1
|
Liu YB, Liu X, Li XF, Qiao L, Wang HL, Dong YF, Zhang F, Liu Y, Liu HY, Ji ML, Li L, Jiang Q, Lu J. Multifunctional piezoelectric hydrogels under ultrasound stimulation boost chondrogenesis by recruiting autologous stem cells and activating the Ca 2+/CaM/CaN signaling pathway. Bioact Mater 2025; 50:344-363. [PMID: 40297641 PMCID: PMC12036080 DOI: 10.1016/j.bioactmat.2025.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/25/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025] Open
Abstract
Articular cartilage, owing to the lack of undifferentiated stem cells after injury, faces significant challenges in reconstruction and repair, making it a major clinical challenge. Therefore, there is an urgent need to design a multifunctional hydrogels capable of recruiting autologous stem cells to achieve in situ cartilage regeneration. Here, our study investigated the potential of a piezoelectric hydrogel (Hyd6) for enhancing cartilage regeneration through ultrasound (US) stimulation. Hyd6 has multiple properties including injectability, self-healing capabilities, and piezoelectric characteristics. These properties synergistically promote stem cell chondrogenesis. The fabrication and characterization of Hyd6 revealed its excellent biocompatibility, biodegradability, and electromechanical conversion capabilities. In vitro and in vivo experiments revealed that Hyd6, when combined with US stimulation, significantly promotes the recruitment of autologous stem cells and enhances chondrogenesis by generating electrical signals that promote the influx of Ca2+, activating downstream CaM/CaN signaling pathways and accelerating cartilage formation. An in vivo study in a rabbit model of chondral defects revealed that Hyd6 combined with US treatment significantly improved cartilage regeneration, as evidenced by better integration of the regenerated tissue with the surrounding cartilage, greater collagen type II expression, and improved mechanical properties. The results highlight the potential of Hyd6 as a novel therapeutic approach for treating cartilage injuries, offering a self-powered, noninvasive, and effective strategy for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Yu-Bao Liu
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xu Liu
- Department of Orthopedics, The Yangzhou Clinical Medical College of Xuzhou Medical University, Yangzhou, 225009, China
- Orthopedics Department, Nanjing Drum Tower Hospital & Group's Suqian Hospital, Affiliated Hospital of Medical School, Nanjing University, Suqian, 223800, China
| | - Xiao-Fei Li
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Liang Qiao
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Hao-Liang Wang
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yue-Fu Dong
- Department of Joint Surgery, The First People's Hospital of Lianyungang City, Lianyungang, 222000, China
| | - Feng Zhang
- Orthopedics Department, Xuyi County People's Hospital, Huai'an, 211700, China
| | - Yang Liu
- Orthopedics Department, Dan Yang Third People's Hospital, Zhenjiang, 212300, China
| | - Hao-Yang Liu
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Ming-Liang Ji
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Lan Li
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Institute of Medical 3D Printing, Nanjing University, Nanjing, 210093, China
| | - Qing Jiang
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Institute of Medical 3D Printing, Nanjing University, Nanjing, 210093, China
| | - Jun Lu
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| |
Collapse
|
2
|
Huo Z, Xie X, Tong R. Machine Learning for Developing Sustainable Polymers. Chemistry 2025:e202500718. [PMID: 40266984 DOI: 10.1002/chem.202500718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/20/2025] [Accepted: 04/22/2025] [Indexed: 04/25/2025]
Abstract
Sustainable polymers from renewable resources have been gaining importance due to their recyclability and reduced environmental impact. However, their development through conventional trial-and-error methods remains inefficient and resource-intensive. Machine learning (ML) has emerged as a powerful tool in polymer science, enabling rapid prediction, and discovery of new chemicals and materials. In this review, we examine emerging trends in ML applications for sustainable polymer development, focusing on catalyst discovery, property optimization, and new polymer design. We analyze unique challenges in applying ML to sustainable polymers and evaluate proposed solutions, providing insights for future development in this rapidly evolving field.
