1
|
Freeman SA, Ayoub I, Dauvilliers Y, Liblau RS. Unraveling the pathophysiology of narcolepsy type 1 through hypothesis-driven and hypothesis-generating approaches. Semin Immunol 2025; 78:101962. [PMID: 40373365 DOI: 10.1016/j.smim.2025.101962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/30/2025] [Accepted: 05/01/2025] [Indexed: 05/17/2025]
Abstract
Narcolepsy type 1 (NT1) is a chronic orphan neurological sleep disorder characterized by the loss of hypocretin-producing neurons in the lateral hypothalamus, which play a crucial role in wakefulness. Given the genetic association with the HLA-DQB1 * 06:02 allele and environmental links with the 2009 influenza pandemic, many lines of evidence point towards an immune mechanism, notably autoimmunity, underlying the disease pathophysiology. Autoreactive T cells are found in the blood of NT1 patients, and mouse models demonstrate their migratory capacity and contribution in the selective destruction of hypocretin-producing neurons. However, direct evidence for their role in human NT1 pathophysiology remains elusive. In complementing these findings, hypothesis-generating approaches-including multiparametric immune profiling, transcriptomic sequencing and large-scale proteomic of blood and cerebrospinal fluid-have uncovered promising new avenues into the immune system's involvement in NT1. In this review, we explore the mechanisms driving NT1 pathogenesis, emphasizing both hypothesis-driven and hypothesis-generating approaches, and discuss potential future directions that could pave the way for targeted immunotherapies.
Collapse
Affiliation(s)
- Sean A Freeman
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, Toulouse, France; Department of Neurology, Toulouse University Hospitals, Toulouse, France
| | - Ikram Ayoub
- Department of Neurosciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yves Dauvilliers
- Institute of Neurosciences of Montpellier (INM), University of Montpellier, INSERM, Montpellier, France; Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, France; National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France
| | - Roland S Liblau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, Toulouse, France; Department of Immunology, Toulouse University Hospitals, Toulouse, France.
| |
Collapse
|
2
|
Vringer M, Zhou J, Gool JK, Bijlenga D, Lammers GJ, Fronczek R, Schinkelshoek MS. Recent insights into the pathophysiology of narcolepsy type 1. Sleep Med Rev 2024; 78:101993. [PMID: 39241492 DOI: 10.1016/j.smrv.2024.101993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/09/2024]
Abstract
Narcolepsy type 1 (NT1) is a sleep-wake disorder in which people typically experience excessive daytime sleepiness, cataplexy and other sleep-wake disturbances impairing daily life activities. NT1 symptoms are due to hypocretin deficiency. The cause for the observed hypocretin deficiency remains unclear, even though the most likely hypothesis is that this is due to an auto-immune process. The search for autoantibodies and autoreactive T-cells has not yet produced conclusive evidence for or against the auto-immune hypothesis. Other mechanisms, such as reduced corticotrophin-releasing hormone production in the paraventricular nucleus have recently been suggested. There is no reversive treatment, and the therapeutic approach is symptomatic. Early diagnosis and appropriate NT1 treatment is essential, especially in children to prevent impaired cognitive, emotional and social development. Hypocretin receptor agonists have been designed to replace the attenuated hypocretin signalling. Pre-clinical and clinical trials have shown encouraging initial results. A better understanding of NT1 pathophysiology may contribute to faster diagnosis or treatments, which may cure or prevent it.
Collapse
Affiliation(s)
- Marieke Vringer
- Stichting Epilepsie Instellingen Nederland (SEIN), Sleep-Wake center, Heemstede, the Netherlands; Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Jingru Zhou
- Stichting Epilepsie Instellingen Nederland (SEIN), Sleep-Wake center, Heemstede, the Netherlands; Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Jari K Gool
- Stichting Epilepsie Instellingen Nederland (SEIN), Sleep-Wake center, Heemstede, the Netherlands; Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands; Department of Anatomy & Neurosciences, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Compulsivity, Impulsivity and Attention, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Denise Bijlenga
- Stichting Epilepsie Instellingen Nederland (SEIN), Sleep-Wake center, Heemstede, the Netherlands; Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Gert Jan Lammers
- Stichting Epilepsie Instellingen Nederland (SEIN), Sleep-Wake center, Heemstede, the Netherlands; Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Rolf Fronczek
- Stichting Epilepsie Instellingen Nederland (SEIN), Sleep-Wake center, Heemstede, the Netherlands; Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Mink S Schinkelshoek
- Stichting Epilepsie Instellingen Nederland (SEIN), Sleep-Wake center, Heemstede, the Netherlands; Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands.
