1
|
Chaudhari AS, Favier A, Tehrani ZA, Kovaľ T, Andersson I, Schneider B, Dohnálek J, Černý J, Brutscher B, Fuertes G. Light-dependent flavin redox and adduct states control the conformation and DNA-binding activity of the transcription factor EL222. Nucleic Acids Res 2025; 53:gkaf215. [PMID: 40119733 PMCID: PMC11928941 DOI: 10.1093/nar/gkaf215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/25/2025] [Accepted: 03/06/2025] [Indexed: 03/24/2025] Open
Abstract
The activity of the light-oxygen-voltage/helix-turn-helix (LOV-HTH) photoreceptor EL222 is regulated through protein-protein and protein-DNA interactions, both triggered by photo-excitation of its flavin mononucleotide (FMN) cofactor. To gain molecular-level insight into the photocycle of EL222, we applied complementary methods: macromolecular X-ray crystallography (MX), nuclear magnetic resonance (NMR) spectroscopy, optical spectroscopies (infrared and UV-visible), molecular dynamics/metadynamics (MD/metaD) simulations, and protein engineering using noncanonical amino acids. Kinetic experiments provided evidence for two distinct EL222 conformations (lit1 and lit2) that become sequentially populated under illumination. These two lit states were assigned to covalently bound N5 protonated, and noncovalently bound hydroquinone forms of FMN, respectively. Only subtle structural differences were observed between the monomeric forms of all three EL222 species (dark, lit1, and lit2). While the dark state is largely monomeric, both lit states undergo monomer-dimer exchange. Furthermore, molecular modeling revealed differential dynamics and interdomain separation times arising from the three FMN states (oxidized, adduct, and reduced). Unexpectedly, all three EL222 species can associate with DNA, but only upon blue-light irradiation, a high population of stable complexes is obtained. Overall, we propose a model of EL222 activation where photoinduced changes in the FMN moiety shift the population equilibrium toward an open conformation that favors self-association and DNA-binding.
Collapse
Affiliation(s)
- Aditya S Chaudhari
- Laboratory of Biomolecular Recognition, Institute of Biotechnology of the Czech Academy of Sciences, Vestec 25250, Czech Republic
- Faculty of Science, Charles University, Prague 11636, Czech Republic
| | - Adrien Favier
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble Cedex 9, 38044, France
| | - Zahra Aliakbar Tehrani
- Laboratory of Structural Bioinformatics of Proteins, Institute of Biotechnology of the Czech Academy of Sciences, Vestec 25250, Czech Republic
| | - Tomáš Kovaľ
- Laboratory of Structure and Function of Biomolecules, Institute of Biotechnology of the Czech Academy of Sciences, Vestec 25250, Czech Republic
| | - Inger Andersson
- Laboratory of Biomolecular Recognition, Institute of Biotechnology of the Czech Academy of Sciences, Vestec 25250, Czech Republic
- Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
| | - Bohdan Schneider
- Laboratory of Biomolecular Recognition, Institute of Biotechnology of the Czech Academy of Sciences, Vestec 25250, Czech Republic
| | - Jan Dohnálek
- Laboratory of Structure and Function of Biomolecules, Institute of Biotechnology of the Czech Academy of Sciences, Vestec 25250, Czech Republic
| | - Jiří Černý
- Laboratory of Structural Bioinformatics of Proteins, Institute of Biotechnology of the Czech Academy of Sciences, Vestec 25250, Czech Republic
| | - Bernhard Brutscher
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble Cedex 9, 38044, France
| | - Gustavo Fuertes
- Laboratory of Biomolecular Recognition, Institute of Biotechnology of the Czech Academy of Sciences, Vestec 25250, Czech Republic
| |
Collapse
|
2
|
Benman W, Huang Z, Iyengar P, Wilde D, Mumford TR, Bugaj LJ. A temperature-inducible protein module for control of mammalian cell fate. Nat Methods 2025; 22:539-549. [PMID: 39849131 DOI: 10.1038/s41592-024-02572-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/19/2024] [Indexed: 01/25/2025]
Abstract
Inducible protein switches are currently limited for use in tissues and organisms because common inducers cannot be controlled with precision in space and time in optically dense settings. Here, we introduce a protein that can be reversibly toggled with a small change in temperature, a stimulus that is both penetrant and dynamic. This protein, called Melt (Membrane localization using temperature) oligomerizes and translocates to the plasma membrane when temperature is lowered. We generated a library of Melt variants with switching temperatures ranging from 30 °C to 40 °C, including two that operate at and above 37 °C. Melt was a highly modular actuator of cell function, permitting thermal control over diverse processes including signaling, proteolysis, nuclear shuttling, cytoskeletal rearrangements and cell death. Finally, Melt permitted thermal control of cell death in a mouse model of human cancer. Melt represents a versatile thermogenetic module for straightforward, non-invasive and spatiotemporally defined control of mammalian cells with broad potential for biotechnology and biomedicine.
