1
|
Suzuki T, Ogizawa A, Ishiguro K, Nagao A. Biogenesis and roles of tRNA queuosine modification and its glycosylated derivatives in human health and diseases. Cell Chem Biol 2025; 32:227-238. [PMID: 39657672 DOI: 10.1016/j.chembiol.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/12/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024]
Abstract
Various types of post-transcriptional modifications contribute to physiological functions by regulating the abundance and function of RNAs. In particular, tRNAs have the widest variety and largest number of modifications, with crucial roles in protein synthesis. Queuosine (Q) is a characteristic tRNA modification with a 7-deazaguanosine core structure bearing a bulky side chain with a cyclopentene group. Q and its derivatives are found in the anticodon of specific tRNAs in both bacteria and eukaryotes. In metazoan tRNAs, Q is further glycosylated with galactose or mannose. The functions of these glycosylated Qs remained unknown for nearly half a century since their discovery. Recently, our group identified the glycosyltransferases responsible for these tRNA modifications and elucidated their biological roles. We, here, review the biochemical and physiological functions of Q and its glycosylated derivatives as well as their associations with human diseases, including cancer and inflammatory and neurological diseases.
Collapse
Affiliation(s)
- Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Atsuya Ogizawa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kensuke Ishiguro
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Asuteka Nagao
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
2
|
Reuter K, Ficner R. RNA-modification by Base Exchange: Structure, Function and Application of tRNA-guanine Transglycosylases. J Mol Biol 2025:168980. [PMID: 39956694 DOI: 10.1016/j.jmb.2025.168980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/16/2025] [Accepted: 01/29/2025] [Indexed: 02/18/2025]
Abstract
tRNA-guanine transglycosylases (TGT) occur in all domains of life. They are unique among RNA-modifying enzymes as they exchange a guanine base in the primary RNA transcript by various 7-substituted 7-deazaguanines leading to the modified nucleosides queuosine and archaeosine. Archaeosine is found in the D-loop of archaeal tRNAs, queuosine in the anticodon of bacterial and eukaryotic tRNAs specific for Asp, Asn, His and Tyr. Structural and functional studies revealed a common base-exchange mechanism for all TGTs. Nonetheless, there are also significant differences between TGTs, which will be discussed here. It concerns the specificity for different 7-deazaguanine substrates as well as the recognition of substrate tRNAs. For queuosine TGT an anticodon stem-loop containing the UGU recognition motif is a minimal substrate sufficient for binding to the active site, however, full-length tRNA is bound with higher affinity due to multiple interactions with the dimeric enzyme. Archaeal TGT also binds tRNAs as homodimer, even though the interaction pattern is very different and results in a large change of tRNA conformation. Interestingly, a closely related enzyme, DpdA, exchanges guanine by 7-cyano-7-deazguanine (preQ0) in double stranded DNA of several bacteria. Bacterial TGT is a target for structure-based drug design, as the virulence of Shigella depends on TGT activity, and mammalian TGT has been used for the treatment of murine experimental autoimmune encephalomyelitis, a model for chronic multiple sclerosis. Furthermore, TGT has become a valuable tool in nucleic acid chemistry, as it facilitates the incorporation of non-natural bases in tRNA molecules, e.g. for labelling or cross-linking purposes.
Collapse
Affiliation(s)
- Klaus Reuter
- Institut für Pharmazeutische Chemie Philipps-Universität Marburg Marburg Germany.
| | - Ralf Ficner
- Institut für Mikrobiologie und Genetik GZMB Georg-August-Universität Göttingen Göttingen Germany.