| |
Collapse
|
3
|
Hamdan S, Wasling P, Lind A. High-resolution HLA sequencing and hypocretin receptor 2 autoantibodies in narcolepsy type 1 and type 2. Int J Immunogenet 2024; 51:310-318. [PMID: 38898624 DOI: 10.1111/iji.12688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024]
Abstract
Narcolepsy is a sleep disorder caused by an apparent degeneration of orexin/hypocretin neurons in the lateral hypothalamic area and a subsequent decrease in orexin/hypocretin levels in the cerebrospinal fluid. Narcolepsy is classified into type 1 (NT1) and type 2 (NT2). While genetic associations in the human leukocyte antigen (HLA) region and candidate autoantibodies have been investigated in NT1 to imply an autoimmune origin, less is known about the pathogenesis in NT2. Twenty-six NT1 and 15 NT2 patients were included, together with control groups of 24 idiopathic hypersomnia (IH) patients and 778 general population participants. High-resolution sequencing was used to determine the alleles, the extended haplotypes, and the genotypes of HLA-DRB3, -DRB4, -DRB5, -DRB1, -DQA1, -DQB1, -DPA1, and -DPB1. Radiobinding assay was used to determine autoantibodies against hypocretin receptor 2 (anti-HCRTR2 autoantibodies). NT1 was associated with HLA-DRB5*01:01:01, -DRB1*15:01:01, -DQA1*01:02:01, -DQB1*06:02:01, -DRB5*01:01:01, -DRB1*15:01:01, -DQA1*01:02:01, -DQB1*06:02:01 (odds ratio [OR]: 9.15; p = 8.31 × 10-4) and HLA-DRB5*01:01:01, -DRB1*15:01:01, -DQA1*01:02:01, -DQB1*06:02:01, -DRB4*01:03:01, -DRB1*04:01:01, -DQA1*03:02//03:03:01, -DQB1*03:01:01 (OR: 23.61; p = 1.58 × 10-4) genotypes. Lower orexin/hypocretin levels were reported in the NT2 subgroup (n = 5) that was associated with the extended HLA-DQB1*06:02:01 haplotype (p = .001). Anti-HCRTR2 autoantibody levels were not different between study groups (p = .8524). We confirmed the previous association of NT1 with HLA-DQB1*06:02:01 extended genotypes. A subgroup of NT2 patients with intermediate orexin/hypocretin levels and association with HLA-DQB1*06:02:01 was identified, indicating a possible overlap between the two distinct narcolepsy subtypes, NT1 and NT2. Low anti-HCRTR2 autoantibody levels suggest that these receptors might not function as autoimmune targets in either NT1 or NT2.
Collapse
Affiliation(s)
- Samia Hamdan
- Department of Clinical Sciences, Malmö, Lund University, Malmo, Sweden
| | - Pontus Wasling
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Alexander Lind
- Department of Clinical Sciences, Malmö, Lund University, Malmo, Sweden
| |
Collapse
|
4
|
Kukkonen JP, Jacobson LH, Hoyer D, Rinne MK, Borgland SL. International Union of Basic and Clinical Pharmacology CXIV: Orexin Receptor Function, Nomenclature and Pharmacology. Pharmacol Rev 2024; 76:625-688. [PMID: 38902035 DOI: 10.1124/pharmrev.123.000953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024] Open
Abstract
The orexin system consists of the peptide transmitters orexin-A and -B and the G protein-coupled orexin receptors OX1 and OX2 Orexin receptors are capable of coupling to all four families of heterotrimeric G proteins, and there are also other complex features of the orexin receptor signaling. The system was discovered 25 years ago and was immediately identified as a central regulator of sleep and wakefulness; this is exemplified by the symptomatology of the disorder narcolepsy with cataplexy, in which orexinergic neurons degenerate. Subsequent translation of these findings into drug discovery and development has resulted to date in three clinically used orexin receptor antagonists to treat insomnia. In addition to sleep and wakefulness, the orexin system appears to be a central player at least in addiction and reward, and has a role in depression, anxiety and pain gating. Additional antagonists and agonists are in development to treat, for instance, insomnia, narcolepsy with or without cataplexy and other disorders with excessive daytime sleepiness, depression with insomnia, anxiety, schizophrenia, as well as eating and substance use disorders. The orexin system has thus proved an important regulator of numerous neural functions and a valuable drug target. Orexin prepro-peptide and orexin receptors are also expressed outside the central nervous system, but their potential physiological roles there remain unknown. SIGNIFICANCE STATEMENT: The orexin system was discovered 25 years ago and immediately emerged as an essential sleep-wakefulness regulator. This discovery has tremendously increased the understanding of these processes and has thus far resulted in the market approval of three orexin receptor antagonists, which promote more physiological aspects of sleep than previous hypnotics. Further, orexin receptor agonists and antagonists with different pharmacodynamic properties are in development since research has revealed additional potential therapeutic indications. Orexin receptor signaling is complex and may represent novel features.
