1
|
Zhu H, Zhang J, Rao S, Durbin MD, Li Y, Lang R, Liu J, Xiao B, Shan H, Meng Z, Wang J, Tang X, Shi Z, Cox LL, Zhao S, Ware SM, Tan TY, de Silva M, Gallacher L, Liu T, Mi J, Zeng C, Zheng HF, Zhang Q, Antonarakis SE, Cox TC, Zhang YB. Common cis-regulatory variation modifies the penetrance of pathogenic SHROOM3 variants in craniofacial microsomia. Genome Res 2025; 35:1065-1079. [PMID: 40234029 PMCID: PMC12047249 DOI: 10.1101/gr.280047.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/10/2025] [Indexed: 04/17/2025]
Abstract
Pathogenic coding variants have been identified in thousands of genes, yet the mechanisms underlying the incomplete penetrance in individuals carrying these variants are poorly understood. In this study, in a cohort of 2009 craniofacial microsomia (CFM) patients of Chinese ancestry and 2625 Han Chinese controls, we identified multiple predicted pathogenic coding variants in SHROOM3 in both CFM patients and healthy individuals. We found that the penetrance of CFM correlates with specific haplotype combinations containing likely pathogenic-coding SHROOM3 variants and CFM-associated expression quantitative trait loci (eQTLs) of SHROOM3 expression. Further investigations implicate specific eQTL combinations, such as rs1001322 or rs344131, in combination with other significant CFM-associated eQTLs, which we term combined eQTL phenotype modifiers (CePMods). We additionally show that rs344131, located within a regulatory enhancer region of SHROOM3, demonstrates allele-specific effects on enhancer activity and thus impacts expression levels of the associated SHROOM3 allele harboring any rare coding variant. Our findings also suggest that CePMods may serve as pathogenic determinants, even in the absence of rare deleterious coding variants in SHROOM3 This highlights the critical role of allelic expression in determining the penetrance and severity of craniofacial abnormalities, including microtia and facial asymmetry. Additionally, using quantitative phenotyping, we demonstrate that both microtia and facial asymmetry are present in two separate Shroom3 mouse models, the severity of which is dependent on gene dosage. Our study establishes SHROOM3 as a likely pathogenic gene for CFM and demonstrates eQTLs as determinants of modified penetrance in the manifestation of the disease in individuals carrying likely pathogenic rare coding variants.
Collapse
Affiliation(s)
- Hao Zhu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Jiao Zhang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Beijing 100144, China
| | - Soumya Rao
- Department of Oral & Craniofacial Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64108, USA
| | - Matthew D Durbin
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Ying Li
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100051, China
| | - Ruirui Lang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Jiqiang Liu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Baichuan Xiao
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Hailin Shan
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Ziqiu Meng
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Jinmo Wang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Xiaokai Tang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Zhenni Shi
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Liza L Cox
- Department of Oral & Craniofacial Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64108, USA
| | - Shouqin Zhao
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100051, China
| | - Stephanie M Ware
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Tiong Y Tan
- Victorian Clinical Genetics Service, Royal Children's Hospital and Department of Pediatrics, University of Melbourne, Victoria 3052, Australia
| | - Michelle de Silva
- Victorian Clinical Genetics Service, Royal Children's Hospital and Department of Pediatrics, University of Melbourne, Victoria 3052, Australia
| | - Lyndon Gallacher
- Victorian Clinical Genetics Service, Royal Children's Hospital and Department of Pediatrics, University of Melbourne, Victoria 3052, Australia
| | - Ting Liu
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing 400000, China
| | - Jie Mi
- Center for Non-Communicable Disease Management, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Changqing Zeng
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hou-Feng Zheng
- Center for Health and Data Science (CHDS), the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
- Diseases & Population (DaP) Geninfo Laboratory, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Qingguo Zhang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Beijing 100144, China
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical Faculty, Geneva 1211, Switzerland;
- Medigenome, Swiss Institute of Genomic Medicine, 1207 Geneva, Switzerland
- iGE3 Institute of Genetics and Genomes in Geneva, Geneva 1211, Switzerland
| | - Timothy C Cox
