1
|
Vasuja P, Kunal. Virovory: control of viral pathogenesis by the protists and the way forward. Crit Rev Microbiol 2025:1-9. [PMID: 40255028 DOI: 10.1080/1040841x.2025.2493908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/31/2025] [Accepted: 02/13/2025] [Indexed: 04/22/2025]
Abstract
The interactions between viruses and protists have been crucially impacting the ecosystem. In recent studies, it has been found that the protists are not only able to consume, ingest or inactivate a variety of viruses, resulting in a reduction of the viral load, but instead, they can treat viruses as the exclusive source of nutrients, exhibiting "Virovory" (virus-only diet). These small protists can act as virosomes (organisms harnessing nutrients from the viruses) and utilize the viruses as the only source of nourishment, implying the protist to multiply and grow. The viral reduction was previously thought to be only because of the action of abiotic factors (temperature, ultraviolet light, chemicals, membrane adsorption, etc.). However, virovory suggests that organic material flow in microbial communities, the impact of viruses on the food web and, the role of protists in regulating viral populations are crucial factors in ecosystem dynamics. In this review, ingestion, digestion, and inactivation of a variety of viruses by protists are discussed. Several questions can be answered by further research on understanding the mechanisms behind the inactivation of viruses, the impact of reduced viral load on other microbial populations, and the large-scale employability of these little protists in removing pathogenic viruses from the environment.
Collapse
Affiliation(s)
- Pooja Vasuja
- Department of Life Sciences, Faculty of Allied Health Sciences, Shree Guru Gobind Singh Tricentenary (SGT) University, Gurugram, Haryana, India
| | - Kunal
- Department of Life Sciences, Faculty of Allied Health Sciences, Shree Guru Gobind Singh Tricentenary (SGT) University, Gurugram, Haryana, India
| |
Collapse
|
2
|
Foffi R, Brumley DR, Peaudecerf FJ, Stocker R, Słomka J. Slower swimming promotes chemotactic encounters between bacteria and small phytoplankton. Proc Natl Acad Sci U S A 2025; 122:e2411074122. [PMID: 39792290 PMCID: PMC11745318 DOI: 10.1073/pnas.2411074122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025] Open
Abstract
Chemotaxis enables marine bacteria to increase encounters with phytoplankton cells by reducing their search times, provided that bacteria detect noisy chemical gradients around phytoplankton. Gradient detection depends on bacterial phenotypes and phytoplankton size: large phytoplankton produce spatially extended but shallow gradients, whereas small phytoplankton produce steeper but spatially more confined gradients. To date, it has remained unclear how phytoplankton size and bacterial swimming speed affect bacteria's gradient detection ability and search times for phytoplankton. Here, we compute an upper bound on the increase in bacterial encounter rate with phytoplankton due to chemotaxis over random motility alone. We find that chemotaxis can substantially decrease search times for small phytoplankton, but this advantage is highly sensitive to variations in bacterial phenotypes or phytoplankton leakage rates. By contrast, chemotaxis toward large phytoplankton cells reduces the search time more modestly, but this benefit is more robust to variations in search or environmental parameters. Applying our findings to marine phytoplankton communities, we find that, in productive waters, chemotaxis toward phytoplankton smaller than 2 μm provides little to no benefit, but can decrease average search times for large phytoplankton (∼20 μm) from 2 wk to 2 d, an advantage that is robust to variations and favors bacteria with higher swimming speeds. By contrast, in oligotrophic waters, chemotaxis can reduce search times for picophytoplankton (∼1 μm) up to 10-fold, from a week to half a day, but only for bacteria with low swimming speeds and long sensory timescales. This asymmetry may promote the coexistence of diverse search phenotypes in marine bacterial populations.