Collapse
Affiliation(s)
- Jyrki P Kukkonen
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Laura H Jacobson
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Daniel Hoyer
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Maiju K Rinne
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Stephanie L Borgland
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| |
Collapse
|
5
|
Ayoub I, Freeman SA, Saoudi A, Liblau R. Infection, vaccination and narcolepsy type 1: Evidence and potential molecular mechanisms. J Neuroimmunol 2024; 393:578383. [PMID: 39032452 DOI: 10.1016/j.jneuroim.2024.578383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/13/2024] [Accepted: 05/31/2024] [Indexed: 07/23/2024]
Abstract
NT1 is a rare, chronic and disabling neurological disease causing excessive daytime sleepiness and cataplexy. NT1 is characterized pathologically by an almost complete loss of neurons producing the hypocretin (HCRT)/orexin neuropeptides in the lateral hypothalamus. While the exact etiology of NT1 is still unknown, numerous studies have provided compelling evidence supporting its autoimmune origin. The prevailing hypothetical view on the pathogenesis of NT1 involves an immune-mediated loss of HCRT neurons that can be triggered by Pandemrix® vaccination and/or by infection in genetically susceptible patients, specifically carriers of the HLA-DQB1*06:02 MHC class II allele. The molecular mechanisms by which infection/vaccination can induce autoimmunity in the case of NT1 remain to be elucidated. In this review, evidence regarding the involvement of vaccination and infection and the potential mechanisms by which it could be linked to the pathogenesis of NT1 will be discussed in light of the existing findings in other autoimmune diseases.
Collapse
Affiliation(s)
- Ikram Ayoub
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, Toulouse, France.
| | - Sean A Freeman
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, Toulouse, France; Department of Neurology, Toulouse University Hospitals, Toulouse, France
| | - Abdelhadi Saoudi
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, Toulouse, France
| | - Roland Liblau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, Toulouse, France; Department of Immunology, Toulouse University Hospitals, Toulouse, France
| |
Collapse
|
6
|
Huth A, Ayoub I, Barateau L, Gerdes LA, Severac D, Krebs S, Blum H, Tumani H, Haas J, Wildemann B, Kümpfel T, Beltrán E, Liblau RS, Dauvilliers Y, Dornmair K. Single cell transcriptomics of cerebrospinal fluid cells from patients with recent-onset narcolepsy. J Autoimmun 2024; 146:103234. [PMID: 38663202 DOI: 10.1016/j.jaut.2024.103234] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/23/2024] [Accepted: 04/16/2024] [Indexed: 12/05/2024]
Abstract
Narcolepsy is a rare cause of hypersomnolence and may be associated or not with cataplexy, i.e. sudden muscle weakness. These forms are designated narcolepsy-type 1 (NT1) and -type 2 (NT2), respectively. Notable characteristics of narcolepsy are that most patients carry the HLA-DQB1*06:02 allele and NT1-patients have strongly decreased levels of hypocretin-1 (synonym orexin-A) in the cerebrospinal fluid (CSF). The pathogenesis of narcolepsy is still not completely understood but the strong HLA-bias and increased frequencies of CD4+ T cells reactive to hypocretin in the peripheral blood suggest autoimmune processes in the hypothalamus. Here we analyzed the transcriptomes of CSF-cells from twelve NT1 and two NT2 patients by single cell RNAseq (scRNAseq). As controls, we used CSF cells from patients with multiple sclerosis, radiologically isolated syndrome, and idiopathic intracranial hypertension. From 27,255 CSF cells, we identified 20 clusters of different cell types and found significant differences in three CD4+ T cell and one monocyte clusters between narcolepsy and multiple sclerosis patients. Over 1000 genes were differentially regulated between patients with NT1 and other diseases. Surprisingly, the most strongly upregulated genes in narcolepsy patients as compared to controls were coding for the genome-encoded MTRNR2L12 and MTRNR2L8 peptides, which are homologous to the mitochondria-encoded HUMANIN peptide that is known playing a role in other neurological diseases including Alzheimer's disease.