- Department of Oral & Craniofacial Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64108, USA;
- Department of Pediatrics, University of Missouri-Kansas City, Kansas City, Missouri 64108, USA
| | - Yong-Biao Zhang
- School of Engineering Medicine, Beihang University, Beijing 100191, China;
- Key Laboratory of Big Data-Based Precision Medicine and Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology, Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing 100191, China
- National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), Beihang University, Beijing 100083, China
| |
Collapse
|
2
|
Li Q, Zhang BH, Chen Q, Fu Y, Zuo X, Lu P, Zhang W, Wang B. Pathogenic variants in SHROOM3 associated with hemifacial microsomia. J Hum Genet 2025; 70:189-194. [PMID: 39875538 DOI: 10.1038/s10038-025-01317-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/14/2024] [Accepted: 01/15/2025] [Indexed: 01/30/2025]
Abstract
Hemifacial microsomia (HFM) is a rare congenital disorder that affects facial symmetry, ear development, and other congenital anomalies. However, known causal genes account for only approximately 6% of patients, indicating the need to discover more pathogenic genes. Association tests demonstrated an association between common variants in SHROOM3 and HFM (P = 1.02E-4 for the lead SNP), while gene burden analysis revealed a significant enrichment of rare variants in HFM patients compared to healthy controls (P = 2.78E-5). We then evaluated the expression patterns of SHROOM3 and the consequences of its deleterious variants. Our study identified 7 deleterious variants in SHROOM3 among the 320 Chinese HFM patients and 2 deleterious variants in two HFM trios, respectively, suggesting a model of dominant inheritance with incomplete penetrance. These variants were predicted to significantly impact SHROOM3 function. Furthermore, the gene expression pattern of SHROOM3 in the pharyngeal arches and the presence of facial abnormalities in gene-edited mice suggest that SHROOM3 plays important roles in facial development. Our findings suggest that SHROOM3 is a likely pathogenic gene for HFM.
Collapse
Affiliation(s)
- Qin Li
- Department of Stomatology, Eye&ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Bing-Hua Zhang
- Shanghai Xuhui District Dental Center, Shanghai, 200032, China
| | - Qi Chen
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, China
| | - Yaoyao Fu
- Department of facial plastic and reconstructive surgery, Eye&ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Xiang Zuo
- Department of Stomatology, Eye&ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Peng Lu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, China
| | - Weiwei Zhang
- Department of Stomatology, Eye&ENT Hospital, Fudan University, Shanghai, 200031, China.
| | - Bingqing Wang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, China.
| |
Collapse
|
3
|
Govindan A, Fiest C, Chou DW, Saade M, Gray M, Cosetti M. Genetics of Nonsyndromic Microtia and Congenital Aural Atresia: A Scoping Review. Otolaryngol Head Neck Surg 2025; 172:811-820. [PMID: 39624921 DOI: 10.1002/ohn.1060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/26/2024] [Accepted: 11/01/2024] [Indexed: 02/22/2025]
Abstract
OBJECTIVE To review the literature on genetics of nonsyndromic microtia and congenital aural atresia (CAA). DATA SOURCES Embase, Ovid (Medline), and Web of Science. REVIEW METHODS The search was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for scoping reviews. Included studies were original research studies discussing the genetics or pattern of inheritance of non-syndromic microtia and/or CAA, defined as microtia and/or CAA that was completely isolated except for the presence of hearing loss. RESULTS Thirty studies met inclusion criteria, describing 40 unique genes and one susceptibility gene locus (4p15.32-4p16.2) associated with nonsyndromic microtia, CAA, or microtia and CAA. The 3 most cited genes describing microtia genetics alone were HOXA2, MUC6, and GSC. A single article describing nonsyndromic CAA alone identified the TSHZ1 as a candidate gene. Among 194 subjects from 18 manuscripts describing mendelian inheritance for non-syndromic microtia or microtia and CAA, 49% of the individuals were found to have autosomal dominant transmission, 4% had autosomal recessive, 5% had X-linked recessive, and 42% had no reported pattern of inheritance. CONCLUSION Current literature on the genetics of microtia and CAA is largely derived from genetic analysis of syndromic patients. Despite comprising over half of the clinical population, available data on non-syndromic patients remains limited. Understanding genetic polymorphisms and their correlation to phenotypic data more readily available to otolaryngologists offers the prospect of categorizing severity of anatomic malformation and hearing loss to guide future intervention, and improve ability to provide patient- and family-centered counseling.
