1
|
Cordeiro S, Musinszki M. Thermosensitivity of TREK K2P channels is controlled by a PKA switch and depends on the microtubular network. Pflugers Arch 2025:10.1007/s00424-025-03089-1. [PMID: 40372488 DOI: 10.1007/s00424-025-03089-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/23/2025] [Accepted: 04/28/2025] [Indexed: 05/16/2025]
Abstract
Temperature sensing is an essential component of animal perception and enables individuals to avoid painful or lethal temperatures. Many temperature sensors in central and peripheral neurons are ion channels. Here, we focus on the thermosensitive TREK/TRAAK subfamily of K2P channels-the only known K+ selective thermosensitive channels. The C-terminal domain is essential for the temperature activation of TREK channels, but the mechanism of temperature sensation and the nature of the temperature sensor are unknown. We studied the thermosensitivity of representatives of all K2P channel subfamilies and identified TREK-1 and TREK-2 as the only thermosensitive K2P channels, while TRAAK, the third member of the mechano-gated subfamily, showed no temperature dependence. We transferred the thermosensitivity of TREK-1 to TRAAK channels by exchanging the C-termini, demonstrating that the C-terminal domain is sufficient to confer thermosensitivity. By gradually truncating the C-terminus, we isolated a specific temperature responsive element (TRE) consisting of 18 amino acids that constitutes a unique feature in mammalian thermosensitive channels. Within this TRE lie both the binding domain for microtubule associated protein 2 (MAP2) and the PKA phosphorylation site. Pharmacological disruption of the microtubular network as well as the loss of the MAP2 binding site suppressed the temperature response, and PKA activation completely abolished temperature sensitivity. Thus, the connection to the microtubular network enables the thermosensitivity of TREK channels, which is not intrinsic to the channel itself, while the PKA-mediated phosphorylation status acts as a switch that determines if TREK channels are thermosensitive at all.
Collapse
Affiliation(s)
- Sönke Cordeiro
- Institute of Physiology, Kiel University, Kiel, Germany.
| | | |
Collapse
|
2
|
York JM, Taylor TN, LaPotin S, Lu Y, Mueller U. Hymenopteran-specific TRPA channel from the Texas leaf cutter ant (Atta texana) is heat and cold activated and expression correlates with environmental temperature. INSECT SCIENCE 2025; 32:301-320. [PMID: 38605428 PMCID: PMC11824891 DOI: 10.1111/1744-7917.13364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/13/2024]
Abstract
Leaf cutting ants of the genus Atta cultivate fungal gardens, carefully modifying environmental conditions to maintain optimal temperature for fungal growth. Antennal nerves from Atta are highly temperature sensitive, but the underlying molecular sensor is unknown. Here, we utilize Atta texana (Texas leaf cutter ant) to investigate the molecular basis of ant temperature sensation and how it might have evolved as the range expanded northeast across Texas from ancestral populations in Mexico. We focus on transient receptor potential (TRP) channel genes, the best characterized temperature sensor proteins in animals. Atta texana antennae express 6 of 13 Hymenopteran TRP channel genes and sequences are under a mix of relaxed and intensified selection. In a behavioral assay, we find A. texana workers prefer 24 °C (range 21-26 °C) for fungal growth. There was no evidence of regulatory evolution across a temperature transect in Texas, but instead Hymenoptera-specific TRPA (HsTRPA) expression highly correlated with ambient temperature. When expressed in vitro, HsTRPA from A. texana is temperature activated with Q10 values exceeding 100 on initial exposure to temperatures above 33 °C. Surprisingly, HsTRPA also appears to be activated by cooling, and therefore to our knowledge, the first non-TRPA1 ortholog to be described with dual heat/cold activation and the first in any invertebrate.