Collapse
Affiliation(s)
- Riccardo Foffi
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zürich8093, Switzerland
| | - Douglas R. Brumley
- School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC3010, Australia
| | | | - Roman Stocker
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zürich8093, Switzerland
| | - Jonasz Słomka
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zürich8093, Switzerland
| |
Collapse
|
3
|
Schulz F, Yan Y, Weiner AK, Ahsan R, Katz LA, Woyke T. Protists as mediators of complex microbial and viral associations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.29.630703. [PMID: 39803511 PMCID: PMC11722414 DOI: 10.1101/2024.12.29.630703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Microbial eukaryotes (aka protists) are known for their important roles in nutrient cycling across different ecosystems. However, the composition and function of protist-associated microbiomes remains largely elusive. Here, we employ cultivation-independent single-cell isolation and genome-resolved metagenomics to provide detailed insights into underexplored microbiomes and viromes of over 100 currently uncultivable ciliates and amoebae isolated from diverse environments. Our findings reveal unique microbiome compositions and hint at an intricate network of complex interactions and associations with bacterial symbionts and viruses. We observed stark differences between ciliates and amoebae in terms of microbiome and virome compositions, highlighting the specificity of protist-microbe interactions. Over 115 of the recovered microbial genomes were affiliated with known endosymbionts of eukaryotes, including diverse members of the Holosporales, Rickettsiales, Legionellales, Chlamydiae, Dependentiae , and more than 250 were affiliated with possible host-associated bacteria of the phylum Patescibacteria. We also identified more than 80 giant viruses belonging to diverse viral lineages, of which some were actively expressing genes in single cell transcriptomes, suggesting a possible association with the sampled protists. We also revealed a wide range of other viruses that were predicted to infect eukaryotes or host-associated bacteria. Our results provide further evidence that protists serve as mediators of complex microbial and viral associations, playing a critical role in ecological networks. The frequent co-occurrence of giant viruses and diverse microbial symbionts in our samples suggests multipartite associations, particularly among amoebae. Our study provides a preliminary assessment of the microbial diversity associated with lesser-known protist lineages and paves the way for a deeper understanding of protist ecology and their roles in environmental and human health.
Collapse
Affiliation(s)
| | - Ying Yan
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA
| | - Agnes K.M. Weiner
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA
| | - Ragib Ahsan
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA
- University of Massachusetts Amherst, Program in Organismic and Evolutionary Biology, Amherst, Massachusetts, USA
| | - Laura A. Katz
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA
- University of Massachusetts Amherst, Program in Organismic and Evolutionary Biology, Amherst, Massachusetts, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Berkeley, California, USA
- University of California Merced, Life and Environmental Sciences, Merced, California, USA
| |
Collapse
|
4
|
Carreira C, Lønborg C, Acharya B, Aryal L, Buivydaite Z, Borim Corrêa F, Chen T, Lorenzen Elberg C, Emerson JB, Hillary L, Khadka RB, Langlois V, Mason-Jones K, Netherway T, Sutela S, Trubl G, Wa Kang'eri A, Wang R, White RA, Winding A, Zhao T, Sapkota R. Integrating viruses into soil food web biogeochemistry. Nat Microbiol 2024:10.1038/s41564-024-01767-x. [PMID: 39095499 DOI: 10.1038/s41564-024-01767-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/19/2024] [Indexed: 08/04/2024]
Abstract
The soil microbiome is recognized as an essential component of healthy soils. Viruses are also diverse and abundant in soils, but their roles in soil systems remain unclear. Here we argue for the consideration of viruses in soil microbial food webs and describe the impact of viruses on soil biogeochemistry. The soil food web is an intricate series of trophic levels that span from autotrophic microorganisms to plants and animals. Each soil system encompasses contrasting and dynamic physicochemical conditions, with labyrinthine habitats composed of particles. Conditions are prone to shifts in space and time, and this variability can obstruct or facilitate interactions of microorganisms and viruses. Because viruses can infect all domains of life, they must be considered as key regulators of soil food web dynamics and biogeochemical cycling. We highlight future research avenues that will enable a more robust understanding of the roles of viruses in soil function and health.
Collapse
Affiliation(s)
- Cátia Carreira
- Department of Environmental Science, Aarhus University, Roskilde, Denmark.