Collapse
Affiliation(s)
- Aparna Govindan
- Department of Otolaryngology-Head and Neck Surgery, University of Miami, Miami, Florida, USA
| | - Carly Fiest
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - David W Chou
- Division of Facial Plastic and Reconstructive Surgery, Department of Otolaryngology-Head and Neck Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mia Saade
- Department of Otolaryngology-Head and Neck Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Mingyang Gray
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Maura Cosetti
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
4
|
Xing W, Zhang J, Liu T, Wang Y, Qian J, Wang B, Zhang Y, Zhang Q. An innovative CRISPR/Cas9 mouse model of human isolated microtia indicates the potential contribution of CNVs near HMX1 gene. Int J Pediatr Otorhinolaryngol 2024; 187:112141. [PMID: 39616960 DOI: 10.1016/j.ijporl.2024.112141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/08/2024] [Accepted: 10/16/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND Microtia is a prevalent congenital malformation, the precise etiology and pathogenesis of which remain elusive. Mutations in the non-coding region of the HMX1 gene have been implicated in isolated cases of microtia, emerging as a significant focus of contemporary research. Several pathogenic copy number variations (CNVs) proximal to the HMX1 gene have been documented in wild animal populations, whereas only a single large segmental duplication in this region has been identified in humans. However, the absence of a gene-edited animal model has impeded the investigation of the unclear gene function associated with HMX1 mutations in human isolated microtia. In this study, we sought to precisely identify the pathogenic mutation by analyzing three pedigrees alongside population controls. Subsequently, our objective was to develop a CRISPR/Cas9 gene-edited mouse model to elucidate the functional implications of the identified mutation. METHODS Genomic DNA was collected from 32 affected individuals across three pedigrees, as well as from 2000 control subjects. Comprehensive genomic analyses, including genome-wide linkage analysis, targeted capture, second-generation sequencing, and copy number analysis, were conducted to identify potential mutations associated with congenital auricle malformation. CRISPR/Cas9 gene-edited murine models were generated in response to the identified mutation. The auricular phenotypes of these gene-edited mice were systematically monitored. Small-animal Micro-CT scanning was employed to identify potential craniofacial or skeletal abnormalities. Furthermore, the expression of the HMX1 gene in the PA2 region of mouse embryos was quantified using RT-qPCR. RESULTS A co-segregated 600 base pair duplication located on chromosome 4 (chr4:8701900-8702500, hg19) was identified in affected individuals across three pedigrees, but was absent in healthy controls. Two types of CRISPR/Cas9 gene-edited mice were subsequently generated. The knock-in (KI) mouse model was engineered by inserting one copy of the duplicated sequence directly adjacent to the mutated site, whereas the knockout (KO) mouse model was created by excising the mutation sequence. The phenotypes of different group of CRISPR/Cas9 gene-edited mice demonstrated distinct auricular deformities. Furthermore, an increase in the copy number of the mutated sequence was associated with elevated expression levels of HMX1 in the gene-edited mouse model. CONCLUSIONS In this study, we further narrowed down and identified a 600 base pair copy number variation (CNV) located at chr4:8701900-8702500 (hg19), which is implicated in human bilateral, isolated microtia. Utilizing CRISPR/Cas9 technology, we developed novel mouse models harboring the identified mutation. These models serve as a robust platform for the comprehensive investigation of the underlying mechanisms of the disease.