Collapse
Affiliation(s)
- Ziyu Huo
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, Virginia, 24061, USA
| | - Xiaoyu Xie
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, Virginia, 24061, USA
| | - Rong Tong
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, Virginia, 24061, USA
| |
Collapse
|
3
|
Tantawi O, Joo W, Martin EE, Av-Ron SHM, Bannister KR, Prather KLJ, Olsen BD, Plata DL. Designing for degradation: the importance of considering biotic and abiotic polymer degradation. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025. [PMID: 40207386 DOI: 10.1039/d5em00079c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Considering the increasing global plastic demand, there is a critical need to gain insight into environmental processes that govern plastic degradation in order to inform novel design of sustainable polymers. Current biological degradation testing standards focus on formation of CO2 (i.e., mineralization) alone as a diagnostic, ultimately limiting identification of structure-degradation relationships in a timely fashion. This work developed a sequential abiotic (i.e., photodegradation and hydrolysis) and biotic degradation test and applied it to a suite of 18 polymers, including ten lab produced, novel polyhydroxyalkanoate polyesters, and eight commercially available, bio-based (i.e., polylactic acid and poly-3-hydroxybutyrate) and fossil-derived (i.e., polystyrene, polypropylene, low density polyethylene, poly(ethylene terephthalate) and tire rubber) polymers. Biomineralization alone following standard methods (i.e., ASTM 6691-17, ISO 23977-1 2020) underestimated polymer degradation up to two-fold over 28 days. Simulated sunlight enhanced the overall polymer degradation by mobilizing dissolved organic carbon (DOC). After photoirradiation, up to 100% of released dissolved organic carbon was bioavailable for marine microbes over 14 days. Photodegradation and hydrolysis could be explained by structural drivers in the commodity polymers, and the lab-synthesized polymers illustrated a limit to total degradation beyond which no enhancements in degradation were achieved. Taken together, this workflow allows for relatively fast experimental determination of environmentally relevant stimuli to help support eventual elucidation of structure-property relationships for enhanced a priori design of degradable polymers.
Collapse
Affiliation(s)
- Omar Tantawi
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Wontae Joo
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Elijah E Martin
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Sarah H M Av-Ron
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - K'yal R Bannister
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kristala L J Prather
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bradley D Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Desiree L Plata
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
4
|
Demarteau J, Epstein AR, Reed LJ, Ciccia NR, Hartwig JF, Persson KA, Helms BA. Circularity in polydiketoenamine thermoplastics via control over reactive chain conformation. SCIENCE ADVANCES 2025; 11:eads8444. [PMID: 39841825 PMCID: PMC11753380 DOI: 10.1126/sciadv.ads8444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025]
Abstract
Controlling the reactivity of bonds along polymer chains enables both functionalization and deconstruction with relevance to chemical recycling and circularity. Because the substrate is a macromolecule, however, understanding the effects of chain conformation on the reactivity of polymer bonds emerges as important yet underexplored. Here, we show how oxy-functionalization of chemically recyclable condensation polymers affects acidolysis to monomers through control over distortion and interaction energies in the rate-limiting transition states. Oxy-functionalization of polydiketoenamines at specific sites on either the amine or triketone monomer segments increased acidolysis rates by more than three orders of magnitude, opening the door to efficient deconstruction of linear chain architectures. These insights substantially broaden the scope of applications for polydiketoenamines in a circular manufacturing economy, including chemically recyclable adhesives for a diverse range of surfaces.