Collapse
Affiliation(s)
- William Benman
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Zikang Huang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Pavan Iyengar
- Department of Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Delaney Wilde
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas R Mumford
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Lukasz J Bugaj
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Precision control of cellular functions with a temperature-sensitive protein. Nat Methods 2025; 22:465-466. [PMID: 39849130 DOI: 10.1038/s41592-024-02573-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
|
4
|
Huang ZD, Bugaj LJ. Optogenetic Control of Condensates: Principles and Applications. J Mol Biol 2024; 436:168835. [PMID: 39454749 DOI: 10.1016/j.jmb.2024.168835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Biomolecular condensates appear throughout cell physiology and pathology, but the specific role of condensation or its dynamics is often difficult to determine. Optogenetics offers an expanding toolset to address these challenges, providing tools to directly control condensation of arbitrary proteins with precision over their formation, dissolution, and patterning in space and time. In this review, we describe the current state of the field for optogenetic control of condensation. We survey the proteins and their derivatives that form the foundation of this toolset, and we discuss the factors that distinguish them to enable appropriate selection for a given application. We also describe recent examples of the ways in which optogenetic condensation has been used in both basic and applied studies. Finally, we discuss important design considerations when engineering new proteins for optogenetic condensation, and we preview future innovations that will further empower this toolset in the coming years.
Collapse
Affiliation(s)
- Zikang Dennis Huang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lukasz J Bugaj
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
5
|
Benman W, Huang Z, Iyengar P, Wilde D, Mumford TR, Bugaj LJ. A temperature-inducible protein module for control of mammalian cell fate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.19.581019. [PMID: 38464222 PMCID: PMC10925237 DOI: 10.1101/2024.02.19.581019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Inducible protein switches allow on-demand control of proteins in response to inputs including chemicals or light. However, these inputs either cannot be controlled with precision in space and time or cannot be applied in optically dense settings, limiting their application in tissues and organisms. Here we introduce a protein module whose active state can be reversibly toggled with a small change in temperature, a stimulus that is both penetrant and dynamic. This protein, called Melt (Membrane localization through temperature), exists as a monomer in the cytoplasm at elevated temperatures but both oligomerizes and translocates to the plasma membrane when temperature is lowered. The original Melt variant switched states between 28-32°C, and state changes could be observed within minutes of temperature change. Melt was highly modular, permitting thermal control over diverse processes including signaling, proteolysis, nuclear shuttling, cytoskeletal rearrangements, and cell death, all through straightforward end-to-end fusions. Melt was also highly tunable, giving rise to a library of variants with switch point temperatures ranging from 30-40°C. The variants with higher switch points allowed control of molecular circuits between 37°C-41°C, a well-tolerated range for mammalian cells. Finally, Melt permitted thermal control of cell death in a mouse model of human cancer, demonstrating its potential for use in animals. Thus Melt represents a versatile thermogenetic module for straightforward, non-invasive, spatiotemporally-defined control of mammalian cells with broad potential for biotechnology and biomedicine.
