1
|
Tomita T, Matouschek A. Substrate selection by the proteasome through initiation regions. Protein Sci 2019; 28:1222-1232. [PMID: 31074920 DOI: 10.1002/pro.3642] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 01/04/2023]
Abstract
Proteins in the cell have to be eliminated once their function is no longer desired or they become damaged. Most regulated protein degradation is achieved by a large enzymatic complex called the proteasome. Many proteasome substrates are targeted for degradation by the covalent attachment of ubiquitin molecules. Ubiquitinated proteins can be bound by the proteasome, but for proteolysis to occur the proteasome needs to find a disordered tail somewhere in the target at which it initiates degradation. The initiation step contributes to the specificity of proteasomal degradation. Here, we review how the proteasome selects initiation sites within its substrates and discuss how the initiation step affects physiological processes.
Collapse
Affiliation(s)
- Takuya Tomita
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, 78712
| | - Andreas Matouschek
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, 78712
| |
Collapse
|
2
|
Bychkova VE, Basova LV, Balobanov VA. How membrane surface affects protein structure. BIOCHEMISTRY (MOSCOW) 2015; 79:1483-514. [DOI: 10.1134/s0006297914130045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
3
|
Nwamba CO, Ibrahim K. The role of protein conformational switches in pharmacology: its implications in metabolic reprogramming and protein evolution. Cell Biochem Biophys 2014; 68:455-62. [PMID: 24068517 DOI: 10.1007/s12013-013-9748-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Besides pharmacogenomics and drug dynamics, pharmacological properties of a drug could also arise from protein conformational switches. These switches would arise from the following mechanisms: (a) slight shifts away from a protein's native conformation induced by mutation, (b) changes in the protein's environment allowing for structural rearrangements to form hitherto unknown conformations, (c) parsing the protein into foldable polypeptide fragment(s) by either proteolysis of the native structure or (d) perturbation of the native conformation to generate polypeptide fragment(s). These switches are modulated by changes in the protein's matrix properties such as pH, temperature, ligands-their nature, concentration and complexes; micronutrients, oxidant/antioxidant status and metabolic products within the functional environment of the protein. The pharmacological implications of these are discussed in light of polypharmacology arising from protein isomerism, cross-pharmacology, possible decreases in both the expressible and expressed protein population and metabolic reprogramming-and ultimately, how these factors relate to diseases. Further implications include variational drug toxicity and drug response idiosyncrasies. Another important consequence is that the "whole life" history of the individual would play an active role in that individual's response to disease severity and drug response up to that very moment and is prone to variations with changes in pre-disposing factors.
Collapse
|
4
|
Ruprecht M, Bionda T, Sato T, Sommer MS, Endo T, Schleiff E. On the impact of precursor unfolding during protein import into chloroplasts. MOLECULAR PLANT 2010; 3:499-508. [PMID: 20118182 DOI: 10.1093/mp/ssp116] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Protein translocation across membranes is a fundamental cellular process. The majority of the proteins of organelles such as mitochondria and chloroplasts is synthesized in the cytosol and subsequently imported in a post-translational manner. The precursor proteins have to be unfolded at least for translocation, but it has also been assumed that they are unfolded during transport to the organelle in the cytosol. Unfolding is governed by chaperones and the translocon itself. At the same time, chaperones provide the energy for the import process. The energetic properties of the chloroplast translocon were studied by import of the Ig-like module of the muscle protein titin fused to the transit peptide of the chloroplast targeted oxygen evolving complex subunit of 33 kDa (OE33). Our results suggest that p(OE33)titin is folded prior to import and that translocation is initiated by unfolding after having bound to the translocon at the chloroplast surface. Using a set of stabilizing and destabilizing mutants of titin previously analyzed by atomic force microscopy and as passenger for mitochondrial translocation, we studied the unfolding force provided by the chloroplast translocon. Based on these results, a model for translocation is discussed.