Collapse
Affiliation(s)
- Wenshan Xing
- Auricular Plastic and Reconstructive Surgery Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, China
| | - Jiao Zhang
- Auricular Plastic and Reconstructive Surgery Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, China
| | - Tun Liu
- Auricular Plastic and Reconstructive Surgery Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, China
| | - Yue Wang
- Auricular Plastic and Reconstructive Surgery Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, China
| | - Jin Qian
- Auricular Plastic and Reconstructive Surgery Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, China
| | - Bingqing Wang
- Auricular Plastic and Reconstructive Surgery Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, China
| | - Yongbiao Zhang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing, 100191, China; Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, China
| | - Qingguo Zhang
- Auricular Plastic and Reconstructive Surgery Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, China.
| |
Collapse
|
5
|
Sierra-Pineda JA, Garcia HF, Porras-Hurtado GL, Orozco-Gutierrez AA, Cardenas-Pena DA, Luquetti DV. Biogeographic Ancestry Analysis of Microtia Patients in Colombia using Nonlinear Probabilistic Clustering. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039241 DOI: 10.1109/embc53108.2024.10782588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Population composition is crucial in exploring genetic associations and investigating conditions and diseases. Single nucleotide polymorphisms (SNPs) are the subject of extensive studies, as they represent the most prevalent genetic variability in the human population. This work proposes a hierarchical framework for nonlinear probabilistic clustering of individuals with mixed ancestry population components. Through methods such as Kernel PCA, latent variables that can capture complex patterns of genetic variation are found. Gaussian mixture clustering allows for the inference of the population structure of the data obtained through the proposed feature extraction model. The proposed method is trained with pure populations from Africa, Europe, East Asia, and America, achieving an adjusted rand index of 0.981 for the evaluation set. Validation is achieved by evaluating the method on real data sets and compared with results from previous studies, achieving a Mean Squared Error of 2.77%. The model was tested on Colombian individuals diagnosed with microtia, revealing a robust association between the prevalence of the Native American population component and their conditions.
Collapse
|
6
|
Yang R, Chu H, Yue H, Mishina Y, Zhang Z, Liu H, Li B. BMP signaling maintains auricular chondrocyte identity and prevents microtia development by inhibiting protein kinase A. eLife 2024; 12:RP91883. [PMID: 38690987 PMCID: PMC11062634 DOI: 10.7554/elife.91883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024] Open
Abstract
Elastic cartilage constitutes a major component of the external ear, which functions to guide sound to the middle and inner ears. Defects in auricle development cause congenital microtia, which affects hearing and appearance in patients. Mutations in several genes have been implicated in microtia development, yet, the pathogenesis of this disorder remains incompletely understood. Here, we show that Prrx1 genetically marks auricular chondrocytes in adult mice. Interestingly, BMP-Smad1/5/9 signaling in chondrocytes is increasingly activated from the proximal to distal segments of the ear, which is associated with a decrease in chondrocyte regenerative activity. Ablation of Bmpr1a in auricular chondrocytes led to chondrocyte atrophy and microtia development at the distal part. Transcriptome analysis revealed that Bmpr1a deficiency caused a switch from the chondrogenic program to the osteogenic program, accompanied by enhanced protein kinase A activation, likely through increased expression of Adcy5/8. Inhibition of PKA blocked chondrocyte-to-osteoblast transformation and microtia development. Moreover, analysis of single-cell RNA-seq of human microtia samples uncovered enriched gene expression in the PKA pathway and chondrocyte-to-osteoblast transformation process. These findings suggest that auricle cartilage is actively maintained by BMP signaling, which maintains chondrocyte identity by suppressing osteogenic differentiation.
