1
|
Luo K, Yuan W, Lu Z, Xiong Z, Huang JH, Wang X, Feng X. Riverine songbirds capture high levels of atmospheric mercury pollution from brown food webs in forests by mercury isotopic evidence. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137347. [PMID: 39869980 DOI: 10.1016/j.jhazmat.2025.137347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 01/29/2025]
Abstract
Elevated methylmercury (MeHg) exposure poses significant risks to bird health, behavior, and reproduction. Still, the risk of MeHg exposure to forest birds, accounting for over 80 % of the world's bird species, is poorly understood. This study combines Hg isotopes and video analysis, aiming to assess MeHg exposure risks to a forest riverine songbird, the spotted forktail (Enicurus maculatus) from a remote subtropical montane forest. Noticeably, 83 % of feather MeHg concentrations of adult forktails exceeded 5000 ng g-1, a threshold level potentially impacting bird reproduction, and 50 % of feather MeHg concentrations in forktail nestlings exceeded the threshold level of 1000 ng g-1, that potentially impacts the nestling growth. Forktail nestlings ingested ∼ 99 % of their MeHg from prey within brown food webs (i.e., from forest floor, aquatic, and emergent aquatic prey). The Hg isotopes reveal that MeHg along the bird food chain is mostly derived from in situ methylation of litterfall deposited atmospheric Hg0, with limited photo-demethylation (i.e., 4-12 %) in shaded forest environments. The risk of MeHg exposure of forest songbirds correlated positively with the proportion of prey consumed from brown food webs. We recommend incorporating resident riverine songbirds in monitoring programs to better evaluate the effectiveness of the Minamata Convention, especially in remote forest ecosystems where in situ MeHg production may be underestimated.
Collapse
Affiliation(s)
- Kang Luo
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Zhiyun Lu
- Ailaoshan Station for Subtropical Forest Ecosystem Studies, Chinese Academy of Sciences, Jingdong, Yunnan 676200, China
| | - Zichun Xiong
- Ailaoshan Station for Subtropical Forest Ecosystem Studies, Chinese Academy of Sciences, Jingdong, Yunnan 676200, China
| | - Jen-How Huang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Zhou C, Liu M, Mason RP, Assavapanuvat P, Zhang NH, Bianchi TS, Zhang Q, Li X, Sun R, Chen J, Wang X, Raymond PA. Warming-induced retreat of West Antarctic glaciers weakened carbon sequestration ability but increased mercury enrichment. Nat Commun 2025; 16:1831. [PMID: 39979346 PMCID: PMC11842605 DOI: 10.1038/s41467-025-57085-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 02/10/2025] [Indexed: 02/22/2025] Open
Abstract
The Southern Ocean, one of Earth's most productive areas, is widely recognized as a major sink for atmospheric carbon and mercury, tightly coupling primary production with the sedimentary sequestration of these elements. The impacts of climate warming on these processes, however, remain unclear. Here, we utilize 20 sediment cores from the Ross Sea, a representative ice-shelf sea in West Antarctica, to examine how Holocene warming and extensive glacial retreat influenced carbon and mercury sequestration. We find that organic carbon (OC) burial has been relatively constant over the past 12,000 years, whereas mercury burial in the Ross Embayment and open ocean exhibited three- and eightfold increases, respectively. Carbon isotopes and accumulation profiles suggest warming boosted glacial- and terrestrial-derived OC inputs to the ocean, while trace elements and biomarkers reveal a declining contribution offshore. Biomarker ratios further indicate greater remineralization of this OC in the open ocean. Consequently, enhanced OC degradation, coupled with rising external mercury inputs, drives mercury enrichment in marine sediments before reaching the seafloor. These findings imply that ongoing warming could trigger a positive feedback loop, accelerating OC degradation into CO2 and amplifying the impacts of anthropogenic mercury on Southern Ocean ecosystems.
Collapse
Affiliation(s)
- Chengzhen Zhou
- MOE Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Maodian Liu
- MOE Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China.
- School of the Environment, Yale University, New Haven, CT, USA.
- Institute of Carbon Neutrality, Peking University, Beijing, China.
| | - Robert P Mason
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA
| | | | - Nikki H Zhang
- School of the Environment, Yale University, New Haven, CT, USA
| | - Thomas S Bianchi
- Department of Geological Sciences, University of Florida, Gainesville, FL, USA
| | - Qianru Zhang
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Xiaolong Li
- MOE Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Ruoyu Sun
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| | - Jiubin Chen
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| | - Xuejun Wang
- MOE Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China.