Collapse
Affiliation(s)
- Maike Ruprecht
- Goethe University, Cluster of Excellence Macromolecular Complexes, Centre of Membrane Proteomics, Department of Biosciences, Molecular Cell Biology of Plants, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|
5
|
Neumann J, Gottschalk KE. The effect of different force applications on the protein-protein complex Barnase-Barstar. Biophys J 2009; 97:1687-99. [PMID: 19751674 DOI: 10.1016/j.bpj.2009.01.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 01/09/2009] [Accepted: 01/13/2009] [Indexed: 12/16/2022] Open
Abstract
Steered molecular dynamics simulations are a tool to examine the energy landscape of protein-protein complexes by applying external forces. Here, we analyze the influence of the velocity and geometry of the probing forces on a protein complex using this tool. With steered molecular dynamics, we probe the stability of the protein-protein complex Barnase-Barstar. The individual proteins are mechanically labile. The Barnase-Barstar binding site is more stable than the folds of the individual proteins. By using different force protocols, we observe a variety of responses of the system to the applied tension.
Collapse
Affiliation(s)
- Jan Neumann
- Angewandte Physik und Biophysik, Ludwig-Maximilians Universität, Munich, Germany
| | | |
Collapse
|
6
|
Krayl M, Lim JH, Martin F, Guiard B, Voos W. A cooperative action of the ATP-dependent import motor complex and the inner membrane potential drives mitochondrial preprotein import. Mol Cell Biol 2006; 27:411-25. [PMID: 17074805 PMCID: PMC1800818 DOI: 10.1128/mcb.01391-06] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The import of mitochondrial preproteins requires an electric potential across the inner membrane and the hydrolysis of ATP in the matrix. We assessed the contributions of the two energy sources to the translocation driving force responsible for movement of the polypeptide chain through the translocation channel and the unfolding of preprotein domains. The import-driving activity was directly analyzed by the determination of the protease resistances of saturating amounts of membrane-spanning translocation intermediates. The ability to generate a strong translocation-driving force was solely dependent on the activity of the ATP-dependent import motor complex in the matrix. For a sustained import-driving activity on the preprotein in transit, an unstructured N-terminal segment of more than 70 to 80 amino acid residues was required. The electric potential of the inner membrane was required to maintain the import-driving activity at a high level. The electrophoretic force of the potential exhibited only a limited capacity to unfold preprotein domains. We conclude that the membrane potential increases the probability of a dynamic interaction of the preprotein with the import motor. Polypeptide translocation and unfolding are mainly driven by the inward-directed translocation activity based on the functional cooperation of the import motor components.
Collapse
Affiliation(s)
- Martin Krayl
- Institut für Biochemie und Molekularbiologie, Hermann-Herder-Strasse 7, D-79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
7
|
Deocaris CC, Kaul SC, Wadhwa R. On the brotherhood of the mitochondrial chaperones mortalin and heat shock protein 60. Cell Stress Chaperones 2006; 11:116-28. [PMID: 16817317 PMCID: PMC1484513 DOI: 10.1379/csc-144r.1] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The heat shock chaperones mortalin/mitochondrial heat shock protein 70 (mtHsp70) and Hsp60 are found in multiple subcellular sites and function in the folding and intracellular trafficking of many proteins. The chaperoning activity of these 2 proteins involves different structural and functional mechanisms. In spite of providing an excellent model for an evolutionarily conserved molecular "brotherhood", their individual functions, although overlapping, are nonredundant. As they travel to various locations, both chaperones acquire different binding partners and exert a more divergent involvement in tumorigenesis, cellular senescence, and immunology. An understanding of their functional biology may lead to novel designing and development of therapeutic strategies for cancer and aging.