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal.
| | | | - Basistha Acharya
- Directorate of Agricultural Research, Nepal Agricultural Research Council, Khajura, Nepal
| | - Laxman Aryal
- Nepal Agricultural Research Council, National Wheat Research Program, Bhairahawa, Nepal
| | - Zivile Buivydaite
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Felipe Borim Corrêa
- Department of Applied Microbial Ecology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Tingting Chen
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- Department of Ecology, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | | | - Joanne B Emerson
- Department of Plant Pathology, University of California, Davis, Davis, CA, USA
| | - Luke Hillary
- Department of Plant Pathology, University of California, Davis, Davis, CA, USA
| | - Ram B Khadka
- National Plant Pathology Research Center, Nepal Agricultural Research Council, Lalitpur, Nepal
| | - Valérie Langlois
- Département de Biochimie, Microbiologie et Bio-informatique, Université Laval, Québec City, Québec, Canada
| | - Kyle Mason-Jones
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
| | - Tarquin Netherway
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Suvi Sutela
- Natural Resources Institute Finland, Helsinki, Finland
| | - Gareth Trubl
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | | | - Ruiqi Wang
- Department of Environmental Biology, Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands
| | - Richard Allen White
- Computational Intelligence to Predict Health and Environmental Risks, Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
- North Carolina Research Campus, Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Anne Winding
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Tianci Zhao
- Microbial Ecology Cluster, Genomics Research in Ecology and Evolution in Nature, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Rumakanta Sapkota
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| |
Collapse
|
5
|
Fromm A, Hevroni G, Vincent F, Schatz D, Martinez-Gutierrez CA, Aylward FO, Vardi A. Single-cell RNA-seq of the rare virosphere reveals the native hosts of giant viruses in the marine environment. Nat Microbiol 2024; 9:1619-1629. [PMID: 38605173 PMCID: PMC11265207 DOI: 10.1038/s41564-024-01669-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 03/07/2024] [Indexed: 04/13/2024]
Abstract
Giant viruses (phylum Nucleocytoviricota) are globally distributed in aquatic ecosystems. They play fundamental roles as evolutionary drivers of eukaryotic plankton and regulators of global biogeochemical cycles. However, we lack knowledge about their native hosts, hindering our understanding of their life cycle and ecological importance. In the present study, we applied a single-cell RNA sequencing (scRNA-seq) approach to samples collected during an induced algal bloom, which enabled pairing active giant viruses with their native protist hosts. We detected hundreds of single cells from multiple host lineages infected by diverse giant viruses. These host cells included members of the algal groups Chrysophycae and Prymnesiophycae, as well as heterotrophic flagellates in the class Katablepharidaceae. Katablepharids were infected with a rare Imitervirales-07 giant virus lineage expressing a large repertoire of cell-fate regulation genes. Analysis of the temporal dynamics of these host-virus interactions revealed an important role for the Imitervirales-07 in controlling the population size of the host Katablepharid population. Our results demonstrate that scRNA-seq can be used to identify previously undescribed host-virus interactions and study their ecological importance and impact.
Collapse
Affiliation(s)
- Amir Fromm
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Gur Hevroni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- Google Geo, Tel Aviv, Israel
| | - Flora Vincent
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- Developmental Biology Unit, European Molecular Biological Laboratory, Heidelberg, Germany
| | - Daniella Schatz
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | - Frank O Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA, USA.