Collapse
Affiliation(s)
- Ruichen Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong UniversityShanghaiChina
| | - Hongshang Chu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong UniversityShanghaiChina
| | - Hua Yue
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Disease, Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Yuji Mishina
- Department of Biologic and Materials & Prosthodontics, University of Michigan School of DentistryAnn ArborUnited States
| | - Zhenlin Zhang
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Disease, Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Huijuan Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong UniversityShanghaiChina
| | - Baojie Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong UniversityShanghaiChina
- Shanghai Institute of Stem Cell Research and Clinical TranslationShanghaiChina
| |
Collapse
|
7
|
Mao K, Borel C, Ansar M, Jolly A, Makrythanasis P, Froehlich C, Iwaszkiewicz J, Wang B, Xu X, Li Q, Blanc X, Zhu H, Chen Q, Jin F, Ankamreddy H, Singh S, Zhang H, Wang X, Chen P, Ranza E, Paracha SA, Shah SF, Guida V, Piceci-Sparascio F, Melis D, Dallapiccola B, Digilio MC, Novelli A, Magliozzi M, Fadda MT, Streff H, Machol K, Lewis RA, Zoete V, Squeo GM, Prontera P, Mancano G, Gori G, Mariani M, Selicorni A, Psoni S, Fryssira H, Douzgou S, Marlin S, Biskup S, De Luca A, Merla G, Zhao S, Cox TC, Groves AK, Lupski JR, Zhang Q, Zhang YB, Antonarakis SE. FOXI3 pathogenic variants cause one form of craniofacial microsomia. Nat Commun 2023; 14:2026. [PMID: 37041148 PMCID: PMC10090152 DOI: 10.1038/s41467-023-37703-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 03/28/2023] [Indexed: 04/13/2023] Open
Abstract
Craniofacial microsomia (CFM; also known as Goldenhar syndrome), is a craniofacial developmental disorder of variable expressivity and severity with a recognizable set of abnormalities. These birth defects are associated with structures derived from the first and second pharyngeal arches, can occur unilaterally and include ear dysplasia, microtia, preauricular tags and pits, facial asymmetry and other malformations. The inheritance pattern is controversial, and the molecular etiology of this syndrome is largely unknown. A total of 670 patients belonging to unrelated pedigrees with European and Chinese ancestry with CFM, are investigated. We identify 18 likely pathogenic variants in 21 probands (3.1%) in FOXI3. Biochemical experiments on transcriptional activity and subcellular localization of the likely pathogenic FOXI3 variants, and knock-in mouse studies strongly support the involvement of FOXI3 in CFM. Our findings indicate autosomal dominant inheritance with reduced penetrance, and/or autosomal recessive inheritance. The phenotypic expression of the FOXI3 variants is variable. The penetrance of the likely pathogenic variants in the seemingly dominant form is reduced, since a considerable number of such variants in affected individuals were inherited from non-affected parents. Here we provide suggestive evidence that common variation in the FOXI3 allele in trans with the pathogenic variant could modify the phenotypic severity and accounts for the incomplete penetrance.