Collapse
Affiliation(s)
- Custer C Deocaris
- National Institute of Advanced Industrial Science and Technology, Central 4, 1-1-1 Higashi, Tsukuba Science City 305-8562, Japan
| | | | | |
Collapse
|
8
|
Gallas MR, Dienhart MK, Stuart RA, Long RM. Characterization of Mmp37p, a Saccharomyces cerevisiae mitochondrial matrix protein with a role in mitochondrial protein import. Mol Biol Cell 2006; 17:4051-62. [PMID: 16790493 PMCID: PMC1556384 DOI: 10.1091/mbc.e06-04-0366] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Many mitochondrial proteins are encoded by nuclear genes and after translation in the cytoplasm are imported via translocases in the outer and inner membranes, the TOM and TIM complexes, respectively. Here, we report the characterization of the mitochondrial protein, Mmp37p (YGR046w) and demonstrate its involvement in the process of protein import into mitochondria. Haploid cells deleted of MMP37 are viable but display a temperature-sensitive growth phenotype and are inviable in the absence of mitochondrial DNA. Mmp37p is located in the mitochondrial matrix where it is peripherally associated with the inner membrane. We show that Mmp37p has a role in the translocation of proteins across the mitochondrial inner membrane via the TIM23-PAM complex and further demonstrate that substrates containing a tightly folded domain in close proximity to their mitochondrial targeting sequences display a particular dependency on Mmp37p for mitochondrial import. Prior unfolding of the preprotein, or extension of the region between the targeting signal and the tightly folded domain, relieves their dependency for Mmp37p. Furthermore, evidence is presented to show that Mmp37 may affect the assembly state of the TIM23 complex. On the basis of these findings, we hypothesize that the presence of Mmp37p enhances the early stages of the TIM23 matrix import pathway to ensure engagement of incoming preproteins with the mtHsp70p/PAM complex, a step that is necessary to drive the unfolding and complete translocation of the preprotein into the matrix.
Collapse
Affiliation(s)
- Michelle R. Gallas
- *Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226; and
| | - Mary K. Dienhart
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201
| | - Rosemary A. Stuart
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201
| | - Roy M. Long
- *Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226; and
| |
Collapse
|
9
|
Mosbahi K, Walker D, James R, Moore GR, Kleanthous C. Global structural rearrangement of the cell penetrating ribonuclease colicin E3 on interaction with phospholipid membranes. Protein Sci 2006; 15:620-7. [PMID: 16452623 PMCID: PMC2249781 DOI: 10.1110/ps.051890306] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Revised: 11/30/2005] [Accepted: 11/30/2005] [Indexed: 10/25/2022]
Abstract
Nuclease type colicins and related bacteriocins possess the unprecedented ability to translocate an enzymatic polypeptide chain across the Gram-negative cell envelope. Here we use the rRNase domain of the cytotoxic ribonuclease colicin E3 to examine the structural changes on its interaction with the membrane. Using phospholipid vesicles as model membranes we show that anionic membranes destabilize the nuclease domain of the rRNase type colicin E3. Intrinsic tryptophan fluorescence and circular dichroism show that vesicles consisting of pure DOPA act as a powerful protein denaturant toward the rRNase domain, although this interaction can be entirely prevented by the addition of salt. Binding of E3 rRNase to DOPA vesicles is an endothermic process (DeltaH=24 kcal mol-1), reflecting unfolding of the protein. Consistent with this, binding of a highly destabilized mutant of the E3 rRNase to DOPA vesicles is exothermic. With mixed vesicles containing anionic and neutral phospholipids at a ratio of 1:3, set to mimic the charge of the Escherichia coli inner membrane, destabilization of E3 rRNase is lessened, although the melting temperature of the protein at pH 7.0 is greatly reduced from 50 degrees C to 30 degrees C. The interaction of E3 rRNase with 1:3 DOPA:DOPC vesicles is also highly dependent on both ionic strength and temperature. We discuss these results in terms of the likely interaction of the E3 rRNase and the related E9 DNase domains with the E. coli inner membrane and their subsequent translocation to the cell cytoplasm.