- Institute of Carbon Neutrality, Peking University, Beijing, China.
| | - Peter A Raymond
- School of the Environment, Yale University, New Haven, CT, USA
| |
Collapse
|
3
|
Zhang L, Dai Q, Liu H, Li Y, Yin Y, Liu G, Dai P, Cao X, Zhang J, Cai Y. Probing methylmercury photodegradation by different fractions of natural organic matter in water: Degradation kinetics and mercury isotope fractionation characteristics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125563. [PMID: 39709054 DOI: 10.1016/j.envpol.2024.125563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/25/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Recent advancements in mercury (Hg) isotopic fractionation research have evolved from conceptual demonstrations to practical applications. However, few studies have focused on revealing fractionation fingerprinting for aqueous methylmercury (MeHg) photodegradation due to its sensitivity to natural organic matter (NOM). Here, the impact of NOM fractions with varying chemical properties on MeHg photodegradation kinetics and Hg isotope fractionation characteristics was investigated. Findings reveal that reduced NOM, containing alcohol/phenol groups, slows the degradation rate compared to the oxidized. Low-molecular-weight NOM, rich in thiol groups, enhances the degradation rate more effectively than high-molecular-weight counterparts. Hydrophilic/hydrophobic-acidic/basic NOM also significantly influence the rate constant, with the highest for hydrophilic-acidic NOM. Isotopic analysis showed that NOM's redox properties affect the extent and direction of Hg isotope fractionation. NOM with various molecular weights controls mass-dependent and mass-independent fractionation by regulating MeHg-NOM triplet radical pairs reactions, likely due to differences in functional groups. Similar effects were observed for different hydrophilic/hydrophobic-acidic/basic fractions. Further experiments with scavenger addition indicated that direct photodegradation of MeHg-NOM is a possible degradation mechanism, with free radicals/reactive oxygen species playing a minor role. These findings underscore the sensitivity of both the degradation rates and Hg isotope fingerprinting to different NOM fractions.
Collapse
Affiliation(s)
- Lian Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China; Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Qingliang Dai
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Huaqing Liu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Yanbin Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yongguang Yin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Guangliang Liu
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL, 33199, United States
| | - Peng Dai
- Department of Environmental Engineering and Earth Sciences, Clemson University, South Carolina, 29631, United States
| | - Xiaoqiang Cao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Jian Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Yong Cai
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; Department of Chemistry & Biochemistry, Florida International University, Miami, FL, 33199, United States.
| |
Collapse
|
4
|
Qiu X, Liu M, Zhang Y, Zhang Q, Lin H, Cai X, Li J, Dai R, Zheng S, Wang J, Zhu Y, Shen H, Shen G, Wang X, Tao S. Declines in anthropogenic mercury emissions in the Global North and China offset by the Global South. Nat Commun 2025; 16:1179. [PMID: 39885122 PMCID: PMC11782624 DOI: 10.1038/s41467-025-56274-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/13/2025] [Indexed: 02/01/2025] Open
Abstract
Human activities have emitted substantial mercury into the atmosphere, significantly impacting ecosystems and human health worldwide. Currently, consistent methodologies to evaluate long-term mercury emissions across countries and industries are scant, hindering efforts to prioritize emission controls. Here, we develop a high-spatiotemporal-resolution dataset to comprehensively analyze global anthropogenic mercury emission patterns. We show that global emissions increased 330% during 1960-2021, with declines in developed Global North countries since the 1990s and China since the 2010s completely offset by rapid growth in Global South countries (excluding China). Consequently, global emissions have continued to rise slightly since the 2013 Minamata Convention. In 2021, Global South countries produced two-thirds of global emissions, despite comprising only one-fifth of the global economy. We predict that, although large uncertainties exist, continued emission growth in Global South countries under a business-as-usual scenario could increase 10%-50% global mercury emissions by 2030. Our findings demonstrate that global control of anthropogenic mercury emissions has reached a critical juncture, highlighting the urgent need to target reductions in Global South countries to prevent worsening health and environmental impacts.
Collapse
Affiliation(s)
- Xinran Qiu
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Maodian Liu
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China.
- School of the Environment, Yale University, New Haven, CT, USA.