Collapse
Affiliation(s)
- Alina Huth
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
| | - Ikram Ayoub
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, Toulouse, France
| | - Lucie Barateau
- Sleep-Wake Disorders Center, Department of Neurology, Gui-de-Chauliac Hospital, Institute for Neurosciences of Montpellier INM, INSERM, University of Montpellier, Montpellier, France
| | - Lisa Ann Gerdes
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Dany Severac
- GenomiX, MGX, BioCampus Montpellier, CNRS, INSERM, Univ. Montpellier, F-34094, Montpellier, France
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center of the LMU, Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center of the LMU, Munich, Germany
| | | | - Jürgen Haas
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
| | - Eduardo Beltrán
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Roland S Liblau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, Toulouse, France
| | - Yves Dauvilliers
- Sleep-Wake Disorders Center, Department of Neurology, Gui-de-Chauliac Hospital, Institute for Neurosciences of Montpellier INM, INSERM, University of Montpellier, Montpellier, France
| | - Klaus Dornmair
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
7
|
Luo G. Hypocretin loss in Pandemrix-vaccinated mice. Sleep 2024; 47:zsae029. [PMID: 38289980 DOI: 10.1093/sleep/zsae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Indexed: 02/01/2024] Open
Affiliation(s)
- Guo Luo
- Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
8
|
Liblau RS, Latorre D, Kornum BR, Dauvilliers Y, Mignot EJ. The immunopathogenesis of narcolepsy type 1. Nat Rev Immunol 2024; 24:33-48. [PMID: 37400646 DOI: 10.1038/s41577-023-00902-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2023] [Indexed: 07/05/2023]
Abstract
Narcolepsy type 1 (NT1) is a chronic sleep disorder resulting from the loss of a small population of hypothalamic neurons that produce wake-promoting hypocretin (HCRT; also known as orexin) peptides. An immune-mediated pathology for NT1 has long been suspected given its exceptionally tight association with the MHC class II allele HLA-DQB1*06:02, as well as recent genetic evidence showing associations with polymorphisms of T cell receptor genes and other immune-relevant loci and the increased incidence of NT1 that has been observed after vaccination with the influenza vaccine Pandemrix. The search for both self-antigens and foreign antigens recognized by the pathogenic T cell response in NT1 is ongoing. Increased T cell reactivity against HCRT has been consistently reported in patients with NT1, but data demonstrating a primary role for T cells in neuronal destruction are currently lacking. Animal models are providing clues regarding the roles of autoreactive CD4+ and CD8+ T cells in the disease. Elucidation of the pathogenesis of NT1 will allow for the development of targeted immunotherapies at disease onset and could serve as a model for other immune-mediated neurological diseases.
Collapse
Affiliation(s)
- Roland S Liblau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, Toulouse, France.
- Department of Immunology, Toulouse University Hospitals, Toulouse, France.
| | | | - Birgitte R Kornum
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yves Dauvilliers
- National Reference Center for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome, Department of Neurology, Gui-de-Chauliac Hospital, CHU de Montpellier, Montpellier, France
- INSERM Institute for Neurosciences of Montpellier, Montpellier, France
| | - Emmanuel J Mignot
- Stanford University, Center for Narcolepsy, Department of Psychiatry and Behavioral Sciences, Palo Alto, CA, USA.