Collapse
Affiliation(s)
- William Benman
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zikang Huang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Pavan Iyengar
- Department of Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Delaney Wilde
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Thomas R. Mumford
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lukasz J. Bugaj
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
6
|
Mumford TR, Rae D, Brackhahn E, Idris A, Gonzalez-Martinez D, Pal AA, Chung MC, Guan J, Rhoades E, Bugaj LJ. Simple visualization of submicroscopic protein clusters with a phase-separation-based fluorescent reporter. Cell Syst 2024; 15:166-179.e7. [PMID: 38335954 PMCID: PMC10947474 DOI: 10.1016/j.cels.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/06/2023] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
Protein clustering plays numerous roles in cell physiology and disease. However, protein oligomers can be difficult to detect because they are often too small to appear as puncta in conventional fluorescence microscopy. Here, we describe a fluorescent reporter strategy that detects protein clusters with high sensitivity called CluMPS (clusters magnified by phase separation). A CluMPS reporter detects and visually amplifies even small clusters of a binding partner, generating large, quantifiable fluorescence condensates. We use computational modeling and optogenetic clustering to demonstrate that CluMPS can detect small oligomers and behaves rationally according to key system parameters. CluMPS detected small aggregates of pathological proteins where the corresponding GFP fusions appeared diffuse. CluMPS also detected and tracked clusters of unmodified and tagged endogenous proteins, and orthogonal CluMPS probes could be multiplexed in cells. CluMPS provides a powerful yet straightforward approach to observe higher-order protein assembly in its native cellular context. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Thomas R Mumford
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Diarmid Rae
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emily Brackhahn
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Abbas Idris
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Ayush Aditya Pal
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael C Chung
- Department of Physics, University of Florida, Gainesville, FL 32611, USA
| | - Juan Guan
- Department of Physics, University of Florida, Gainesville, FL 32611, USA; Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32611, USA
| | - Elizabeth Rhoades
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lukasz J Bugaj
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute of Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
7
|
Huang Dennis Z, Benman W, Dong L, Bugaj LJ. Rapid Optogenetic Clustering in the Cytoplasm with BcLOVclust. J Mol Biol 2024; 436:168452. [PMID: 38246410 PMCID: PMC10932838 DOI: 10.1016/j.jmb.2024.168452] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
Protein clustering is a powerful form of optogenetic control, yet remarkably few proteins are known to oligomerize with light. Recently, the photoreceptor BcLOV4 was found to form protein clusters in mammalian cells in response to blue light, although clustering coincided with its translocation to the plasma membrane, potentially constraining its application as an optogenetic clustering module. Herein we identify key amino acids that couple BcLOV4 clustering to membrane binding, allowing us to engineer a variant that clusters in the cytoplasm and does not associate with the membrane in response to blue light. This variant-called BcLOVclust-clustered over many cycles with substantially faster clustering and de-clustering kinetics compared to the widely used optogenetic clustering protein Cry2. The magnitude of clustering could be strengthened by appending an intrinsically disordered region from the fused in sarcoma (FUS) protein, or by selecting the appropriate fluorescent protein to which it was fused. Like wt BcLOV4, BcLOVclust activity was sensitive to temperature: light-induced clusters spontaneously dissolved at a rate that increased with temperature despite constant illumination. At low temperatures, BcLOVclust and Cry2 could be multiplexed in the same cells, allowing light control of independent protein condensates. BcLOVclust could also be applied to control signaling proteins and stress granules in mammalian cells. While its usage is currently best suited in cells and organisms that can be cultured below ∼30 °C, a deeper understanding of BcLOVclust thermal response will further enable its use at physiological mammalian temperatures.
Collapse
Affiliation(s)
- Zikang Huang Dennis
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William Benman
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Liang Dong
- Department of Biochemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lukasz J Bugaj
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute of Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
8
|
Huang Z, Benman W, Dong L, Bugaj LJ. Rapid optogenetic clustering of a cytoplasmic BcLOV4 variant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.14.557726. [PMID: 37745456 PMCID: PMC10515924 DOI: 10.1101/2023.09.14.557726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Protein clustering is a powerful form of optogenetic control, yet there is currently only one protein -Cry2-whose light-induced clustering has been harnessed for these purposes. Recently, the photoreceptor BcLOV4 was found to form protein clusters in mammalian cells in response to blue light, although clustering coincided with its translocation to the plasma membrane, potentially constraining its application as an optogenetic clustering module. Herein we identify key amino acids that couple clustering to membrane binding, allowing us to engineer a variant of BcLOV4 that clusters in the cytoplasm and does not associate with the membrane in response to blue light. This variant, BcLOVclust, clustered over many cycles with dramatically faster clustering and de-clustering kinetics compared to Cry2. The magnitude of BcLOVclust clustering could be strengthened by appending an intrinsically disordered region from the fused in sarcoma (FUS) protein, or by optimizing the fluorescent protein to which it was fused. BcLOVclust retained the temperature sensitivity of BcLOV4 such that light induced clustering was transient, and the rate of spontaneous declustering increased with temperature. At low temperatures, BcLOVclust and Cry2 could be multiplexed in the same cells, allowing light control of independent protein condensates. BcLOVclust could also be applied to control signaling proteins and stress granules in mammalian cells. Thus BcLOVclust provides an alternative to Cry2 for optogenetic clustering and a method for multiplexed clustering. While its usage is currently suited for organisms that can be cultured below ~30 °C, a deeper understanding of BcLOVclust thermal response will further enable its use at physiological mammalian temperatures.
Collapse
Affiliation(s)
- Zikang Huang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - William Benman
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Liang Dong
- Department of Biochemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lukasz J. Bugaj
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute of Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|