Collapse
Affiliation(s)
- Ke Mao
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Christelle Borel
- Department of Genetic Medicine and Development, University of Geneva Medical Faculty, Geneva, 1211, Switzerland
| | - Muhammad Ansar
- Department of Genetic Medicine and Development, University of Geneva Medical Faculty, Geneva, 1211, Switzerland
- Jules-Gonin Eye Hospital, Department of Ophthalmology, University of Lausanne, 1004, Lausanne, Switzerland
| | - Angad Jolly
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Periklis Makrythanasis
- Department of Genetic Medicine and Development, University of Geneva Medical Faculty, Geneva, 1211, Switzerland
- Laboratory of Medical Genetics, Medical School, University of Athens, Athens, Greece
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | - Justyna Iwaszkiewicz
- Molecular Modeling Group, Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Bingqing Wang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Beijing, 100144, China
| | - Xiaopeng Xu
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, China
| | - Qiang Li
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Xavier Blanc
- Medigenome, Swiss Institute of Genomic Medicine, 1207, Geneva, Switzerland
| | - Hao Zhu
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Qi Chen
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Beijing, 100144, China
| | - Fujun Jin
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, China
| | - Harinarayana Ankamreddy
- Department of Biotechnology, School of Bioengineering, SRMIST, Kattankulathur, Tamilnadu, 603203, India
| | - Sunita Singh
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hongyuan Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xiaogang Wang
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, China
| | - Peiwei Chen
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Emmanuelle Ranza
- Medigenome, Swiss Institute of Genomic Medicine, 1207, Geneva, Switzerland
| | - Sohail Aziz Paracha
- Anatomy Department, Khyber Medical University Institute of Medical Sciences (KIMS), Kohat, Pakistan
| | - Syed Fahim Shah
- Department of Medicine, KMU Institute of Medical Sciences (KIMS), DHQ Hospital KDA, Kohat, Pakistan
| | - Valentina Guida
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | | | - Daniela Melis
- Department of Medicine, Surgery, and Dentistry, Università University degli of Studi di Salerno, Salerno, Italy
| | - Bruno Dallapiccola
- Medical Genetics and Rare Disease Research Division, Pediatric Cardiology, Medical Genetics Laboratory, Neuropsychiatry, Scientific Rectorate, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | | | - Antonio Novelli
- Sezione di Genetica Medica, Ospedale 'Bambino Gesù', Rome, Italy
| | - Monia Magliozzi
- Sezione di Genetica Medica, Ospedale 'Bambino Gesù', Rome, Italy
| | - Maria Teresa Fadda
- Department of Maxillo-Facial Surgery, Policlinico Umberto I, Rome, Italy
| | - Haley Streff
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Keren Machol
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Richard A Lewis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Vincent Zoete
- Molecular Modeling Group, Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
- Department of Fundamental Oncology, Ludwig Institute for Cancer Research, Lausanne University, Epalinges, 1066, Switzerland
| | - Gabriella Maria Squeo
- Laboratory of Regulatory & Functional Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Paolo Prontera
- Medical Genetics Unit, Hospital Santa Maria della Misericordia, Perugia, Italy
| | - Giorgia Mancano
- Medical Genetics Unit, University of Perugia Hospital SM della Misericordia, Perugia, Italy
| | - Giulia Gori
- Medical Genetics Unit, Meyer Children's University Hospital, Florence, Italy
| | - Milena Mariani
- Pediatric Department, ASST Lariana, Santa Anna General Hospital, Como, Italy
| | - Angelo Selicorni
- Pediatric Department, ASST Lariana, Santa Anna General Hospital, Como, Italy
| | - Stavroula Psoni
- Laboratory of Medical Genetics, Medical School, University of Athens, Athens, Greece
| | - Helen Fryssira
- Laboratory of Medical Genetics, Medical School, University of Athens, Athens, Greece
| | - Sofia Douzgou
- Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester, UK
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Sandrine Marlin
- Centre de Référence Surdités Génétiques, Hôpital Necker, Institut Imagine, Paris, France
| | - Saskia Biskup
- CeGaT GmbH and Praxis für Humangenetik Tuebingen, Tuebingen, 72076, Germany
| | - Alessandro De Luca
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Giuseppe Merla
- Laboratory of Regulatory & Functional Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131, Naples, Italy
| | - Shouqin Zhao
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Timothy C Cox
- Departments of Oral & Craniofacial Sciences and Pediatrics, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - Andrew K Groves
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Qingguo Zhang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Beijing, 100144, China.
| | - Yong-Biao Zhang
- School of Engineering Medicine, Beihang University, Beijing, 100191, China.
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, China.
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical Faculty, Geneva, 1211, Switzerland.
- Medigenome, Swiss Institute of Genomic Medicine, 1207, Geneva, Switzerland.