Collapse
Affiliation(s)
- Julia M. York
- Department of Evolution, Ecology, and BehaviorUniversity of Illinois Urbana‐ChampaignUrbanaUSA
- Department of Integrative BiologyUniversity of Texas at AustinAustinUSA
- Institute for NeuroscienceUniversity of Texas at AustinAustinUSA
| | - Timothy N. Taylor
- Department of Integrative BiologyUniversity of Texas at AustinAustinUSA
| | - Sarah LaPotin
- Institute for NeuroscienceUniversity of Texas at AustinAustinUSA
- Department of Human GeneticsUniversity of UtahSalt Lake CityUSA
| | - Ying Lu
- Department of Integrative BiologyUniversity of Texas at AustinAustinUSA
- Institute for NeuroscienceUniversity of Texas at AustinAustinUSA
| | - Ulrich Mueller
- Department of Integrative BiologyUniversity of Texas at AustinAustinUSA
| |
Collapse
|
3
|
Kumar S, Jin F, Park SJ, Choi W, Keuning SI, Massimino RP, Vu S, Lü W, Du J. Convergent Agonist and Heat Activation of Nociceptor TRPM3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.23.634542. [PMID: 39896661 PMCID: PMC11785169 DOI: 10.1101/2025.01.23.634542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Detecting noxious heat is vital for survival, triggering pain responses that protect against harm1,2. The TRPM3 channel is a key nociceptor for sensing noxious heat and a promising therapeutic target for pain treatment and neurological disorders such as epilepsy3-11. Here, we functionally and structurally characterized TRPM3 in response to diverse stimuli: the synthetic superagonist CIM0216 Ref12, the anticonvulsant antagonist primidone13,14, and heat1,10,15. Our findings reveal that TRPM3 is intrinsically dynamic, with its intracellular domain (ICD) sampling both resting and activated states, though strongly favoring the resting state without stimulation. CIM0216 binds to the S1-S4 domain, inducing conformational changes in the ICD and shifting the equilibrium toward activation. Remarkably, heat induces similar ICD rearrangements, revealing a converged activation mechanism driven by chemical compounds and temperature. This mechanism is supported by functional data showing that mutations facilitating the ICD movement markedly increase the sensitivity of TRPM3 to both chemical and thermal signals. These findings establish a critical role of the ICD in temperature sensing in TRPM3, a mechanism likely conserved across the TRPM family. Finally, we show that primidone binds to the same site as CIM0216 but acts as an antagonist. This study provides a framework for understanding the thermal sensing mechanisms of temperature-sensitive ion channels and offers a structural foundation for developing TRPM3-target therapeutics for pain and neurological disorders.
Collapse
Affiliation(s)
- Sushant Kumar
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | | | - Sung Jin Park
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | | | - Sarah I. Keuning
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | | | | | - Wei Lü
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Department of Pharmacology, Northwestern University
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Juan Du
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Department of Pharmacology, Northwestern University
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| |
Collapse
|
4
|
Wang G. Ligand-induced cold activation of TRPV3. RESEARCH SQUARE 2025:rs.3.rs-5759985. [PMID: 39975930 PMCID: PMC11838737 DOI: 10.21203/rs.3.rs-5759985/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Both hot and cold sensation of the homotetrameric thermosensitive transient receptor potential vanilloid 1-4 (TRPV1-4) channels have been predicted by a single Gibbs-Helmholtz equation for a change in molar heat capacity. However, cold activation has not been confirmed for those heat-responsive TRPV1-4 channels. Given the cooperative heat unfolding and non-cooperative cold unfolding behaviors in proteins, two different open states at low and high temperatures should be detected in TRPV1-4 channels. To test this hypothesis, the temperature-dependent quaternary and tertiary structures of oxidized TRPV3 in the presence and absence of the natural cannabinoid tetrahydrocannabivarin (THCV) were characterized along a lipid-dependent minimal gating pathway. Further thermoring analyses showed that gating state-dependent thermostability allowed oxidized TRPV3 to be activated and then inactivated only below 30°C. However, no inactivation would be observed above 30°C once the lipid at the active vanilloid site was released by THCV binding. Therefore, such two temperature-dependent gating pathways of oxidized TRPV3 actually resulted from cold and heat activation. (161 words).
