a heightened dependency on oxidative phosphorylation and can also evade immune surveillance. We find that such acquired anoikis resistance is not genetic, as acquired resistance persists for a finite duration in the absence of suspension stress. Transcriptional reprogramming is however essential to this process, as acquisition of adaptive anoikis resistance in vitro and in vivo is exquisitely sensitive to inhibition of CDK8/19 Mediator kinase, a pleiotropic regulator of transcriptional reprogramming. Our data demonstrate that growth after recovery from repeated exposure to suspension stress is a direct contributor to metastasis and that inhibition of CDK8/19 Mediator kinase during such adaptation provides a therapeutic opportunity to prevent both local and distant metastasis in cancer.
Collapse
Affiliation(s)
- Mehri Monavarian
- Division of Molecular Cellular Pathology, Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama, Heersink School of Medicine, Birmingham, AL, USA
| | - Emily Faith Page
- Division of Molecular Cellular Pathology, Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama, Heersink School of Medicine, Birmingham, AL, USA
| | - Resha Rajkarnikar
- Division of Molecular Cellular Pathology, Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama, Heersink School of Medicine, Birmingham, AL, USA
| | - Asha Kumari
- Division of Molecular Cellular Pathology, Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama, Heersink School of Medicine, Birmingham, AL, USA
| | - Liz Quintero Macias
- Division of Molecular Cellular Pathology, Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama, Heersink School of Medicine, Birmingham, AL, USA
| | - Felipe Massicano
- UAB Biological Data Science Core, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nam Y Lee
- Division of Pharmacology, Chemistry and Biochemistry, College of Medicine, University of Arizona, Tucson, AZ, 85721, USA
| | - Sarthak Sahoo
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India
| | - Nadine Hempel
- Department of Medicine, Division of Hematology Oncology, University of Pittsburgh School of Medicine Pittsburgh PA 15213
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India
| | - Lara Ianov
- UAB Biological Data Science Core, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Elizabeth Worthey
- UAB Biological Data Science Core, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716, USA
| | - Eugenia V Broude
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Karthikeyan Mythreye
- Division of Molecular Cellular Pathology, Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama, Heersink School of Medicine, Birmingham, AL, USA
| |
Collapse
|
15
|
Yang J, Kang H, Lyu L, Xiong W, Hu Y. A target map of clinical combination therapies in oncology: an analysis of clinicaltrials.gov. Discov Oncol 2023; 14:151. [PMID: 37603124 PMCID: PMC10441974 DOI: 10.1007/s12672-023-00758-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Combination therapies have taken center stage for cancer treatment, however, there is a lack of a comprehensive portrait to quantitatively map the current clinical combination progress. This study aims to capture clinical combination therapies of the validated FDA-approved new oncology drugs by a macro data analysis and to summarize combination mechanisms and strategies in the context of the existing literature. A total of 72 new molecular entities or new therapeutic biological products for cancer treatment approved by the FDA from 2017 to 2021 were identified, and the data on their related 3334 trials were retrieved from the database of ClinicalTrials.gov. Moreover, these sampled clinical trials were refined by activity status and combination relevance and labeled with the relevant clinical arms and drug combinations, as well as drug targets and target pairs. Combination therapies are increasingly prevalent in clinical trials of new oncology drugs. From retrospective work, existing clinical combination therapies in oncology are driven by different patterns (i.e., rational design and industry trends). The former can be represented by mechanism-based or structure-based combinations, such as targeting different domains of HER2 protein or in-series co-targeting in RAF plus MEK inhibitors. The latter is an empirically driven strategy, including redundant combinations in hot targets, such as PD-1/PD-L1, PI3K, CDK4/6, and PARP. Because of an explosion in the number of clinical trials and the resultant shortage of available patients, it is essential to rationally design drug combinations.
Collapse
Affiliation(s)
- Jing Yang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China
| | - Heming Kang
- DPM, Faculty of Health Sciences, University of Macau, Room 1049, E12, Macao SAR, 999078, China
| | - Liyang Lyu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China
| | - Wei Xiong
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yuanjia Hu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China.