- Institute of Carbon Neutrality, Peking University, Beijing, China.
| | - Yuanzheng Zhang
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Qianru Zhang
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Huiming Lin
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Xingrui Cai
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Jin Li
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Rong Dai
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Shuxiu Zheng
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Jinghang Wang
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yaqi Zhu
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Huizhong Shen
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen, China
| | - Guofeng Shen
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
- Institute of Carbon Neutrality, Peking University, Beijing, China
| | - Xuejun Wang
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China.
- Institute of Carbon Neutrality, Peking University, Beijing, China.
| | - Shu Tao
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
- Institute of Carbon Neutrality, Peking University, Beijing, China
| |
Collapse
|
5
|
Liu Y, Liu H, Guo Y, Lu D, Hou X, Shi J, Yin Y, Cai Y, Jiang G. Atmospheric Hg(0) dry deposition over environmental surfaces: Insights from mercury isotope fractionation. ECO-ENVIRONMENT & HEALTH 2024; 3:543-555. [PMID: 39605969 PMCID: PMC11599991 DOI: 10.1016/j.eehl.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/10/2024] [Accepted: 04/21/2024] [Indexed: 11/29/2024]
Abstract
Atmospheric Hg(0) dry deposition is a vital process that significantly affects the global distribution and cycling of Hg. However, significant knowledge gaps and challenges remain in understanding atmospheric Hg(0) deposition and its subsequent post-deposition processes. Hg isotope fractionation has emerged as the most powerful tool for evaluating the impact of atmospheric Hg(0) deposition and unraveling key processes associated with it. By focusing on Hg isotope fractionation processes, Hg isotopic compositions, and influencing factors, this review presents current knowledge, recent advances, and new insights into atmospheric Hg(0) deposition and post-deposition processes over vegetation, soil, snow, and water surfaces. This review also points out the knowledge gaps pertaining to atmospheric Hg(0) deposition and highlights the need for further investigation into the associated processes, mechanisms, isotope fractionation, and modeling. Further research into Hg isotope fractionation in atmospheric Hg(0) deposition and post-deposition processes will advance source and process tracing, paleoclimate reconstruction, and the modeling of Hg isotope distribution on regional and global scales.
Collapse
Affiliation(s)
- Yanwei Liu
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Hongwei Liu
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Yingying Guo
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Dawei Lu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Xingwang Hou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yongguang Yin
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yong Cai
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| |
Collapse
|
6
|
Cui X, Adams HM, Stukel MR, Song Y, Schartup AT, Lamborg CH. Upwelling Enhances Mercury Particle Scavenging in the California Current System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15598-15606. [PMID: 39173619 PMCID: PMC11375766 DOI: 10.1021/acs.est.4c04308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Coastal upwelling supplies nutrients supporting primary production while also adding the toxic trace metal mercury (Hg) to the mixed layer of the ocean. This could be a concern for human and environmental health if it results in the enhanced bioaccumulation of monomethylmercury (MMHg). Here, we explore how upwelling influences Hg cycling in the California Current System (CCS) biome through particle scavenging and sea-air exchange. We collected suspended and sinking particle samples from a coastal upwelled water parcel and an offshore non-upwelled water parcel and observed higher total particulate Hg and sinking flux in the upwelling region compared to open ocean. To further investigate the full dynamics of Hg cycling, we modeled Hg inventories and fluxes in the upper ocean under upwelling and non-upwelling scenarios. The model simulations confirmed and quantified that upwelling enhances sinking fluxes of Hg by 41% through elevated primary production. Such an enhanced sinking flux of Hg is biogeochemically important to understand in upwelling regions, as it increases the delivery of Hg to the deep ocean where net conversion to MMHg may take place.