Collapse
|
5
|
Mugo AN, Chou R, Qin F. Protein dynamics underlies strong temperature dependence of heat receptors. Proc Natl Acad Sci U S A 2025; 122:e2406318121. [PMID: 39793069 PMCID: PMC11725839 DOI: 10.1073/pnas.2406318121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 11/11/2024] [Indexed: 01/12/2025] Open
Abstract
Ion channels are generally allosteric proteins, involving specialized stimulus sensor domains conformationally linked to the gate to drive channel opening. Temperature receptors are a group of ion channels from the transient receptor potential family. They exhibit an unprecedentedly strong temperature dependence and are responsible for temperature sensing in mammals. Despite intensive studies, however, the nature of the temperature sensor domain in these channels remains elusive. By direct calorimetry of TRPV1 proteins, we have recently provided a proof of principle that temperature sensing by ion channels may diverge from the conventional allosterity theory; rather it is intimately linked to inherent thermal instability of channel proteins. Here, we tackle the generality of the hypothesis and provide key molecular pieces of evidence on the coupling of thermal transitions in the channels. We show that while wild-type channels possess a single concerted thermal transition peak, the chimera, in which strong temperature dependence becomes disrupted, results in multitransition peaks, and the activation enthalpies are accordingly reduced. The data show that the coupling with protein unfolding drives up the energy barrier of activation, leading to a strong temperature dependence of opening. Furthermore, we pinpoint the proximal N-terminus of the channels as a linchpin in coalescing different parts of the channels into concerted activation. Thus, we suggest that coupled interaction networks in proteins underlie the strong temperature dependence of temperature receptors.
Collapse
Affiliation(s)
- Andrew Njagi Mugo
- Department of Physiology and Biophysical Sciences, State University of New York at Buffalo, Buffalo, NY14214
| | - Ryan Chou
- Departments of Biology, Trinity College of Arts and Sciences, Duke University, Durham, NC27708
- Departments of Computer Science, Trinity College of Arts and Sciences, Duke University, Durham, NC27708
| | - Feng Qin
- Department of Physiology and Biophysical Sciences, State University of New York at Buffalo, Buffalo, NY14214
| |
Collapse
|
6
|
Mugo AN, Chou R, Qin F. Protein Dynamics Underlies Strong Temperature Dependence of Heat Receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621882. [PMID: 39574614 PMCID: PMC11580892 DOI: 10.1101/2024.11.04.621882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Ion channels are generally allosteric proteins, involving specialized stimulus sensor domains conformationally linked to the gate to drive channel opening. Temperature receptors are a group of ion channels from the transient receptor potential (TRP) family. They exhibit an unprecedentedly strong temperature dependence and are responsible for temperature sensing in mammals. Despite intensive studies, however, the nature of the temperature sensor domain in these channels remains elusive. By direct calorimetry of TRPV1 proteins, we have recently provided a proof of principle that temperature sensing by ion channels may diverge from the conventional allosterity theory; rather it is intimately linked to inherent thermal instability of channel proteins. Here we tackle the generality of the hypothesis and provide key molecular evidences on the coupling of thermal transitions in the channels. We show that while wild-type channels possess a single concerted thermal transition peak, the chimera, in which strong temperature dependence becomes disrupted, results in multi-transition peaks, and the activation enthalpies are accordingly reduced. The data show that the coupling with protein unfolding drives up the energy barrier of activation, leading to a strong temperature dependence of opening. Furthermore, we pinpoint the proximal N-terminus of the channels as a linchpin in coalescing different parts of the channels into concerted activation. Thus, we suggest that coupled interaction networks in proteins underlie the strong temperature dependence of temperature receptors.
Collapse
Affiliation(s)
- Andrew Njagi Mugo
- Department of Physiology and Biophysical Sciences, State University of New York at Buffalo, Buffalo, NY 14214
| | - Ryan Chou
- Trinity College of Arts and Sciences, Duke University
| | - Feng Qin
- Department of Physiology and Biophysical Sciences, State University of New York at Buffalo, Buffalo, NY 14214
| |
Collapse
|
7
|
Matin MH, Xiao S, Jayant K. Mild focal cooling selectively impacts computations in dendritic trees. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.02.621672. [PMID: 39553978 PMCID: PMC11565978 DOI: 10.1101/2024.11.02.621672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Focal cooling is a powerful technique to temporally scale neural dynamics. However, the underlying cellular mechanisms causing this scaling remain unresolved. Here, using targeted focal cooling (with a spatial resolution of 100 micrometers), dual somato-dendritic patch clamp recordings, two-photon calcium imaging, transmitter uncaging, and modeling we reveal that a 5°C drop can enhance synaptic transmission, plasticity, and input-output transformations in the distal apical tuft, but not in the basal dendrites of intrinsically bursting L5 pyramidal neurons. This enhancement depends on N-methyl-D-aspartate (NMDA) and Kv4.2, suggesting electrical structure modulation. Paradoxically, and despite the increase in tuft excitability, we observe a reduced rate of recovery from inactivation for apical Na+ channels, thereby regulating back-propagating action potential invasion, coincidence detection, and overall burst probability, resulting in an "apparent" slowing of somatic spike output. Our findings reveal a differential temperature sensitivity along the basal-tuft axis of L5 neurons analog modulates cortical output.