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
6
|
Cao B, Wang X, Yin W, Gao Z, Xia B. The human microbiota is a beneficial reservoir for SARS-CoV-2 mutations. mBio 2024; 15:e0318723. [PMID: 38530031 PMCID: PMC11237538 DOI: 10.1128/mbio.03187-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/14/2024] [Indexed: 03/27/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mutations are rapidly emerging. In particular, beneficial mutations in the spike (S) protein, which can either make a person more infectious or enable immunological escape, are providing a significant obstacle to the prevention and treatment of pandemics. However, how the virus acquires a high number of beneficial mutations in a short time remains a mystery. We demonstrate here that variations of concern may be mutated due in part to the influence of the human microbiome. We searched the National Center for Biotechnology Information database for homologous fragments (HFs) after finding a mutation and the six neighboring amino acids in a viral mutation fragment. Among the approximate 8,000 HFs obtained, 61 mutations in S and other outer membrane proteins were found in bacteria, accounting for 62% of all mutation sources, which is 12-fold higher than the natural variable proportion. A significant proportion of these bacterial species-roughly 70%-come from the human microbiota, are mainly found in the lung or gut, and share a composition pattern with COVID-19 patients. Importantly, SARS-CoV-2 RNA-dependent RNA polymerase replicates corresponding bacterial mRNAs harboring mutations, producing chimeric RNAs. SARS-CoV-2 may collectively pick up mutations from the human microbiota that change the original virus's binding sites or antigenic determinants. Our study clarifies the evolving mutational mechanisms of SARS-CoV-2. IMPORTANCE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mutations are rapidly emerging, in particular advantageous mutations in the spike (S) protein, which either increase transmissibility or lead to immune escape and are posing a major challenge to pandemic prevention and treatment. However, how the virus acquires a high number of advantageous mutations in a short time remains a mystery. Here, we provide evidence that the human microbiota is a reservoir of advantageous mutations and aids mutational evolution and host adaptation of SARS-CoV-2. Our findings demonstrate a conceptual breakthrough on the mutational evolution mechanisms of SARS-CoV-2 for human adaptation. SARS-CoV-2 may grab advantageous mutations from the widely existing microorganisms in the host, which is undoubtedly an "efficient" manner. Our study might open a new perspective to understand the evolution of virus mutation, which has enormous implications for comprehending the trajectory of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Birong Cao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Guangdong Guangya High School, Guangzhou, China
| | - Xiaoxi Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wanchao Yin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Zhaobing Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Bingqing Xia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Tian F, Zhou Y, Ma Z, Tang R, Wang X. Organismal Function Enhancement through Biomaterial Intervention. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:377. [PMID: 38392750 PMCID: PMC10891834 DOI: 10.3390/nano14040377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 02/24/2024]
Abstract
Living organisms in nature, such as magnetotactic bacteria and eggs, generate various organic-inorganic hybrid materials, providing unique functionalities. Inspired by such natural hybrid materials, researchers can reasonably integrate biomaterials with living organisms either internally or externally to enhance their inherent capabilities and generate new functionalities. Currently, the approaches to enhancing organismal function through biomaterial intervention have undergone rapid development, progressing from the cellular level to the subcellular or multicellular level. In this review, we will concentrate on three key strategies related to biomaterial-guided bioenhancement, including biointerface engineering, artificial organelles, and 3D multicellular immune niches. For biointerface engineering, excess of amino acid residues on the surfaces of cells or viruses enables the assembly of materials to form versatile artificial shells, facilitating vaccine engineering and biological camouflage. Artificial organelles refer to artificial subcellular reactors made of biomaterials that persist in the cytoplasm, which imparts cells with on-demand regulatory ability. Moreover, macroscale biomaterials with spatiotemporal regulation characters enable the local recruitment and aggregation of cells, denoting multicellular niche to enhance crosstalk between cells and antigens. Collectively, harnessing the programmable chemical and biological attributes of biomaterials for organismal function enhancement shows significant potential in forthcoming biomedical applications.
Collapse
Affiliation(s)
- Fengchao Tian
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310058, China; (F.T.); (Y.Z.)
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China;
| | - Yuemin Zhou
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310058, China; (F.T.); (Y.Z.)
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China;
| | - Zaiqiang Ma
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China;
| | - Ruikang Tang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310058, China; (F.T.); (Y.Z.)
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China;
| | - Xiaoyu Wang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310058, China; (F.T.); (Y.Z.)