| |
Collapse
|
3
|
Capdevila DA, Rondón JJ, Edmonds KA, Rocchio JS, Dujovne MV, Giedroc DP. Bacterial Metallostasis: Metal Sensing, Metalloproteome Remodeling, and Metal Trafficking. Chem Rev 2024; 124:13574-13659. [PMID: 39658019 DOI: 10.1021/acs.chemrev.4c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Transition metals function as structural and catalytic cofactors for a large diversity of proteins and enzymes that collectively comprise the metalloproteome. Metallostasis considers all cellular processes, notably metal sensing, metalloproteome remodeling, and trafficking (or allocation) of metals that collectively ensure the functional integrity and adaptability of the metalloproteome. Bacteria employ both protein and RNA-based mechanisms that sense intracellular transition metal bioavailability and orchestrate systems-level outputs that maintain metallostasis. In this review, we contextualize metallostasis by briefly discussing the metalloproteome and specialized roles that metals play in biology. We then offer a comprehensive perspective on the diversity of metalloregulatory proteins and metal-sensing riboswitches, defining general principles within each sensor superfamily that capture how specificity is encoded in the sequence, and how selectivity can be leveraged in downstream synthetic biology and biotechnology applications. This is followed by a discussion of recent work that highlights selected metalloregulatory outputs, including metalloproteome remodeling and metal allocation by metallochaperones to both client proteins and compartments. We close by briefly discussing places where more work is needed to fill in gaps in our understanding of metallostasis.
Collapse
Affiliation(s)
- Daiana A Capdevila
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Johnma J Rondón
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Katherine A Edmonds
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Joseph S Rocchio
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Matias Villarruel Dujovne
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
4
|
Ten KE, Rahman S, Tan HS. Uncovering the transcriptome-wide RNA modifications in Acinetobacter baumannii. Microb Genom 2024; 10. [PMID: 39565092 DOI: 10.1099/mgen.0.001327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
Despite being a major human pathogen, limited studies have reported RNA modifications in Acinetobacter baumannii. These post-transcriptional modifications play crucial regulatory roles in bacteria and have also been shown to modulate bacterial virulence. Using nanopore sequencing, we characterized RNA modifications in a virulent A. baumannii strain (Ab-C98) under free-living (mid-exponential phase in vitro culture) and during an early stage of infection (3 h post-infection) in Galleria mellonella larvae. Analysis revealed that m5C methylations are essential for ribosome synthesis, while m6A and Ψ are involved in metabolic pathways and translation processes. Iron-chelating genes exbD (m5C and m6A) and feoB (m6A and Ψ) and RNA polymerase subunit rpoC (m6A and Ψ) were selectively modified during infection. This first transcriptome-wide study highlights the potential regulatory roles of m5C, m6A and Ψ modifications in A. baumannii during infection.
Collapse
Affiliation(s)
- Kah Ern Ten
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Sadequr Rahman
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Hock Siew Tan
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
5
|
de Crécy-Lagard V, Hutinet G, Cediel-Becerra JDD, Yuan Y, Zallot R, Chevrette MG, Ratnayake RMMN, Jaroch M, Quaiyum S, Bruner S. Biosynthesis and function of 7-deazaguanine derivatives in bacteria and phages. Microbiol Mol Biol Rev 2024; 88:e0019923. [PMID: 38421302 PMCID: PMC10966956 DOI: 10.1128/mmbr.00199-23] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
SUMMARYDeazaguanine modifications play multifaceted roles in the molecular biology of DNA and tRNA, shaping diverse yet essential biological processes, including the nuanced fine-tuning of translation efficiency and the intricate modulation of codon-anticodon interactions. Beyond their roles in translation, deazaguanine modifications contribute to cellular stress resistance, self-nonself discrimination mechanisms, and host evasion defenses, directly modulating the adaptability of living organisms. Deazaguanine moieties extend beyond nucleic acid modifications, manifesting in the structural diversity of biologically active natural products. Their roles in fundamental cellular processes and their presence in biologically active natural products underscore their versatility and pivotal contributions to the intricate web of molecular interactions within living organisms. Here, we discuss the current understanding of the biosynthesis and multifaceted functions of deazaguanines, shedding light on their diverse and dynamic roles in the molecular landscape of life.