Collapse
|
10
|
Wilcox AJ, Choy J, Bustamante C, Matouschek A. Effect of protein structure on mitochondrial import. Proc Natl Acad Sci U S A 2005; 102:15435-40. [PMID: 16230614 PMCID: PMC1266127 DOI: 10.1073/pnas.0507324102] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most proteins that are to be imported into the mitochondrial matrix are synthesized as precursors, each composed of an N-terminal targeting sequence followed by a mature domain. Precursors are recognized through their targeting sequences by receptors at the mitochondrial surface and are then threaded through import channels into the matrix. Both the targeting sequence and the mature domain contribute to the efficiency with which proteins are imported into mitochondria. Precursors must be in an unfolded conformation during translocation. Mitochondria can unfold some proteins by changing their unfolding pathways. The effectiveness of this unfolding mechanism depends on the local structure of the mature domain adjacent to the targeting sequence. This local structure determines the extent to which the unfolding pathway can be changed and, therefore, the unfolding rate increased. Atomic force microscopy studies find that the local structures of proteins near their N and C termini also influence their resistance to mechanical unfolding. Thus, protein unfolding during import resembles mechanical unfolding, and the specificity of import is determined by the resistance of the mature domain to unfolding as well as by the properties of the targeting sequence.
Collapse
Affiliation(s)
- Alexander J Wilcox
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, IL 60208, USA
| | | | | | | |
Collapse
|
11
|
Tian P, Andricioaei I. Repetitive pulling catalyzes co-translocational unfolding of barnase during import through a mitochondrial pore. J Mol Biol 2005; 350:1017-34. [PMID: 15979642 DOI: 10.1016/j.jmb.2005.05.035] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 05/16/2005] [Accepted: 05/17/2005] [Indexed: 11/15/2022]
Abstract
We present a computational study of barnase unfolding during import into mitochondria through a model translocon. In contrast to thermal (or chemical) unfolding, the major intermediates of co-translocational unfolding are mainly mediated by non-native interactions accompanying the protein configurations induced by pulling forces. These energy contributions, combined with backbone topological constraints imposed by the model pore, result in milestones along the unfolding pathways which are significantly different not only from those experienced during thermal (or chemical) denaturation, but also from those observed in single-molecule pulling by both ends without pore constraints. Two on-pathway major translocation intermediates trapped in long-lived states by significantly high unfolding barriers are identified. A fraction of these pathways can, however, skip such local kinetic traps and result in extremely fast translocations, leading to a dramatic kinetic partitioning spanning approximately four orders of magnitude. The fraction of fast translocation events is shown to increase upon switching the pull off and on, when compared to pulling at constant force. This suggests a "catalytic" mechanism by which the mitochondrial import machinery regulates this partitioning by repetitively pulling in cycles. A number of mutation sites that alter the kinetic "flow" of the unfolding trajectories are suggested and tested.
Collapse
Affiliation(s)
- Pu Tian
- Department of Chemistry and The Program in Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
12
|
Abstract
Protein unfolding is an important step in several cellular processes, most interestingly protein degradation by ATP-dependent proteases and protein translocation across some membranes. Unfolding can be catalyzed when the unfoldases change the unfolding pathway of substrate proteins by pulling at their polypeptide chains. The resistance of a protein to unraveling during these processes is not determined by the protein's stability against global unfolding, as measured by temperature or solvent denaturation in vitro. Instead, resistance to unfolding is determined by the local structure that the unfoldase encounters first as it follows the substrate's polypeptide chain from the targeting signal. As unfolding is a necessary step in protein degradation and translocation, the susceptibility to unfolding of substrate proteins contributes to the specificity of these important cellular processes.