| |
Collapse
|
8
|
Martínez Martínez J, Talmy D, Kimbrel JA, Weber PK, Mayali X. Coastal bacteria and protists assimilate viral carbon and nitrogen. THE ISME JOURNAL 2024; 18:wrae231. [PMID: 39535963 PMCID: PMC11629701 DOI: 10.1093/ismejo/wrae231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/01/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
Free viruses are the most abundant type of biological particles in the biosphere, but the lack of quantitative knowledge about their consumption by heterotrophic protists and bacterial degradation has hindered the inclusion of virovory in biogeochemical models. Using isotope-labeled viruses added to three independent microcosm experiments with natural microbial communities followed by isotope measurements with single-cell resolution and flow cytometry, we quantified the flux of viral C and N into virovorous protists and bacteria and compared the loss of viruses due to abiotic vs biotic factors. We found that some protists can obtain most of their C and N requirements from viral particles and that viral C and N get incorporated into bacterial biomass. We found that bacteria and protists were responsible for increasing the daily removal rate of viruses by 33% to 85%, respectively, compared to abiotic processes alone. Our laboratory incubation experiments showed that abiotic processes removed roughly 50% of the viruses within a week, and adding biotic processes led to a removal of 83% to 91%. Our data provide direct evidence for the transfer of viral C and N back into the microbial loop through protist grazing and bacterial breakdown, representing a globally significant flux that needs to be investigated further to better understand and predictably model the C and N cycles of the hydrosphere.
Collapse
Affiliation(s)
- Joaquín Martínez Martínez
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, East Boothbay, ME, 04544, United States
- University of Maryland Center for Environmental Sciences, Horn Point Laboratory, 2020 Horns Point Rd., Cambridge MD 21613, United States
| | - David Talmy
- Department of Microbiology, College of Arts and Sciences, University of Tennessee, 1311 Cumberland Ave, Knoxville, TN, 37996, United States
| | - Jeffrey A Kimbrel
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550, United States
| | - Peter K Weber
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550, United States
| | - Xavier Mayali
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550, United States
| |
Collapse
|
9
|
Mojica KDA, Brussaard CPD. Viruses of Plankton: On the Edge of the Viral Frontier. Microorganisms 2023; 12:31. [PMID: 38257858 PMCID: PMC10819161 DOI: 10.3390/microorganisms12010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
The field of aquatic viral ecology has continued to evolve rapidly over the last three decades [...].
Collapse
Affiliation(s)
- Kristina D. A. Mojica
- Division of Marine Science, School of Ocean Science and Engineering, The University of Southern Mississippi, Stennis Space Center, Hancock County, MS 39529, USA
| | - Corina P. D. Brussaard
- Department of Marine Microbiology and Biogeochemistry, NIOZ—Royal Netherlands Institute for Sea Research, 1790 AB Den Burg, The Netherlands;
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, 1000 GG Amsterdam, The Netherlands
| |
Collapse
|
10
|
Fleischmann T. Assessing the environmental fate of rAAV in activated sludge and water: Implications for environmental risk assessments and GMO regulatory frameworks. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118754. [PMID: 37659367 DOI: 10.1016/j.jenvman.2023.118754] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/19/2023] [Accepted: 08/09/2023] [Indexed: 09/04/2023]
Abstract
During the past +20 years, recombinant adeno-associated virus (rAAV) vectors have emerged as the primary vehicle of choice for in vivo gene therapy. rAAV vectors are classified as genetically modified organisms (GMOs), therefore specific biosafety laws apply regarding their use. Environmental agencies participating in the review of clinical trial applications involving viral-based gene therapies (eg based on AAV) focus among other phenomena especially on shedding, a mechanism by which rAAV vectors exit a patient's body and enter the natural environment. For example, following patient use, shed viral particles excreted in urine and feces enter the wastewater treatment facility (WWTF) and subsequently may be released into the natural environment through wastewater effluent discharges. Based on basic molecular biology, it is generally assumed by the scientific community that shed rAAV particles will undergo degradation during the wastewater treatment process. However, despite their importance and increase in use during the last few decades, actual data to support our understanding of the environmental fate of shed rAAV vector particles is unavailable. Data to support this assumption would greatly enhance our knowledge and understanding of degradation kinetics associated with rAAV in the environment. Such data would also provide strong scientific support for changes in current legislation regarding the medicinal use of GMOs. Therefore, the goal of this research was to conduct laboratory experiments to assess the actual environmental fate of rAAV virions. In this study the stability of 4 different rAAV vectors (based on wildtype (wt) AAV serotypes 2,3,6,9) was assessed during incubation in activated sludge (containing live microorganisms). This setting corresponds to conditions as encountered in WWTFs, and has been used in order to assess rAAV fate under environmentally relevant conditions, to gain a better understanding of the general environmental risk posed by shed rAAV particles. The amount of detectable virions in the supernatant, as measured by sensitive and specific qPCR, rapidly decreased within hours and continued to decline, reaching the lower limit of quantitation prior to or by study termination on day 7. Furthermore, a half-life of approximately 7 days for rAAV virions was determined under abiotic conditions, during a room temperature incubation experiment of rAAV vectors in water in the absence of any microbiota or sludge. The findings from this study provide the first insight of its kind into the actual environmental fate of shed rAAV particles, and help the community to better understand the potential impact of rAAVs on the environment. It has become evident now that shed particles are not equipped to remain stable and/or soluble once entering a typical WWTF and therefore do not pose a threat to the natural environment. These findings support a data-driven approach towards a simplified, risk-based regulation of medicinal GMOs in the EU and other regions.