Collapse
|
8
|
Huffer K, Denley MCS, Oskoui EV, Swartz KJ. Conservation of the cooling agent binding pocket within the TRPM subfamily. eLife 2024; 13:RP99643. [PMID: 39485376 PMCID: PMC11530238 DOI: 10.7554/elife.99643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024] Open
Abstract
Transient receptor potential (TRP) channels are a large and diverse family of tetrameric cation-selective channels that are activated by many different types of stimuli, including noxious heat or cold, organic ligands such as vanilloids or cooling agents, or intracellular Ca2+. Structures available for all subtypes of TRP channels reveal that the transmembrane domains are closely related despite their unique sensitivity to activating stimuli. Here, we use computational and electrophysiological approaches to explore the conservation of the cooling agent binding pocket identified within the S1-S4 domain of the Melastatin subfamily member TRPM8, the mammalian sensor of noxious cold, with other TRPM channel subtypes. We find that a subset of TRPM channels, including TRPM2, TRPM4, and TRPM5, contain pockets very similar to the cooling agent binding pocket in TRPM8. We then show how the cooling agent icilin modulates activation of mouse TRPM4 to intracellular Ca2+, enhancing the sensitivity of the channel to Ca2+ and diminishing outward-rectification to promote opening at negative voltages. Mutations known to promote or diminish activation of TRPM8 by cooling agents similarly alter activation of TRPM4 by icilin, suggesting that icilin binds to the cooling agent binding pocket to promote opening of the channel. These findings demonstrate that TRPM4 and TRPM8 channels share related ligand binding pockets that are allosterically coupled to opening of the pore.
Collapse
Affiliation(s)
- Kate Huffer
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Matthew CS Denley
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Elisabeth V Oskoui
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Kenton J Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
9
|
Huffer K, Denley MC, Oskoui EV, Swartz KJ. Conservation of the cooling agent binding pocket within the TRPM subfamily. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.595003. [PMID: 38826484 PMCID: PMC11142142 DOI: 10.1101/2024.05.20.595003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Transient Receptor Potential (TRP) channels are a large and diverse family of tetrameric cation selective channels that are activated by many different types of stimuli, including noxious heat or cold, organic ligands such as vanilloids or cooling agents, or intracellular Ca2+. Structures available for all subtypes of TRP channels reveal that the transmembrane domains are closely related despite their unique sensitivity to activating stimuli. Here we use computational and electrophysiological approaches to explore the conservation of the cooling agent binding pocket identified within the S1-S4 domain of the Melastatin subfamily member TRPM8, the mammalian sensor of noxious cold, with other TRPM channel subtypes. We find that a subset of TRPM channels, including TRPM2, TRPM4 and TRPM5, contain pockets very similar to the cooling agent binding pocket in TRPM8. We then show how the cooling agent icilin modulates activation of TRPM4 to intracellular Ca2+, enhancing the sensitivity of the channel to Ca2+ and diminishing outward-rectification to promote opening at negative voltages. Mutations known to promote or diminish activation of TRPM8 by cooling agents similarly alter activation of TRPM4 by icilin, suggesting that icilin binds to the cooling agent binding pocket to promote opening of the channel. These findings demonstrate that TRPM4 and TRPM8 channels share related ligand binding pockets that are allosterically coupled to opening of the pore.