| |
Collapse
|
9
|
Khajavi L, Nguyen XH, Queriault C, Chabod M, Barateau L, Dauvilliers Y, Zytnicki M, Liblau R. The transcriptomics profiling of blood CD4 and CD8 T-cells in narcolepsy type I. Front Immunol 2023; 14:1249405. [PMID: 38077397 PMCID: PMC10702585 DOI: 10.3389/fimmu.2023.1249405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
Background Narcolepsy Type I (NT1) is a rare, life-long sleep disorder arising as a consequence of the extensive destruction of orexin-producing hypothalamic neurons. The mechanisms involved in the destruction of orexin neurons are not yet elucidated but the association of narcolepsy with environmental triggers and genetic susceptibility (strong association with the HLA, TCRs and other immunologically-relevant loci) implicates an immuno-pathological process. Several studies in animal models and on human samples have suggested that T-cells are the main pathogenic culprits. Methods RNA sequencing was performed on four CD4 and CD8 T-cell subsets (naive, effector, effector memory and central memory) sorted by flow cytometry from peripheral blood mononuclear cells (PBMCs) of NT1 patients and HLA-matched healthy donors as well as (age- and sex-) matched individuals suffering from other sleep disorders (OSD). The RNAseq analysis was conducted by comparing the transcriptome of NT1 patients to that of healthy donors and other sleep disorder patients (collectively referred to as the non-narcolepsy controls) in order to identify NT1-specific genes and pathways. Results We determined NT1-specific differentially expressed genes, several of which are involved in tubulin arrangement found in CD4 (TBCB, CCT5, EML4, TPGS1, TPGS2) and CD8 (TTLL7) T cell subsets, which play a role in the immune synapse formation and TCR signaling. Furthermore, we identified genes (GZMB, LTB in CD4 T-cells and NLRP3, TRADD, IL6, CXCR1, FOXO3, FOXP3 in CD8 T-cells) and pathways involved in various aspects of inflammation and inflammatory response. More specifically, the inflammatory profile was identified in the "naive" subset of CD4 and CD8 T-cell. Conclusion We identified NT1-specific differentially expressed genes, providing a cell-type and subset specific catalog describing their functions in T-cells as well as their potential involvement in NT1. Several genes and pathways identified are involved in the formation of the immune synapse and TCR activation as well as inflammation and the inflammatory response. An inflammatory transcriptomic profile was detected in both "naive" CD4 and CD8 T-cell subsets suggesting their possible involvement in the development or progression of the narcoleptic process.
Collapse
Affiliation(s)
- Leila Khajavi
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, Centre National de la Recherche Scientifique (CNRS), L'Institut National de la Sante et de la Recherche Medicale (INSERM), Universite Paul-Sabatier de Toulouse (UPS), Toulouse, France
- Applied Mathematics and Informatics Unit of Toulouse (MIAT), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Toulouse, France
| | - Xuan-Hung Nguyen
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, Centre National de la Recherche Scientifique (CNRS), L'Institut National de la Sante et de la Recherche Medicale (INSERM), Universite Paul-Sabatier de Toulouse (UPS), Toulouse, France
- Vinmec Institute of Applied Science and Regenerative Medicine, Vinmec Healthcare System and College of Health Sciences, VinUniveristy, Hanoi, Vietnam
| | - Clémence Queriault
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, Centre National de la Recherche Scientifique (CNRS), L'Institut National de la Sante et de la Recherche Medicale (INSERM), Universite Paul-Sabatier de Toulouse (UPS), Toulouse, France
| | - Marianne Chabod
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, Centre National de la Recherche Scientifique (CNRS), L'Institut National de la Sante et de la Recherche Medicale (INSERM), Universite Paul-Sabatier de Toulouse (UPS), Toulouse, France
| | - Lucie Barateau
- National Reference Center for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome, Department of Neurology, Gui-de-Chauliac Hospital, Centre Hospitalier Universitaire (CHU) de Montpellier, Montpellier, France
- Institute for Neurosciences of Montpellier (INM), University Montpellier, Montpellier, France
| | - Yves Dauvilliers
- National Reference Center for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome, Department of Neurology, Gui-de-Chauliac Hospital, Centre Hospitalier Universitaire (CHU) de Montpellier, Montpellier, France
- Institute for Neurosciences of Montpellier (INM), University Montpellier, Montpellier, France
| | - Matthias Zytnicki
- Applied Mathematics and Informatics Unit of Toulouse (MIAT), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Toulouse, France
| | - Roland Liblau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, Centre National de la Recherche Scientifique (CNRS), L'Institut National de la Sante et de la Recherche Medicale (INSERM), Universite Paul-Sabatier de Toulouse (UPS), Toulouse, France
- Department of Immunology, Toulouse University Hospital, Toulouse, France
| |
Collapse
|
10
|
Kotagal S. A small but important advance for sleep health in children. Lancet Neurol 2023; 22:284-285. [PMID: 36931790 DOI: 10.1016/s1474-4422(23)00073-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 03/17/2023]
Affiliation(s)
- Suresh Kotagal
- Emeritus Professor, Department of Neurology, The Center for Sleep Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|