Collapse
|
11
|
Ho HVN, Dunigan DD, Salsbery ME, Agarkova IV, Al Ameeli Z, Van Etten JL, DeLong JP. Viral Chemotaxis of Paramecium Bursaria Altered by Algal Endosymbionts. MICROBIAL ECOLOGY 2023; 86:2904-2909. [PMID: 37650927 DOI: 10.1007/s00248-023-02292-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
Chemotaxis is widespread across many taxa and often aids resource acquisition or predator avoidance. Species interactions can modify the degree of movement facilitated by chemotaxis. In this study, we investigated the influence of symbionts on Paramecium bursaria's chemotactic behavior toward chloroviruses. To achieve this, we performed choice experiments using chlorovirus and control candidate attractors (virus stabilization buffer and pond water). We quantified the movement of Paramecia grown with or without algal and viral symbionts toward each attractor. All Paramecia showed some chemotaxis toward viruses, but cells without algae and viruses showed the most movement toward viruses. Thus, the endosymbiotic algae (zoochlorellae) appeared to alter the movement of Paramecia toward chloroviruses, but it was not clear that ectosymbiotic viruses (chlorovirus) also had this effect. The change in behavior was consistent with a change in swimming speed, but a change in attraction remains possible. The potential costs and benefits of chemotactic movement toward chloroviruses for either the Paramecia hosts or its symbionts remain unclear.
Collapse
Affiliation(s)
- Huy V N Ho
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588-2083, USA
| | - David D Dunigan
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, 68583-0722, USA
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, 68583-0900, USA
| | - Miranda E Salsbery
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588-2083, USA
| | - Irina V Agarkova
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, 68583-0722, USA
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, 68583-0900, USA
| | - Zeina Al Ameeli
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, 68583-0722, USA
- Medical Technical Institutes, Middle Technical University, Baghdad, Iraq
| | - James L Van Etten
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, 68583-0722, USA
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, 68583-0900, USA
| | - John P DeLong
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588-2083, USA.
| |
Collapse
|
12
|
Sultana Q, Banerjee S, Agrawal V, Mukherjee D, Sah R, Jaiswal V. Virovore: A Breakthrough in Virology. Microbiol Insights 2023; 16:11786361231190333. [PMID: 37621408 PMCID: PMC10446875 DOI: 10.1177/11786361231190333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 07/10/2023] [Indexed: 08/26/2023] Open
Affiliation(s)
- Qamar Sultana
- Deccan College of Medical Sciences, Hyderabad, Telangana, India
| | | | - Vibhor Agrawal
- King George’s Medical University, Lucknow, Uttar Pradesh, India
| | | | - Ranjit Sah
- Department of Microbiology, Tribhuvan University Teaching Hospital, Institute of Medicine, Kathmandu, Nepal
- Department of Microbiology, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth, Pune, India
- Department of Public Health Dentistry, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune, India
| | - Vikash Jaiswal
- Department of Cardiovascular Research, Larkin Community Hospital, South Miami, FL, USA
| |
Collapse
|
13
|
Li H, Xu Y, Wang Y, Cui Y, Lin J, Zhou Y, Tang S, Zhang Y, Hao H, Nie Z, Wang X, Tang R. Material-engineered bioartificial microorganisms enabling efficient scavenging of waterborne viruses. Nat Commun 2023; 14:4658. [PMID: 37537158 PMCID: PMC10400550 DOI: 10.1038/s41467-023-40397-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 07/26/2023] [Indexed: 08/05/2023] Open
Abstract
Material-based tactics have attracted extensive attention in driving the functional evolution of organisms. In aiming to design steerable bioartificial organisms to scavenge pathogenic waterborne viruses, we engineer Paramecium caudatum (Para), single-celled microorganisms, with a semiartificial and specific virus-scavenging organelle (VSO). Fe3O4 magnetic nanoparticles modified with a virus-capture antibody (MNPs@Ab) are integrated into the vacuoles of Para during feeding to produce VSOs, which persist inside Para without impairing their swimming ability. Compared with natural Para, which has no capture specificity and shows inefficient inactivation, the VSO-engineered Para (E-Para) specifically gathers waterborne viruses and confines them inside the VSOs, where the captured viruses are completely deactivated because the peroxidase-like nano-Fe3O4 produces virus-killing hydroxyl radicals (•OH) within acidic environment of VSO. After treatment, magnetized E-Para is readily recycled and reused, avoiding further contamination. Materials-based artificial organelles convert natural Para into a living virus scavenger, facilitating waterborne virus clearance without extra energy consumption.