Collapse
Affiliation(s)
- Jeremy Demarteau
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Alexander R. Epstein
- Department of Materials Sciences and Engineering, University of California, Berkeley, CA 94720, USA
| | - Laura J. Reed
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Nicodemo R. Ciccia
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - John F. Hartwig
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kristin A. Persson
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Materials Sciences and Engineering, University of California, Berkeley, CA 94720, USA
| | - Brett A. Helms
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
| |
Collapse
|
5
|
Lin C, Zhang H. Polymer Biodegradation in Aquatic Environments: A Machine Learning Model Informed by Meta-Analysis of Structure-Biodegradation Relationships. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1253-1263. [PMID: 39772517 PMCID: PMC11755772 DOI: 10.1021/acs.est.4c11282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025]
Abstract
Polymers are widely produced and contribute significantly to environmental pollution due to their low recycling rates and persistence in natural environments. Biodegradable polymers, while promising for reducing environmental impact, account for less than 2% of total polymer production. To expand the availability of biodegradable polymers, research has explored structure-biodegradability relationships, yet most studies focus on specific polymers, necessitating further exploration across diverse polymers. This study addresses this gap by curating an extensive aerobic biodegradation data set of 74 polymers and 1779 data points drawn from both published literature and 28 sets of original experiments. We then conducted a meta-analysis to evaluate the effects of experimental conditions, polymer structure, and the combined impact of polymer structure and properties on biodegradation. Next, we developed a machine learning model to predict polymer biodegradation in aquatic environments. The model achieved an Rtest2 score of 0.66 using Morgan fingerprints, detailed experimental conditions, and thermal decomposition temperature (Td) as the input descriptors. The model's robustness was supported by a feature importance analysis, revealing that substructure R-O-R in polyethers and polysaccharides positively influenced biodegradation, while molecular weight, Td, substructure -OC(═O)- in polyesters and polyalkylene carbonates, side chains, and aromatic rings negatively impacted it. Additionally, validation against the meta-analysis findings confirmed that predictions for unseen test sets aligned with established empirical biodegradation knowledge. This study not only expands our understanding across diverse polymers but also offers a valuable tool for designing environmentally friendly polymers.
Collapse
Affiliation(s)
- Chengrui Lin
- Department of Civil and Environmental
Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Huichun Zhang
- Department of Civil and Environmental
Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
6
|
Petersen SR, Kohan Marzagão D, Gregory GL, Huang Y, Clifton DA, Williams CK, Siviour CR. Property Prediction of Bio-Derived Block Copolymer Thermoplastic Elastomers Using Graph Kernel Methods. Angew Chem Int Ed Engl 2025; 64:e202411097. [PMID: 39612309 DOI: 10.1002/anie.202411097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/25/2024] [Accepted: 11/29/2024] [Indexed: 12/01/2024]
Abstract
Increasing the diversity of bio-based polymers is needed to address the combined problems of plastic pollution and greenhouse gas emissions. The magnitude of the problems necessitates rapid discovery of new materials; however, identification of appropriate chemistries maybe slow using current iterative methods. Machine learning (ML) methods could significantly expedite new material discovery and property identification. Here, PolyAGM, a ML algorithm using graph kernel methods, is introduced and used to predict the properties of block copolymers and identify the responsible structural 'motifs'. It applies a "fingerprinting" method to convert Graph representations of polymers into numerical vectors. The Graphs explicitly encode the entire copolymer of atoms and bonds such that the sequencing of chemical features and polymer chain length are included, alongside relevant stereochemical information. PolyAGM gives predictions for both thermal and mechanical properties that are in good agreement with experimental measurements. This work focuses on predicting the properties of bio-derived ABA-block polymer thermoplastic elastomers, but the general fingerprinting technique of PolyAGM should be relevant to other application fields.
Collapse
Affiliation(s)
- Shannon R Petersen
- Department of Chemistry, University of Oxford, Mansfield Rd, Oxford, OX1 3TA, UK
| | - David Kohan Marzagão
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Georgina L Gregory
- Department of Chemistry, University of Oxford, Mansfield Rd, Oxford, OX1 3TA, UK
| | - Yichen Huang
- Department of Computer Science, University of Oxford, 7 Parks Road, Oxford, OX1 3QG, UK
| | - David A Clifton
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Charlotte K Williams
- Department of Chemistry, University of Oxford, Mansfield Rd, Oxford, OX1 3TA, UK
| | - Clive R Siviour
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| |
Collapse
|
7
|
Zhang L, Xiao R, Jin T, Pan X, Fransen KA, Alsaiari SK, Lau A, He R, Han J, Pedretti BJ, Yeo JY, Yang X, Olsen BD, Alexander-Katz A, Smith ZP, Langer R, Jaklenec A. Degradable poly(β-amino ester) microparticles for cleansing products and food fortification. NATURE CHEMICAL ENGINEERING 2024; 2:77-89. [PMID: 39896838 PMCID: PMC11782087 DOI: 10.1038/s44286-024-00151-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 11/01/2024] [Indexed: 02/04/2025]
Abstract
Microplastic pollution is a pressing global crisis caused by the extensive use of nondegradable microplastic materials in daily activities. One effective approach to mitigate this issue is to replace nondegradable plastics with degradable materials that have properties amendable for targeted applications. Here we present the development of a degradable microparticle (MP) platform based on a poly(β-amino ester) (PAE) that degrades into sugar and amino acid derivatives. This PAE MP platform showed functional replacement of nondegradable microplastics used in cleansing products and food fortification. In cleansing products, PAE MPs effectively enhanced the cleansing efficiency of a representative rinse-off product and showed effective removal of potentially toxic elements, as an alternative of traditional nondegradable microbeads. In food fortification, PAE MPs provided robust protection for multiple essential vitamins and minerals against extensive cooking and storage conditions with rapid nutrient release in a simulated human digestion system. Collectively, these PAE MPs present a potential platform to replace microplastic usage on a global scale in many applications.