Collapse
Affiliation(s)
- Xinyun Cui
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, California 95064, United States
| | - Hannah M Adams
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92037, United States
| | - Michael R Stukel
- Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, Florida 32306, United States
| | - Yiluan Song
- Department of Environmental Studies, University of California Santa Cruz, Santa Cruz, California 95064, United States
- Michigan Institute for Data and AI in Society, University of Michigan, Ann Arbor, Michigan 48109, United States
- Institute for Global Change Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Amina T Schartup
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92037, United States
| | - Carl H Lamborg
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, California 95064, United States
| |
Collapse
|
7
|
Lim SH, Kim Y, Motta LC, Yang EJ, Rhee TS, Hong JK, Han S, Kwon SY. Near surface oxidation of elemental mercury leads to mercury exposure in the Arctic Ocean biota. Nat Commun 2024; 15:7598. [PMID: 39217169 PMCID: PMC11365953 DOI: 10.1038/s41467-024-51852-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Atmospheric mercury (Hg(0), Hg(II)) and riverine exported Hg (Hg(II)) are proposed as important Hg sources to the Arctic Ocean. As plankton cannot passively uptake Hg(0), gaseous Hg(0) has to be oxidized to be bioavailable. Here, we measured Hg isotope ratios in zooplankton, Arctic cod, total gaseous Hg, sediment, seawater, and snowpack from the Bering Strait, the Chukchi Sea, and the Beaufort Sea. The Δ200Hg, used to differentiate between Hg(0) and Hg(II), shows, on average, 70% of Hg(0) in all biota and differs with seawater Δ200Hg (Hg(II)). Since Δ200Hg anomalies occur via tropospheric Hg(0) oxidation, we propose that near-surface Hg(0) oxidation via terrestrial vegetation, coastally evaded halogens, and sea salt aerosols, which preserve Δ200Hg of Hg(0) upon oxidation, supply bioavailable Hg(II) pools in seawater. Our study highlights sources and pathways in which Hg(0) poses potential ecological risks to the Arctic Ocean biota.
Collapse
Affiliation(s)
- Seung Hyeon Lim
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Younggwang Kim
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Laura C Motta
- Marine Chemistry & Geochemistry, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA, 02543, USA
| | - Eun Jin Yang
- Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Tae Siek Rhee
- Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Jong Kuk Hong
- Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Seunghee Han
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Sae Yun Kwon
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea.
| |
Collapse
|
8
|
Yuan W, Wang X, Lin CJ, Zhang G, Wu F, Liu N, Jia L, Zhang H, Lu H, Dong J, Feng X. Fate and Transport of Mercury through Waterflows in a Tropical Rainforest. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4968-4978. [PMID: 38452105 DOI: 10.1021/acs.est.3c09265] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Knowledge gaps of mercury (Hg) biogeochemical processes in the tropical rainforest limit our understanding of the global Hg mass budget. In this study, we applied Hg stable isotope tracing techniques to quantitatively understand the Hg fate and transport during the waterflows in a tropical rainforest including open-field precipitation, throughfall, and runoff. Hg concentrations in throughfall are 1.5-2 times of the levels in open-field rainfall. However, Hg deposition contributed by throughfall and open-field rainfall is comparable due to the water interception by vegetative biomasses. Runoff from the forest shows nearly one order of magnitude lower Hg concentration than those in throughfall. In contrast to the positive Δ199Hg and Δ200Hg signatures in open-field rainfall, throughfall water exhibits nearly zero signals of Δ199Hg and Δ200Hg, while runoff shows negative Δ199Hg and Δ200Hg signals. Using a binary mixing model, Hg in throughfall and runoff is primarily derived from atmospheric Hg0 inputs, with average contributions of 65 ± 18 and 91 ± 6%, respectively. The combination of flux and isotopic modeling suggests that two-thirds of atmospheric Hg2+ input is intercepted by vegetative biomass, with the remaining atmospheric Hg2+ input captured by the forest floor. Overall, these findings shed light on simulation of Hg cycle in tropical forests.
Collapse
Affiliation(s)
- Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Che-Jen Lin
- Center for Advances in Water and Air Quality, Lamar University, Beaumont, Texas 77710, United States
| | - Ge Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Fei Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nantao Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Longyu Jia
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Huazheng Lu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Jinlong Dong
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Abstract
The measurement of naturally occurring stable isotope ratios of the light elements (C, N, H, O, S) in animal tissues and associated organic and inorganic fractions of associated environments holds immense potential as a means of addressing effects of global change on animals. This paper provides a brief review of studies that have used the isotope approach to evaluate changes in diet, isotopic niche, contaminant burden, reproductive and nutritional investment, invasive species and shifts in migration origin or destination with clear links to evaluating effects of global change. This field has now reached a level of maturity that is impressive but generally underappreciated and involves technical as well as statistical advances and access to freely available R-based packages. There is a need for animal ecologists and conservationists to design tissue collection networks that will best answer current and anticipated questions related to the global change and the biodiversity crisis. These developments will move the field of stable isotope ecology toward a more hypothesis driven discipline related to rapidly changing global events.
Collapse
Affiliation(s)
- Keith A Hobson
- Wildlife Research Division, Environment and Climate Change Canada, Saskatoon, SK, S7N 0X4, Canada.