Collapse
Affiliation(s)
- Huixin Li
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yanpeng Xu
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, China
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, China
| | - Yihao Cui
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiake Lin
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuemin Zhou
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shuling Tang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Haibin Hao
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zihao Nie
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xiaoyu Wang
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, China.
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China.
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
14
|
Olive M, Daraspe J, Genoud C, Kohn T. Uptake without inactivation of human adenovirus type 2 by Tetrahymena pyriformis ciliates. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023. [PMID: 37376996 DOI: 10.1039/d3em00116d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Human adenoviruses are ubiquitous contaminants of surface water. Indigenous protists may interact with adenoviruses and contribute to their removal from the water column, though the associated kinetics and mechanisms differ between protist species. In this work, we investigated the interaction of human adenovirus type 2 (HAdV2) with the ciliate Tetrahymena pyriformis. In co-incubation experiments in a freshwater matrix, T. pyriformis was found to efficiently remove HAdV2 from the aqueous phase, with ≥4 log10 removal over 72 hours. Neither sorption onto the ciliate nor secreted compounds contributed to the observed loss of infectious HAdV2. Instead, internalization was shown to be the dominant removal mechanism, resulting in the presence of viral particles inside food vacuoles of T. pyriformis, as visualized by transmission electron microscopy. The fate of HAdV2 once ingested was scrutinized and no evidence of virus digestion was found over the course of 48 hours. This work shows that T. pyriformis can exert a dual role in microbial water quality: while they remove infectious adenovirus from the water column, they can also accumulate infectious viruses.
Collapse
Affiliation(s)
- Margot Olive
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Jean Daraspe
- Electron Microscopy Facility, Faculty of Biology and Medicine, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Christel Genoud
- Electron Microscopy Facility, Faculty of Biology and Medicine, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Tamar Kohn
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
15
|
Fromm A, Hevroni G, Vincent F, Schatz D, Martinez-Gutierrez CA, Aylward FO, Vardi A. Homing in on the rare virosphere reveals the native host of giant viruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546645. [PMID: 37425953 PMCID: PMC10327091 DOI: 10.1101/2023.06.27.546645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Giant viruses (phylum Nucleocytoviricota) are globally distributed in aquatic ecosystems1,2. They play major roles as evolutionary drivers of eukaryotic plankton3 and regulators of global biogeochemical cycles4. Recent metagenomic studies have significantly expanded the known diversity of marine giant viruses1,5-7, but we still lack fundamental knowledge about their native hosts, thereby hindering our understanding of their lifecycle and ecological importance. Here, we aim to discover the native hosts of giant viruses using a novel, sensitive single-cell metatranscriptomic approach. By applying this approach to natural plankton communities, we unraveled an active viral infection of several giant viruses, from multiple lineages, and identified their native hosts. We identify a rare lineage of giant virus (Imitervirales-07) infecting a minute population of protists (class Katablepharidaceae) and revealed the prevalence of highly expressed viral-encoded cell-fate regulation genes in infected cells. Further examination of this host-virus dynamics in a temporal resolution suggested this giant virus controls its host population demise. Our results demonstrate how single-cell metatranscriptomics is a sensitive approach for pairing viruses with their authentic hosts and studying their ecological significance in a culture-independent manner in the marine environment.