Collapse
Affiliation(s)
- Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
- University of Florida Genetics Institute, Gainesville, Florida, USA
| | - Geoffrey Hutinet
- Department of Biology, Haverford College, Haverford, Pennsylvania, USA
| | | | - Yifeng Yuan
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Rémi Zallot
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Marc G. Chevrette
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | | | - Marshall Jaroch
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Samia Quaiyum
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Steven Bruner
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
6
|
Sun Y, Piechotta M, Naarmann-de Vries I, Dieterich C, Ehrenhofer-Murray A. Detection of queuosine and queuosine precursors in tRNAs by direct RNA sequencing. Nucleic Acids Res 2023; 51:11197-11212. [PMID: 37811872 PMCID: PMC10639084 DOI: 10.1093/nar/gkad826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/15/2023] [Accepted: 09/28/2023] [Indexed: 10/10/2023] Open
Abstract
Queuosine (Q) is a complex tRNA modification found in bacteria and eukaryotes at position 34 of four tRNAs with a GUN anticodon, and it regulates the translational efficiency and fidelity of the respective codons that differ at the Wobble position. In bacteria, the biosynthesis of Q involves two precursors, preQ0 and preQ1, whereas eukaryotes directly obtain Q from bacterial sources. The study of queuosine has been challenging due to the limited availability of high-throughput methods for its detection and analysis. Here, we have employed direct RNA sequencing using nanopore technology to detect the modification of tRNAs with Q and Q precursors. These modifications were detected with high accuracy on synthetic tRNAs as well as on tRNAs extracted from Schizosaccharomyces pombe and Escherichia coli by comparing unmodified to modified tRNAs using the tool JACUSA2. Furthermore, we present an improved protocol for the alignment of raw sequence reads that gives high specificity and recall for tRNAs ex cellulo that, by nature, carry multiple modifications. Altogether, our results show that 7-deazaguanine-derivatives such as queuosine are readily detectable using direct RNA sequencing. This advancement opens up new possibilities for investigating these modifications in native tRNAs, furthering our understanding of their biological function.
Collapse
Affiliation(s)
- Yu Sun
- Institut für Biologie, Lebenswissenschaftliche Fakultät, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Michael Piechotta
- Klaus Tschira Institute for Integrative Computational Cardiology, University Hospital Heidelberg, Heidelberg, Germany; Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), University Hospital, Heidelberg, Germany; German Centre for Cardiovascular Research (DZHK)-Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Isabel Naarmann-de Vries
- Klaus Tschira Institute for Integrative Computational Cardiology, University Hospital Heidelberg, Heidelberg, Germany; Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), University Hospital, Heidelberg, Germany; German Centre for Cardiovascular Research (DZHK)-Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Christoph Dieterich
- Klaus Tschira Institute for Integrative Computational Cardiology, University Hospital Heidelberg, Heidelberg, Germany; Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), University Hospital, Heidelberg, Germany; German Centre for Cardiovascular Research (DZHK)-Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Ann E Ehrenhofer-Murray
- Institut für Biologie, Lebenswissenschaftliche Fakultät, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| |
Collapse
|
7
|
McGuffey JC, Jackson-Litteken CD, Di Venanzio G, Zimmer AA, Lewis JM, Distel JS, Kim KQ, Zaher HS, Alfonzo J, Scott NE, Feldman MF. The tRNA methyltransferase TrmB is critical for Acinetobacter baumannii stress responses and pulmonary infection. mBio 2023; 14:e0141623. [PMID: 37589464 PMCID: PMC10653896 DOI: 10.1128/mbio.01416-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/10/2023] [Indexed: 08/18/2023] Open
Abstract
IMPORTANCE As deficiencies in tRNA modifications have been linked to human diseases such as cancer and diabetes, much research has focused on the modifications' impacts on translational regulation in eukaryotes. However, the significance of tRNA modifications in bacterial physiology remains largely unexplored. In this paper, we demonstrate that the m7G tRNA methyltransferase TrmB is crucial for a top-priority pathogen, Acinetobacter baumannii, to respond to stressors encountered during infection, including oxidative stress, low pH, and iron deprivation. We show that loss of TrmB dramatically attenuates a murine pulmonary infection. Given the current efforts to use another tRNA methyltransferase, TrmD, as an antimicrobial therapeutic target, we propose that TrmB, and other tRNA methyltransferases, may also be viable options for drug development to combat multidrug-resistant A. baumannii.
Collapse
Affiliation(s)
- Jenna C. McGuffey
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Clay D. Jackson-Litteken
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Gisela Di Venanzio
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Aubree A. Zimmer
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Jessica M. Lewis
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Jesus S. Distel
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Kyusik Q. Kim
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Hani S. Zaher
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Juan Alfonzo
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Nichollas E. Scott
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Mario F. Feldman
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|