- DPM, Faculty of Health Sciences, University of Macau, Room 1049, E12, Macao SAR, 999078, China.
| |
Collapse
|
16
|
Chen M, Li J, Zhang L, Wang L, Cheng C, Ji H, Altilia S, Ding X, Cai G, Altomare D, Shtutman M, Byrum SD, Mackintosh SG, Feoktistov A, Soshnikova N, Mogila VA, Tatarskiy V, Erokhin M, Chetverina D, Prawira A, Ni Y, Urban S, McInnes C, Broude EV, Roninson IB. CDK8 and CDK19: positive regulators of signal-induced transcription and negative regulators of Mediator complex proteins. Nucleic Acids Res 2023; 51:7288-7313. [PMID: 37378433 PMCID: PMC10415139 DOI: 10.1093/nar/gkad538] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
We have conducted a detailed transcriptomic, proteomic and phosphoproteomic analysis of CDK8 and its paralog CDK19, alternative enzymatic components of the kinase module associated with transcriptional Mediator complex and implicated in development and diseases. This analysis was performed using genetic modifications of CDK8 and CDK19, selective CDK8/19 small molecule kinase inhibitors and a potent CDK8/19 PROTAC degrader. CDK8/19 inhibition in cells exposed to serum or to agonists of NFκB or protein kinase C (PKC) reduced the induction of signal-responsive genes, indicating a pleiotropic role of Mediator kinases in signal-induced transcriptional reprogramming. CDK8/19 inhibition under basal conditions initially downregulated a small group of genes, most of which were inducible by serum or PKC stimulation. Prolonged CDK8/19 inhibition or mutagenesis upregulated a larger gene set, along with a post-transcriptional increase in the proteins comprising the core Mediator complex and its kinase module. Regulation of both RNA and protein expression required CDK8/19 kinase activities but both enzymes protected their binding partner cyclin C from proteolytic degradation in a kinase-independent manner. Analysis of isogenic cell populations expressing CDK8, CDK19 or their kinase-inactive mutants revealed that CDK8 and CDK19 have the same qualitative effects on protein phosphorylation and gene expression at the RNA and protein levels, whereas differential effects of CDK8 versus CDK19 knockouts were attributable to quantitative differences in their expression and activity rather than different functions.
Collapse
Affiliation(s)
- Mengqian Chen
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
- Senex Biotechnology, Inc. Columbia, SC 29208, USA
| | - Jing Li
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Li Zhang
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Lili Wang
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Chen Cheng
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Hao Ji
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Serena Altilia
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Xiaokai Ding
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Guoshuai Cai
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Diego Altomare
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Michael Shtutman
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Samuel G Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Alexey Feoktistov
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russian Federation
| | - Nataliya Soshnikova
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russian Federation
| | - Vladislav A Mogila
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russian Federation
| | - Victor Tatarskiy
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russian Federation
| | - Maksim Erokhin
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russian Federation
| | - Darya Chetverina
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russian Federation
| | - Angga Prawira
- Department of Infectious Diseases, University Hospital of Heidelberg, Heidelberg, Germany
| | - Yi Ni
- Department of Infectious Diseases, University Hospital of Heidelberg, Heidelberg, Germany
| | - Stephan Urban
- Department of Infectious Diseases, University Hospital of Heidelberg, Heidelberg, Germany
| | - Campbell McInnes
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Eugenia V Broude
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Igor B Roninson
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
17
|
Kokinos EK, Tsymbal SA, Galochkina AV, Bezlepkina SA, Nikolaeva JV, Vershinina SO, Shtro AA, Tatarskiy VV, Shtil AA, Broude EV, Roninson IB, Dukhinova M. Inhibition of Cyclin-Dependent Kinases 8/19 Restricts Bacterial and Virus-Induced Inflammatory Responses in Monocytes. Viruses 2023; 15:1292. [PMID: 37376593 PMCID: PMC10305654 DOI: 10.3390/v15061292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Hyperactivation of the immune system remains a dramatic, life-threatening complication of viral and bacterial infections, particularly during pneumonia. Therapeutic approaches to counteract local and systemic outbreaks of cytokine storm and to prevent tissue damage remain limited. Cyclin-dependent kinases 8 and 19 (CDK8/19) potentiate transcriptional responses to the altered microenvironment, but CDK8/19 potential in immunoregulation is not fully understood. In the present study, we investigated how a selective CDK8/19 inhibitor, Senexin B, impacts the immunogenic profiles of monocytic cells stimulated using influenza virus H1N1 or bacterial lipopolysaccharides. Senexin B was able to prevent the induction of gene expression of proinflammatory cytokines in THP1 and U937 cell lines and in human peripheral blood-derived mononuclear cells. Moreover, Senexin B substantially reduced functional manifestations of inflammation, including clustering and chemokine-dependent migration of THP1 monocytes and human pulmonary fibroblasts (HPF).