Collapse
Affiliation(s)
- Linzixuan Zhang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Ruiqing Xiao
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Tianyi Jin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Xinyan Pan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Katharina A. Fransen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Shahad K. Alsaiari
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Alicia Lau
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Ruizhe He
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Jooli Han
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Benjamin J. Pedretti
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Jing Ying Yeo
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Xin Yang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Bradley D. Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Alfredo Alexander-Katz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Zachary P. Smith
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Ana Jaklenec
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA USA
| |
Collapse
|
8
|
Wang L, Tu Z, Liang J, Wang Y, Wei Z. Development of poly(butylene oxalate-co-furanoate) copolymers with enhanced sustainability and hydrolytic degradability. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135997. [PMID: 39366038 DOI: 10.1016/j.jhazmat.2024.135997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/13/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024]
Abstract
Polyoxalate, a novel intrinsically hydrolysable polyester, garners significant interest for its high cost-effectiveness and versatility. However, concerns persist regarding its durability in practical applications. This study integrates bio-based poly(butylene furanoate) (PBF), which possesses remarkable barrier performance, into the poly(butylene oxalate) (PBOx) framework to synthesize poly(butylene oxalate‑co‑furanoate) (PBOF) with tunable degradation rates. The influence of incorporating BF units on thermal, crystalline, mechanical, and barrier properties was systematically analyzed. Results demonstrated the addition of BF units dramatically improved the balance between degradation and physical properties. Laboratory degradation experiments indicated that PBOF possessed significant degradation effects. Among them, PBOF-41 (with 41 % molar furanoate) decreased in weight by 20 % in freshwater, 70 % in an enzyme solution, and 8 % in artificial seawater within 30 days. After 28 days of degradation in soil, the residual weight was reduced to 80 % of its initial weight. Theoretical calculations and experiments have clarified the enhancement of the Gibbs free energy and energy barrier of the hydrolysis reaction by the BF unit. In summary, PBOF copolyesters have excellent gas barrier performance, adjustable thermal properties, well-balanced mechanical properties, and degradability, making them highly promising for sustainable plastic products.
Collapse
Affiliation(s)
- Lizheng Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhu Tu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; Sinopec Dalian Petrochemical Research Institute Co. Ltd., Dalian 113001, China
| | - Jiaming Liang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yanyu Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhiyong Wei
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
9
|
Mubayi V, Ahern CB, Calusinska M, O’Malley MA. Toward a Circular Bioeconomy: Designing Microbes and Polymers for Biodegradation. ACS Synth Biol 2024; 13:1978-1993. [PMID: 38918080 PMCID: PMC11264326 DOI: 10.1021/acssynbio.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
Polymer production is rapidly increasing, but there are no large-scale technologies available to effectively mitigate the massive accumulation of these recalcitrant materials. One potential solution is the development of a carbon-neutral polymer life cycle, where microorganisms convert plant biomass to chemicals, which are used to synthesize biodegradable materials that ultimately contribute to the growth of new plants. Realizing a circular carbon life cycle requires the integration of knowledge across microbiology, bioengineering, materials science, and organic chemistry, which itself has hindered large-scale industrial advances. This review addresses the biodegradation status of common synthetic polymers, identifying novel microbes and enzymes capable of metabolizing these recalcitrant materials and engineering approaches to enhance their biodegradation pathways. Design considerations for the next generation of biodegradable polymers are also reviewed, and finally, opportunities to apply findings from lignocellulosic biodegradation to the design and biodegradation of similarly recalcitrant synthetic polymers are discussed.