Collapse
Affiliation(s)
- Andreas Matouschek
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208-3500, USA.
| |
Collapse
|
13
|
Rial DV, Lombardo VA, Ceccarelli EA, Ottado J. The import of ferredoxin-NADP+ reductase precursor into chloroplasts is modulated by the region between the transit peptide and the mature core of the protein. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:5431-9. [PMID: 12423341 DOI: 10.1046/j.1432-1033.2002.03233.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Protein transport across organelles' membranes requires that precursor proteins adopt an unfolded structure in order to be translocated by the import machinery. Ferredoxin-NADP+ reductase precursor, as well as many others, acquires a tightly folded structure that needs to be unfolded before or during its import. Several steps of chloroplast protein import are not fully understood. In particular, the role of different regions of the precursor protein has not been completely elucidated. In this work, we have studied the import into chloroplasts of precursor proteins with inclusions of amino acid spacers between the transit peptide and the mature protein, and with deletions in the N-terminal region of the mature enzyme. We measured the import rate constants for these precursors and the results indicate that the distance between the transit peptide and the core of the mature protein determines the import kinetics. The longer precursors were imported into the organelle faster than the wild type form. Precursors with deletions in the N-terminal region of the mature protein also showed increased import rates compared to the wild type. Homology studies amongst all family members reveal that only chloroplastic proteins possess this region. We suggest that even if the first amino acids of the mature protein do not contribute to its overall structural stability, they condition the kinetic parameters of the import reaction. Besides, the distance between the transit peptide and the mature protein core may be modulating the import rate at which the chloroplast incorporates this protein from the cytosol.
Collapse
Affiliation(s)
- Daniela V Rial
- Molecular Biology Division, IBR (Instituto de Biología Molecular y Celular de, Rosario), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | | | | | | |
Collapse
|
14
|
Voos W, Röttgers K. Molecular chaperones as essential mediators of mitochondrial biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1592:51-62. [PMID: 12191768 DOI: 10.1016/s0167-4889(02)00264-1] [Citation(s) in RCA: 219] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Chaperone proteins have been initially identified by their ability to confer cellular resistance to various stress conditions. However, molecular chaperones participate also in many constitutive cellular processes. Mitochondria contain several members of the major chaperone families that have important functions in maintaining mitochondrial function. The major Hsp70 of the mitochondrial matrix (mtHsp70) is essential for the translocation of cytosolic precursor proteins across the two mitochondrial membranes. MtHsp70 interacts with the preprotein in transit in an ATP-dependent reaction as it emerges from the translocation channel of the inner membrane. Together with two essential partner proteins, Tim44 and Mge1, mtHsp70 forms a membrane-associated import motor complex responsible for vectorial polypeptide movement and unfolding of preprotein domains. Folding of newly imported proteins in the matrix is assisted by the soluble chaperone system formed by mtHsp70 and its partner protein Mdj1. For certain substrate proteins, the protected folding environment that is offered by the large oligomeric Hsp60 complex facilitates further folding reactions. The mitochondrial Hsp70 Ssq1 is involved in the assembly of mitochondrial Fe/S clusters together with another member of the DnaJ family, Jac1. Chaperones of the Clp/Hsp100 family mediate the prevention of aggregation under stress conditions and eventually the degradation of mitochondrial proteins. Together, the chaperones of the mitochondrial matrix form a complex interdependent chaperone network that is essential for most reactions of mitochondrial protein biogenesis.
Collapse
Affiliation(s)
- Wolfgang Voos
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Str. 7, D-79104, Freiburg, Germany.
| | | |
Collapse
|
15
|
Langman CB. The optimal approach to the patient with oxalosis. ADVANCES IN RENAL REPLACEMENT THERAPY 2001; 8:214-22. [PMID: 11533922 DOI: 10.1053/jarr.2001.26354] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
There are many challenges in oxalosis, including prompt, clinical recognition of this inborn error of metabolism, management of its many medical problems, provision of adequate care at end-stage kidney disease, and optimizing both the timing and results of liver and kidney allografts. This review provides a framework for the interested clinician to understand the many problems, and to begin to assimilate knowledge about an increasingly recognized, metabolic disorder. It ends with potential, innovative therapies that are not yet at the patient's bedside.