Collapse
Affiliation(s)
- Elena K Kokinos
- SCAMT Institute, ITMO University, 9 Lomonosova Street, 191002 Saint-Petersburg, Russia
| | - Sergey A Tsymbal
- SCAMT Institute, ITMO University, 9 Lomonosova Street, 191002 Saint-Petersburg, Russia
| | - Anastasia V Galochkina
- Smorodintsev Research Institute of Influenza, 15/17 Prof. Popov Street, 197376 Saint-Petersburg, Russia
| | - Svetlana A Bezlepkina
- SCAMT Institute, ITMO University, 9 Lomonosova Street, 191002 Saint-Petersburg, Russia
| | - Julia V Nikolaeva
- Smorodintsev Research Institute of Influenza, 15/17 Prof. Popov Street, 197376 Saint-Petersburg, Russia
| | - Sofia O Vershinina
- SCAMT Institute, ITMO University, 9 Lomonosova Street, 191002 Saint-Petersburg, Russia
| | - Anna A Shtro
- Smorodintsev Research Institute of Influenza, 15/17 Prof. Popov Street, 197376 Saint-Petersburg, Russia
| | - Victor V Tatarskiy
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova Street, 119334 Moscow, Russia
| | - Alexander A Shtil
- Blokhin National Medical Research Center of Oncology, Kashirskoe Highway 24, 115478 Moscow, Russia
| | - Eugenia V Broude
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Sumter Street 715, Columbia, SC 29208, USA
| | - Igor B Roninson
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Sumter Street 715, Columbia, SC 29208, USA
| | - Marina Dukhinova
- SCAMT Institute, ITMO University, 9 Lomonosova Street, 191002 Saint-Petersburg, Russia
| |
Collapse
|
18
|
Kuchur OA, Zavisrskiy AV, Shtil AA. Transcriptional Reprogramming Regulates Tumor Cell Survival in Response to Ionizing Radiation: a Role of p53. Bull Exp Biol Med 2023; 174:659-665. [PMID: 37060380 DOI: 10.1007/s10517-023-05764-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Indexed: 04/16/2023]
Abstract
Senexin B, a non-toxic selective inhibitor of cyclin-dependent protein kinases 8 and 19 (CDK8 and CDK19), in combination with γ-photon irradiation in doses of 2-10 Gy increased the death of colon adenocarcinoma cell line HCT116 (intact p53) in a logarithmically growing culture, which was accompanied by the prevention of cell cycle arrest and a decrease of "senescence" phenotype. The effect of senexin B in cells with intact p53 is similar to that of Tp53 gene knockout: irradiated HCT116p53KO cells passed through the interphase and died independently of senexin B. The inhibitor reduced the ability of cells to colony formation in response to irradiation; p53 status did not affect the effectiveness of the combination of radiation and senexin B. Thus, the CDK8/19 inhibitor senexin B increased cell sensitivity to radiotherapy by mechanisms dependent and independent of p53 status.
Collapse
Affiliation(s)
- O A Kuchur
- SCAMT Institute, St. Petersburg National Research University of Information Technologies, Mechanics, and Optics (ITMO University), St. Petersburg, Russia.
| | - A V Zavisrskiy
- SCAMT Institute, St. Petersburg National Research University of Information Technologies, Mechanics, and Optics (ITMO University), St. Petersburg, Russia
| | - A A Shtil
- SCAMT Institute, St. Petersburg National Research University of Information Technologies, Mechanics, and Optics (ITMO University), St. Petersburg, Russia
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
19
|
Somanath PR, Chernoff J, Cummings BS, Prasad SM, Homan HD. Targeting P21-Activated Kinase-1 for Metastatic Prostate Cancer. Cancers (Basel) 2023; 15:2236. [PMID: 37190165 PMCID: PMC10137274 DOI: 10.3390/cancers15082236] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 05/17/2023] Open
Abstract
Metastatic prostate cancer (mPCa) has limited therapeutic options and a high mortality rate. The p21-activated kinase (PAK) family of proteins is important in cell survival, proliferation, and motility in physiology, and pathologies such as infectious, inflammatory, vascular, and neurological diseases as well as cancers. Group-I PAKs (PAK1, PAK2, and PAK3) are involved in the regulation of actin dynamics and thus are integral for cell morphology, adhesion to the extracellular matrix, and cell motility. They also play prominent roles in cell survival and proliferation. These properties make group-I PAKs a potentially important target for cancer therapy. In contrast to normal prostate and prostatic epithelial cells, group-I PAKs are highly expressed in mPCA and PCa tissue. Importantly, the expression of group-I PAKs is proportional to the Gleason score of the patients. While several compounds have been identified that target group-I PAKs and these are active in cells and mice, and while some inhibitors have entered human trials, as of yet, none have been FDA-approved. Probable reasons for this lack of translation include issues related to selectivity, specificity, stability, and efficacy resulting in side effects and/or lack of efficacy. In the current review, we describe the pathophysiology and current treatment guidelines of PCa, present group-I PAKs as a potential druggable target to treat mPCa patients, and discuss the various ATP-competitive and allosteric inhibitors of PAKs. We also discuss the development and testing of a nanotechnology-based therapeutic formulation of group-I PAK inhibitors and its significant potential advantages as a novel, selective, stable, and efficacious mPCa therapeutic over other PCa therapeutics in the pipeline.