Collapse
Affiliation(s)
- Vikram Mubayi
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Colleen B. Ahern
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Magdalena Calusinska
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Environmental
Research and Innovation Department, Luxembourg
Institute of Science and Technology, L-4422 Belvaux, Luxembourg
| | - Michelle A. O’Malley
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Department
of Bioengineering, University of California, Santa Barbara, California 93106, United States
- Joint
BioEnergy Institute (JBEI), Emeryville, California 94608, United States
| |
Collapse
|
10
|
Mitsumori C, Tsuboi S, Shimamura M, Miura T. Application of MicroResp™ for quick and easy detection of plastic degradation by marine bacterial isolates. MARINE ENVIRONMENTAL RESEARCH 2024; 196:106430. [PMID: 38447329 DOI: 10.1016/j.marenvres.2024.106430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
Microplastic debris in the marine environment is a global problem. Biodegradable polymers are being developed as alternatives to petroleum-based plastics, and quick and easy methods for screening for bacterial strains that can degrade such polymers are needed. As a screening method, the clear zone method has been widely used but has technical difficulties such as plate preparation and interpretation of results. In this study, we adapted the MicroResp™ system to easily detect biodegradation activity of marine bacteria in a 3-day assay. Among the 6 bacterial strains tested, 3, 2 and 1 strain degraded poly (butylene succinate-co-adipate) (PBSA), poly (ε-caprolactone) (PCL) and poly (3-hydroxybutyrate-co-3-hydroxyhexanoate), respectively. Only one strain that showed degradation activity of PBSA and PCL in the MicroResp™ system was also positive in the clear zone assay on the respective emulsion plates. Our results show that the adapted MicroResp™ system can screen for bacterial strains that degrade plastic.
Collapse
Affiliation(s)
- Cristina Mitsumori
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), Kisarazu, 292-0818, Japan
| | - Shun Tsuboi
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), Kisarazu, 292-0818, Japan.
| | - Mamiko Shimamura
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), Kisarazu, 292-0818, Japan
| | - Takamasa Miura
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), Kisarazu, 292-0818, Japan
| |
Collapse
|
11
|
Tu Z, Wang L, Lu Y, Li Y, Sang L, Zhang Y, Wei Z. Rapid marine degradable poly(butylene oxalate) by introducing promotion building blocks. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132791. [PMID: 37866142 DOI: 10.1016/j.jhazmat.2023.132791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/04/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023]
Abstract
The design and development of high-performance marine-degradable plastics have long been considered a superior strategy to address marine plastic pollution. To achieve a balance between rapid marine degradability and high performance of polyester plastics, this work designed two series of poly(butylene oxalate) (PBOx) copolymers with intrinsic hydrolysis ability using poly(ethylene oxalate) (PEOx) and poly(glycolic acid) (PGA) as promotion building blocks. The synthesis process, crystallization properties, barrier performance, and mechanical properties of copolymers were comparatively investigated. Additionally, the marine degradability of copolymers received specific focus. The theoretical calculation demonstrated that the introduction of promotion blocks reduced the hydrolysis energy barrier of the copolymers. In general, the results revealed the advantages of PBEOx copolymer in satisfying practicality and better regulating marine degradability. The high gas barrier performance, suitable thermal properties, tunable mechanical properties, and rapid marine degradability endow the copolymer as a promising candidate toward sustainable and marine-degradable plastics.
Collapse
Affiliation(s)
- Zhu Tu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Lizheng Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Ying Lu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yang Li
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Lin Sang
- School of Automotive Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yu Zhang
- Hangzhou New Base Material Technology Co., Ltd., Hangzhou 310051, China
| | - Zhiyong Wei
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|