Collapse
Affiliation(s)
- Kate Huffer
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Matthew C.S. Denley
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Elisabeth V. Oskoui
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
- Present Address: Imperial College London, Exhibition Rd, South Kensington, London SW7 2AZ, UK
| | - Kenton J. Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
10
|
Goldschen-Ohm MP, Chanda B. Bioelectricity and molecular signaling. Biophys J 2024; 123:E1-E2. [PMID: 38945122 PMCID: PMC11309963 DOI: 10.1016/j.bpj.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024] Open
Affiliation(s)
| | - Baron Chanda
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri; Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri; Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
11
|
Hu J, Park SJ, Walter T, Orozco IJ, O'Dea G, Ye X, Du J, Lü W. Physiological temperature drives TRPM4 ligand recognition and gating. Nature 2024; 630:509-515. [PMID: 38750366 PMCID: PMC11168932 DOI: 10.1038/s41586-024-07436-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/17/2024] [Indexed: 06/14/2024]
Abstract
Temperature profoundly affects macromolecular function, particularly in proteins with temperature sensitivity1,2. However, its impact is often overlooked in biophysical studies that are typically performed at non-physiological temperatures, potentially leading to inaccurate mechanistic and pharmacological insights. Here we demonstrate temperature-dependent changes in the structure and function of TRPM4, a temperature-sensitive Ca2+-activated ion channel3-7. By studying TRPM4 prepared at physiological temperature using single-particle cryo-electron microscopy, we identified a 'warm' conformation that is distinct from those observed at lower temperatures. This conformation is driven by a temperature-dependent Ca2+-binding site in the intracellular domain, and is essential for TRPM4 function in physiological contexts. We demonstrated that ligands, exemplified by decavanadate (a positive modulator)8 and ATP (an inhibitor)9, bind to different locations of TRPM4 at physiological temperatures than at lower temperatures10,11, and that these sites have bona fide functional relevance. We elucidated the TRPM4 gating mechanism by capturing structural snapshots of its different functional states at physiological temperatures, revealing the channel opening that is not observed at lower temperatures. Our study provides an example of temperature-dependent ligand recognition and modulation of an ion channel, underscoring the importance of studying macromolecules at physiological temperatures. It also provides a potential molecular framework for deciphering how thermosensitive TRPM channels perceive temperature changes.
Collapse
Affiliation(s)
- Jinhong Hu
- Van Andel Institute, Grand Rapids, MI, USA
| | | | - Tyler Walter
- Van Andel Institute, Grand Rapids, MI, USA
- Zoetis, Kalamazoo, MI, USA
| | - Ian J Orozco
- Van Andel Institute, Grand Rapids, MI, USA
- AnaBios, San Diego, CA, USA
| | | | - Xinyu Ye
- Van Andel Institute, Grand Rapids, MI, USA
| | - Juan Du
- Van Andel Institute, Grand Rapids, MI, USA.
| | - Wei Lü
- Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
12
|
Yeh F. Temperature gating in thermoTRPs may depend on temperature-dependent heat capacity differences. Temperature (Austin) 2024; 11:183-186. [PMID: 39193044 PMCID: PMC11346518 DOI: 10.1080/23328940.2024.2321066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
|
13
|
Huang J, Korsunsky A, Yazdani M, Chen J. Targeting TRP channels: recent advances in structure, ligand binding, and molecular mechanisms. Front Mol Neurosci 2024; 16:1334370. [PMID: 38273937 PMCID: PMC10808746 DOI: 10.3389/fnmol.2023.1334370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Transient receptor potential (TRP) channels are a large and diverse family of transmembrane ion channels that are widely expressed, have important physiological roles, and are associated with many human diseases. These proteins are actively pursued as promising drug targets, benefitting greatly from advances in structural and mechanistic studies of TRP channels. At the same time, the complex, polymodal activation and regulation of TRP channels have presented formidable challenges. In this short review, we summarize recent progresses toward understanding the structural basis of TRP channel function, as well as potential ligand binding sites that could be targeted for therapeutics. A particular focus is on the current understanding of the molecular mechanisms of TRP channel activation and regulation, where many fundamental questions remain unanswered. We believe that a deeper understanding of the functional mechanisms of TRP channels will be critical and likely transformative toward developing successful therapeutic strategies targeting these exciting proteins. This endeavor will require concerted efforts from computation, structural biology, medicinal chemistry, electrophysiology, pharmacology, drug safety and clinical studies.