Collapse
Affiliation(s)
- Amir Fromm
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Gur Hevroni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel
- Current address: Google Geo, Israel
| | - Flora Vincent
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel
- Current address: Developmental Biology Unit, European Molecular Biological Laboratory, 69117, Heidelberg, Germany
| | - Daniella Schatz
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | | | - Frank O. Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, Virginia, USA 24061
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel
| |
Collapse
|
16
|
DeLong JP, Van Etten JL, Dunigan DD. Lessons from Chloroviruses: the Complex and Diverse Roles of Viruses in Food Webs. J Virol 2023; 97:e0027523. [PMID: 37133447 PMCID: PMC10231191 DOI: 10.1128/jvi.00275-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
Viruses can have large effects on the ecological communities in which they occur. Much of this impact comes from the mortality of host cells, which simultaneously alters microbial community composition and causes the release of matter that can be used by other organisms. However, recent studies indicate that viruses may be even more deeply integrated into the functioning of ecological communities than their effect on nutrient cycling suggests. In particular, chloroviruses, which infect chlorella-like green algae that typically occur as endosymbionts, participate in three types of interactions with other species. Chlororviruses (i) can lure ciliates from a distance, using them as a vector; (ii) depend on predators for access to their hosts; and (iii) get consumed as a food source by, at least, a variety of protists. Therefore, chloroviruses both depend on and influence the spatial structures of communities as well as the flows of energy through those communities, driven by predator-prey interactions. The emergence of these interactions are an eco-evolutionary puzzle, given the interdependence of these species and the many costs and benefits that these interactions generate.
Collapse
Affiliation(s)
- John P. DeLong
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - James L. Van Etten
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln Nebraska, USA
| | - David D. Dunigan
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln Nebraska, USA
| |
Collapse
|
17
|
Mayers KMJ, Kuhlisch C, Basso JTR, Saltvedt MR, Buchan A, Sandaa RA. Grazing on Marine Viruses and Its Biogeochemical Implications. mBio 2023; 14:e0192121. [PMID: 36715508 PMCID: PMC9973340 DOI: 10.1128/mbio.01921-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Viruses are the most abundant biological entities in the ocean and show great diversity in terms of size, host specificity, and infection cycle. Lytic viruses induce host cell lysis to release their progeny and thereby redirect nutrients from higher to lower trophic levels. Studies continue to show that marine viruses can be ingested by nonhost organisms. However, not much is known about the role of viral particles as a nutrient source and whether they possess a nutritional value to the grazing organisms. This review seeks to assess the elemental composition and biogeochemical relevance of marine viruses, including roseophages, which are a highly abundant group of bacteriophages in the marine environment. We place a particular emphasis on the phylum Nucleocytoviricota (NCV) (formerly known as nucleocytoplasmic large DNA viruses [NCLDVs]), which comprises some of the largest viral particles in the marine plankton that are well in the size range of prey for marine grazers. Many NCVs contain lipid membranes in their capsid that are rich carbon and energy sources, which further increases their nutritional value. Marine viruses may thus be an important nutritional component of the marine plankton, which can be reintegrated into the classical food web by nonhost organism grazing, a process that we coin the "viral sweep." Possibilities for future research to resolve this process are highlighted and discussed in light of current technological advancements.
Collapse
Affiliation(s)
- Kyle M. J. Mayers
- Environment and Climate Division, NORCE Norwegian Research Centre, Bergen, Norway
| | - Constanze Kuhlisch
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Jonelle T. R. Basso
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, Tennessee, USA
| | | | - Alison Buchan
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, Tennessee, USA
| | - Ruth-Anne Sandaa
- Department of Microbiology, University of Bergen, Bergen, Norway
| |
Collapse
|