- Department of Biology, Western University, London, ON, N6A 5B7, Canada.
| |
Collapse
|
10
|
Liu M, Mason RP, Vlahos P, Whitney MM, Zhang Q, Warren JK, Wang X, Baumann Z. Riverine Discharge Fuels the Production of Methylmercury in a Large Temperate Estuary. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13056-13066. [PMID: 37603456 DOI: 10.1021/acs.est.3c00473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Estuaries are an important food source for the world's growing population, yet human health is at risk from elevated exposure to methylmercury (MeHg) via the consumption of estuarine fish. Moreover, the sources and cycling of MeHg in temperate estuarine ecosystems are poorly understood. Here, we investigated the seasonal and tidal patterns of mercury (Hg) forms in Long Island Sound (LIS), in a location where North Atlantic Ocean waters mix with the Connecticut River. We found that seasonal variations in Hg and MeHg in LIS followed the extent of riverine Hg delivery, while tides further exacerbated the remobilization of earlier deposited riverine Hg. The net production of MeHg near the river plume was significant compared to that in other locations and enhanced during high tide, possibly resulting from the enhanced microbial activity and organic carbon remineralization in the river plume. Statistical models, driven by our novel data, further support the hypothesis that the river-delivered organic matter and inorganic Hg drive net MeHg production in the estuarine water column. Our study sheds light on the significance of water column biogeochemical processes in temperate tidal estuaries in regulating MeHg levels and inspires new questions in our quest to understand MeHg sources and dynamics in coastal oceans.
Collapse
Affiliation(s)
- Maodian Liu
- Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Science, Peking University, Beijing 100871, China
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut 06340, United States
- School of the Environment, Yale University, New Haven, Connecticut 06511, United States
| | - Robert P Mason
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut 06340, United States
| | - Penny Vlahos
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut 06340, United States
| | - Michael M Whitney
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut 06340, United States
| | - Qianru Zhang
- Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Science, Peking University, Beijing 100871, China
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Joseph K Warren
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut 06340, United States
| | - Xuejun Wang
- Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Science, Peking University, Beijing 100871, China
| | - Zofia Baumann
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut 06340, United States
| |
Collapse
|
11
|
Yang S, Li P, Sun K, Wei N, Liu J, Feng X. Mercury isotope compositions in seawater and marine fish revealed the sources and processes of mercury in the food web within differing marine compartments. WATER RESEARCH 2023; 241:120150. [PMID: 37269625 DOI: 10.1016/j.watres.2023.120150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023]
Abstract
Anthropogenic activities and climate change have significantly increased mercury (Hg) levels in seawater. However, the processes and sources of Hg in differing marine compartments (e.g. estuary, marine continental shelf (MCS) or pelagic area) have not been well studied, which makes it difficult to understand Hg cycling in marine ecosystems. To address this issue, the total Hg (THg) concentration, methylmercury (MeHg) concentration and stable Hg isotopes were determined in seawater and fish samples collected from differing marine compartments of the South China Sea (SCS). The results showed that the estuarine seawater exhibited substantially higher THg and MeHg concentrations than those in the MCS and pelagic seawater. Significantly negative δ202Hg (-1.63‰ ± 0.42‰) in estuarine seawater compared with that in pelagic seawater (-0.58‰ ± 0.08‰) may suggest watershed input and domestic sewage discharge of Hg in the estuarine compartment. The Δ199Hg value in estuarine fish (0.39‰ ± 0.35‰) was obviously lower than that in MCS (1.10‰ ± 0.54‰) and pelagic fish (1.15‰ ± 0.46‰), which showed that relatively little MeHg photodegradation occurred in the estuarine compartment. The Hg isotope binary mixing model based on Δ200Hg revealed that approximately 74% MeHg in pelagic fish is derived from atmospheric Hg(II) deposition, and over 60% MeHg in MCS fish is derived from sediments. MeHg sources for estuarine fish may be highly complex (e.g. sediment or riverine/atmospheric input) and further investigations are warranted to clarify the contribution of each source. Our study showed that Hg stable isotopes in seawater and marine fish can be used to identify the processes and sources of Hg in different marine compartments. This finding is of great relevance to the development of marine Hg food web models and the management of Hg in fish.
Collapse
Affiliation(s)
- Shaochen Yang
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Kaifeng Sun
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510655, China
| | - Nan Wei
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510655, China
| | - Jinling Liu
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|