Collapse
Affiliation(s)
- Payaningal R. Somanath
- Department of Clinical & Administrative Pharmacy, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
- MetasTx LLC, Basking Ridge, NJ 07920, USA
| | - Jonathan Chernoff
- MetasTx LLC, Basking Ridge, NJ 07920, USA
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Brian S. Cummings
- MetasTx LLC, Basking Ridge, NJ 07920, USA
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Sandip M. Prasad
- Morristown Medical Center, Atlantic Health System, Morristown, NJ 07960, USA
| | | |
Collapse
|
20
|
Prieto S, Dubra G, Camasses A, Aznar AB, Begon‐Pescia C, Simboeck E, Pirot N, Gerbe F, Angevin L, Jay P, Krasinska L, Fisher D. CDK8 and CDK19 act redundantly to control the CFTR pathway in the intestinal epithelium. EMBO Rep 2023; 24:e54261. [PMID: 36545778 PMCID: PMC10549226 DOI: 10.15252/embr.202154261] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
CDK8 and CDK19 form a conserved cyclin-dependent kinase subfamily that interacts with the essential transcription complex, Mediator, and also phosphorylates the C-terminal domain of RNA polymerase II. Cells lacking either CDK8 or CDK19 are viable and have limited transcriptional alterations, but whether the two kinases redundantly control cell proliferation and differentiation is unknown. Here, we find in mice that CDK8 is dispensable for regulation of gene expression, normal intestinal homeostasis, and efficient tumourigenesis, and is largely redundant with CDK19 in the control of gene expression. Their combined deletion in intestinal organoids reduces long-term proliferative capacity but is not lethal and allows differentiation. However, double-mutant organoids show mucus accumulation and increased secretion by goblet cells, as well as downregulation of expression of the cystic fibrosis transmembrane conductance regulator (CFTR) and functionality of the CFTR pathway. Pharmacological inhibition of CDK8/19 kinase activity in organoids and in mice recapitulates several of these phenotypes. Thus, the Mediator kinases are not essential for cell proliferation and differentiation in an adult tissue, but they cooperate to regulate specific transcriptional programmes.
Collapse
Affiliation(s)
- Susana Prieto
- IGMMUniversity of Montpellier, CNRS, InsermMontpellierFrance
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
| | - Geronimo Dubra
- IGMMUniversity of Montpellier, CNRS, InsermMontpellierFrance
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
| | - Alain Camasses
- IGMMUniversity of Montpellier, CNRS, InsermMontpellierFrance
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
| | - Ana Bella Aznar
- IGMMUniversity of Montpellier, CNRS, InsermMontpellierFrance
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
| | - Christina Begon‐Pescia
- IGMMUniversity of Montpellier, CNRS, InsermMontpellierFrance
- Present address:
LPHIUniversity of MontpellierMontpellierFrance
| | - Elisabeth Simboeck
- IGMMUniversity of Montpellier, CNRS, InsermMontpellierFrance
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
- Present address:
UAS Technikum WienViennaAustria
| | - Nelly Pirot
- IRCM, University of Montpellier, ICM, INSERMMontpellierFrance
- BioCampus, RHEMUniversity of Montpellier, CNRS, INSERMMontpellierFrance
| | - François Gerbe
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
- IGFUniversity of Montpellier, CNRS, InsermMontpellierFrance
| | - Lucie Angevin
- IGMMUniversity of Montpellier, CNRS, InsermMontpellierFrance
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
| | - Philippe Jay
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
- IGFUniversity of Montpellier, CNRS, InsermMontpellierFrance
| | - Liliana Krasinska
- IGMMUniversity of Montpellier, CNRS, InsermMontpellierFrance
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
| | - Daniel Fisher
- IGMMUniversity of Montpellier, CNRS, InsermMontpellierFrance
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
| |
Collapse
|
21
|