- iGE3 Institute of Genetics and Genomes in Geneva, Geneva, Switzerland.
| |
Collapse
|
8
|
Quiat D, Timberlake AT, Curran JJ, Cunningham ML, McDonough B, Artunduaga MA, DePalma SR, Duenas-Roque MM, Gorham JM, Gustafson JA, Hamdan U, Hing AV, Hurtado-Villa P, Nicolau Y, Osorno G, Pachajoa H, Porras-Hurtado GL, Quintanilla-Dieck L, Serrano L, Tumblin M, Zarante I, Luquetti DV, Eavey RD, Heike CL, Seidman JG, Seidman CE. Damaging variants in FOXI3 cause microtia and craniofacial microsomia. Genet Med 2023; 25:143-150. [PMID: 36260083 PMCID: PMC9885525 DOI: 10.1016/j.gim.2022.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/05/2022] Open
Abstract
PURPOSE Craniofacial microsomia (CFM) represents a spectrum of craniofacial malformations, ranging from isolated microtia with or without aural atresia to underdevelopment of the mandible, maxilla, orbit, facial soft tissue, and/or facial nerve. The genetic causes of CFM remain largely unknown. METHODS We performed genome sequencing and linkage analysis in patients and families with microtia and CFM of unknown genetic etiology. The functional consequences of damaging missense variants were evaluated through expression of wild-type and mutant proteins in vitro. RESULTS We studied a 5-generation kindred with microtia, identifying a missense variant in FOXI3 (p.Arg236Trp) as the cause of disease (logarithm of the odds = 3.33). We subsequently identified 6 individuals from 3 additional kindreds with microtia-CFM spectrum phenotypes harboring damaging variants in FOXI3, a regulator of ectodermal and neural crest development. Missense variants in the nuclear localization sequence were identified in cases with isolated microtia with aural atresia and found to affect subcellular localization of FOXI3. Loss of function variants were found in patients with microtia and mandibular hypoplasia (CFM), suggesting dosage sensitivity of FOXI3. CONCLUSION Damaging variants in FOXI3 are the second most frequent genetic cause of CFM, causing 1% of all cases, including 13% of familial cases in our cohort.
Collapse
Affiliation(s)
- Daniel Quiat
- Department of Cardiology, Boston Children's Hospital, Boston, MA; Department of Pediatrics, Harvard Medical School, Boston, MA; Department of Genetics, Harvard Medical School, Boston, MA
| | - Andrew T Timberlake
- Hansjörg Wyss Department of Plastic and Reconstructive Surgery, NYU Langone Medical Center, New York, NY
| | | | - Michael L Cunningham
- Division of Craniofacial Medicine, Department of Pediatrics, University of Washington, Seattle, WA; Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA
| | | | | | | | | | | | - Jonas A Gustafson
- Division of Craniofacial Medicine, Department of Pediatrics, University of Washington, Seattle, WA
| | | | - Anne V Hing
- Division of Craniofacial Medicine, Department of Pediatrics, University of Washington, Seattle, WA; Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA
| | | | | | - Gabriel Osorno
- Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Harry Pachajoa
- Servicio de Genética Médica, Fundación Valle del Lili, Cali, Colombia; Centro de Investigación en Anomalías Congénitas y Enfermedades Raras (CIACER), Universidad Icesi, Cali, Colombia
| | | | - Lourdes Quintanilla-Dieck
- Department of Otolaryngology Head and Neck Surgery, Oregon Health & Science University, Portland, OR
| | | | | | - Ignacio Zarante
- Human Genomics Institute, Pontificia Universidad Javeriana, Bogotá, Colombia; Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Daniela V Luquetti
- Division of Craniofacial Medicine, Department of Pediatrics, University of Washington, Seattle, WA; Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA
| | - Roland D Eavey
- Department of Otolaryngology-Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, TN.
| | - Carrie L Heike
- Division of Craniofacial Medicine, Department of Pediatrics, University of Washington, Seattle, WA; Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA.
| | | | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA; Cardiovascular Division, Brigham and Women's Hospital, Boston, MA; Howard Hughes Medical Institute, Chevy Chase, MD.
| |
Collapse
|