Collapse
Affiliation(s)
- Jian Huang
- Department of Chemistry, University of Massachusetts, Amherst, MA, United States
| | - Aron Korsunsky
- Department of Chemistry, University of Massachusetts, Amherst, MA, United States
| | - Mahdieh Yazdani
- Modeling and Informatics, Merck & Co., Inc., West Point, PA, United States
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
14
|
Bullerjahn JT, Hanson SM. Extracting thermodynamic properties from van 't Hoff plots with emphasis on temperature-sensing ion channels. Temperature (Austin) 2023; 11:60-71. [PMID: 38577298 PMCID: PMC10989706 DOI: 10.1080/23328940.2023.2265962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/28/2023] [Indexed: 04/06/2024] Open
Abstract
Transient receptor potential (TRP) ion channels are among the most well-studied classes of temperature-sensing molecules. Yet, the molecular mechanism and thermodynamic basis for the temperature sensitivity of TRP channels remains to this day poorly understood. One hypothesis is that the temperature-sensing mechanism can simply be described by a difference in heat capacity between the closed and open channel states. While such a two-state model may be simplistic it nonetheless has descriptive value, in the sense that it can be used to compare overall temperature sensitivity between different channels and mutants. Here, we introduce a mathematical framework based on the two-state model to reliably extract temperature-dependent thermodynamic potentials and heat capacities from measurements of equilibrium constants at different temperatures. Our framework is implemented in an open-source data analysis package that provides a straightforward way to fit both linear and nonlinear van 't Hoff plots, thus avoiding some of the previous, potentially erroneous, assumptions when extracting thermodynamic variables from TRP channel electrophysiology data.
Collapse
Affiliation(s)
- Jakob T. Bullerjahn
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Sonya M. Hanson
- Center for Computational Biology & Center for Computational Mathematics, The Flatiron Institute, New York, NY, USA
| |
Collapse
|
15
|
Zhang D, Wang L, Wang W, Liu D. The Role of lncRNAs in Pig Muscle in Response to Cold Exposure. Genes (Basel) 2023; 14:1901. [PMID: 37895249 PMCID: PMC10606478 DOI: 10.3390/genes14101901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Cold exposure is an essential factor affecting breeding efforts in cold regions. Muscle, as an important tissue for homeothermic animals, can produce heat through shivering thermogenesis (ST) and non-shivering thermogenesis (NST) under cold exposure. Long non-coding RNAs (lncRNAs) play important roles in regulating gene expression. However, the regulatory mechanisms of lncRNAs and their role in the thermogenesis of pigs are unclear. We examined lncRNAs in the skeletal muscle of an indigenous pig breed, the Enshi black pig, when the pigs were exposed to acute or chronic cold. Three pigs were maintained inside a pig house (control group), three pigs were maintained outside the pig house for 55 d (chronic cold group), and three pigs were suddenly exposed to the conditions outside the pig house for 3 days (acute cold group). After the experiment, the longissimus dorsi of each pig were collected, and their lncRNA profiles were sequenced and analyzed. Each sample obtained nearly 12.56 Gb of clean data. A total of 11,605 non-coding RNAs were obtained, including 10,802 novel lncRNAs. The number of differentially expressed lncRNAs (DElncRNAs) was identified under acute cold (427) and cold acclimation (376), with 215 and 192 upregulated lncRNAs, respectively. However, only 113 lncRNAs were commonly upregulated by acute cold and cold acclimation. In addition, 65% of the target genes were trans-regulated by DElncRNAs. The target genes were enriched in signal transduction, immune system, cell growth and death pathways, and amino acid and carbohydrate metabolism. Compared to cold acclimation, acute cold stress-induced more DElncRNAs and response pathways. In conclusion, low temperatures altered the expression levels of lncRNAs and their target genes in muscle tissue. Some potential mechanisms were revealed, including ion migration and the metabolism of amino acids and carbohydrates.
Collapse
Affiliation(s)
| | | | | | - Di Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (D.Z.); (L.W.); (W.W.)
| |
Collapse
|