Xu T, Xie M, Jing X, Jiang H, Wu X, Wang X, Shu Y. Loss of miR-26b-5p promotes gastric cancer progression via miR-26b-5p-PDE4B/CDK8-STAT3 feedback loop. J Transl Med 2023; 21:77. [PMID: 36737782 PMCID: PMC9898947 DOI: 10.1186/s12967-023-03933-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Chronic inflammation is a well-known risk factor for the development of gastric cancer (GC). Nevertheless, the molecular mechanisms underlying inflammation-related GC progression are incompletely defined. METHODS Bioinformatic analysis was performed based on data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), and the expression of miR-26b-5p in GC cells and tissues was validated by quantitative real-time PCR (qRT-PCR). Cell proliferation was examined through Cell Counting Kit-8 (CCK8), 5-Ethynyl-2'-deoxyuridine (EdU), colony formation, flow cytometry, and tumor xenografts. Correlation between miR-26b-5p and Cyclin dependent kinase 8 (CDK8) or Phosphodiesterase 4B (PDE4B) was analyzed by dual-luciferase reporter assays, qRT-PCR, and Western blot. The effect of miR-26b-5p on the Signal transducer and activator of transcription 3 (STAT3) pathway was investigated using Western blot, immunofluorescence (IF), and immunohistochemistry (IHC). The impact of STAT3 on miR-26b-5p was determined by dual-luciferase reporter assays and qRT-PCR. RESULTS The expression of miR-26b-5p was significantly downregulated in Helicobacter Pylori (H. pylori)-infected GC cells. The decreased expression of miR-26b-5p was also detected in GC cells and tissues compared to normal gastric epithelium cells (GES1) and normal adjacent gastric tissues. The low expression of miR-26b-5p promoted GC proliferation in vitro and in vivo and was related to the poor outcome of GC patients. In terms of mechanism, miR-26b-5p directly targeted PDE4B and CDK8, resulting in decreased phosphorylation and nuclear translocation of STAT3, which was associated with the regulation of GC proliferation by miR-26b-5p. Notably, miR-26b-5p was transcriptionally suppressed by STAT3, thus forming the miR-26b-5p-PDE4B/CDK8-STAT3 positive feedback loop. CONCLUSION The newly identified miR-26b-5p-PDE4B/CDK8-STAT3 feedback loop plays an important role in inflammation-related GC progression and may serve as a promising therapeutic target for GC.
Collapse
Affiliation(s)
- Tingting Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Oncology, Gusu School, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Mengyan Xie
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinming Jing
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huning Jiang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xi Wu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinzhu Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
- Department of Oncology, Gusu School, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China.
- Department of Oncology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
22
|
Overcoming Resistance to HER2-Directed Therapies in Breast Cancer. Cancers (Basel) 2022; 14:cancers14163996. [PMID: 36010990 PMCID: PMC9406173 DOI: 10.3390/cancers14163996] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Breast cancer is the most common cancer in women in the United States. Around 15% of all breast cancers overexpress the HER2 protein. These HER2-positive tumors have been associated with aggressive behavior if left untreated. Drugs targeting HER2 have greatly improved the outcomes of patients with HER2-positive tumors in the last decades. Despite these improvements, many patients with early breast cancer have recurrences, and many with advanced disease experience progression of disease on HER2-targeted drugs, suggesting that patients can develop resistance to these medications. In this review, we summarize several mechanisms of resistance to HER2-targeted treatments. Understanding how the tumors grow despite these therapies could allow us to develop better treatment strategies to continue to improve patient outcomes. Abstract Human epidermal growth factor receptor 2 (HER2)-positive breast cancer accounts for around 15% of all breast cancers and was historically associated with a worse prognosis compared with other breast cancer subtypes. With the development of HER2-directed therapies, the outcomes of patients with HER2-positive disease have improved dramatically; however, many patients present with de novo or acquired resistance to these therapies, which leads to early recurrences or progression of advanced disease. In this narrative review, we discuss the mechanisms of resistance to different HER2-targeted therapies, including monoclonal antibodies, small tyrosine kinase inhibitors, and antibody-drug conjugates. We review mechanisms such as impaired binding to HER2, incomplete receptor inhibition, increased signaling from other receptors, cross-talk with estrogen receptors, and PIK3CA pathway activation. We also discuss the role of the tumor immune microenvironment and HER2-heterogeneity, and the unique mechanisms of resistance to novel antibody-drug conjugates. A better understanding of these mechanisms and the potential strategies to overcome them will allow us to continue improving outcomes for patients with breast cancer.
Collapse
|