Collapse
Affiliation(s)
- C B Langman
- Department of Pediatrics, Northwestern University Medical School, Chicago, IL, USA.
| |
Collapse
|
16
|
Lim JH, Martin F, Guiard B, Pfanner N, Voos W. The mitochondrial Hsp70-dependent import system actively unfolds preproteins and shortens the lag phase of translocation. EMBO J 2001; 20:941-50. [PMID: 11230118 PMCID: PMC145481 DOI: 10.1093/emboj/20.5.941] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Unfolding is an essential process during translocation of preproteins into mitochondria; however, controversy exists as to whether mitochondria play an active role in unfolding. We have established an in vitro system with a kinetic saturation of the mitochondrial import machinery, yielding translocation rates comparable to in vivo import rates. Preproteins with short N-terminal segments in front of a folded domain show a characteristic delay of the onset of translocation (lag phase) although the maximal import rate is similar to that of longer preproteins. The lag phase is shortened by extending the N-terminal segment to improve the accessibility to matrix heat shock protein 70 and abolished by unfolding of the preprotein. A mutant mtHsp70 defective in binding to the inner membrane prolongs the lag phase and reduces the translocation activity. A direct comparison of the rate of spontaneous unfolding in solution with that during translocation demonstrates that unfolding by mitochondria is significantly faster, proving an active unfolding process. We conclude that access of mtHsp70 to N-terminal preprotein segments is critical for active unfolding and initiation of translocation.
Collapse
Affiliation(s)
- Joo Hyun Lim
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Strasse 7, D-79104 Freiburg, Fakultät für Biologie, Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany and Centre de Génétique Moléculaire, Laboratoire propre du CNRS associeté à l’Université Pierre et Marie Curie, 91190 Gif-sur-Yvette, France Present address: Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel Corresponding author e-mail:
| | - Falk Martin
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Strasse 7, D-79104 Freiburg, Fakultät für Biologie, Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany and Centre de Génétique Moléculaire, Laboratoire propre du CNRS associeté à l’Université Pierre et Marie Curie, 91190 Gif-sur-Yvette, France Present address: Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel Corresponding author e-mail:
| | - Bernard Guiard
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Strasse 7, D-79104 Freiburg, Fakultät für Biologie, Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany and Centre de Génétique Moléculaire, Laboratoire propre du CNRS associeté à l’Université Pierre et Marie Curie, 91190 Gif-sur-Yvette, France Present address: Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel Corresponding author e-mail:
| | - Nikolaus Pfanner
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Strasse 7, D-79104 Freiburg, Fakultät für Biologie, Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany and Centre de Génétique Moléculaire, Laboratoire propre du CNRS associeté à l’Université Pierre et Marie Curie, 91190 Gif-sur-Yvette, France Present address: Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel Corresponding author e-mail:
| | - Wolfgang Voos
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Strasse 7, D-79104 Freiburg, Fakultät für Biologie, Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany and Centre de Génétique Moléculaire, Laboratoire propre du CNRS associeté à l’Université Pierre et Marie Curie, 91190 Gif-sur-Yvette, France Present address: Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel Corresponding author e-mail:
| |
Collapse
|
17
|
Lee C, Schwartz MP, Prakash S, Iwakura M, Matouschek A. ATP-dependent proteases degrade their substrates by processively unraveling them from the degradation signal. Mol Cell 2001; 7:627-37. [PMID: 11463387 DOI: 10.1016/s1097-2765(01)00209-x] [Citation(s) in RCA: 320] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Protein unfolding is a key step in several cellular processes, including protein translocation across some membranes and protein degradation by ATP-dependent proteases. ClpAP protease and the proteasome can actively unfold proteins in a process that hydrolyzes ATP. Here we show that these proteases seem to catalyze unfolding by processively unraveling their substrates from the attachment point of the degradation signal. As a consequence, the ability of a protein to be degraded depends on its structure as well as its stability. In multidomain proteins, independently stable domains are unfolded sequentially. We show that these results can explain the limited degradation by the proteasome that occurs in the processing of the precursor of the transcription factor NF-kappaB.
Collapse
Affiliation(s)
- C Lee
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | | | |
Collapse
|