1
|
Zhang Q, Chen H, Li Z, Qiao J, Liu P, Zheng C, Deng Z, Li X, Zhang H. Bdyof is a Y-chromosome-specific gene required for male development in Bactrocera dorsalis. PEST MANAGEMENT SCIENCE 2025; 81:1785-1793. [PMID: 39611441 DOI: 10.1002/ps.8577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND In many organisms, the Y chromosome contains important genes associated with sex determination and male reproductive development. However, there have been few studies of Y-chromosome-specific genes in non-model species due to the incomplete information of Y chromosome genome and difficulty in sequencing. Here, we screened 90 candidate Y-specific sequences in a constructed transcriptome assembly library by using the chromosome quotient method, among which 11 were unreported sequences associated with male reproductive development, including Bactrocera dorsalis Y-specific Oligozoospermia factor (Bdyof) with the highest expression in the testis. RESULTS CRISPR/Cas9-mediated knockout of Bdyof resulted in abnormal testis development, significantly reduced sperm count, and obviously lower egg hatching rate in homozygous mutant flies. In addition, Bdyof knockout decreased the expression of dsx-M. CONCLUSION This results provides new insights into the biological processes related to male reproductive development controlled by the Y-chromosome-specific gene Bdyof, thus providing a promising molecular target for the study of agricultural pests. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiuyuan Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hao Chen
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ziniu Li
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiao Qiao
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Peipei Liu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chenjun Zheng
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhurong Deng
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaoxue Li
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongyu Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
2
|
Liu P, Yu S, Zheng W, Zhang Q, Qiao J, Li Z, Deng Z, Zhang H. Identification and functional verification of Y-chromosome-specific gene typo-gyf in Bactrocera dorsalis. INSECT SCIENCE 2024; 31:1270-1284. [PMID: 38189161 DOI: 10.1111/1744-7917.13311] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 01/09/2024]
Abstract
Genes on the Y chromosome play important roles in male sex determination and development. The identification of Y-chromosome-specific genes not only provides a theoretical basis for the study of male reproductive development, but also offers genetic control targets for agricultural pests. However, Y-chromosome genes are rarely characterized due to their high repeatability and high heterochromatinization, especially in the oriental fruit fly. In this study, 1 011 Y-chromosome-specific candidate sequences were screened from 2 to 4 h Bactrocera dorsalis embryo datasets with the chromosome quotient method, 6 of which were identified as Y-chromosome-specific sequences by polymerase chain reaction, including typo-gyf, a 19 126-bp DNA sequence containing a 575-amino acid open reading frame. Testicular deformation and a significant reduction in sperm number were observed after typo-gyf knockdown with RNA interference in embryos. After typo-gyf knockout with clustered regularly interspaced palindromic repeats (CRISPR) / CRISPR-associated protein 9 in the embryonic stage, the sex ratio of the emergent adults was unbalanced, with far more females than males. A genotype analysis of these females with the Y-chromosome gene MoY revealed no sex reversal. Typo-gyf knockout led to the death of XY individuals in the embryonic stage. We conclude that typo-gyf is an essential gene for male survival, and is also involved in testicular development and spermatogenesis. The identification of typo-gyf and its functional verification provide insight into the roles of Y-chromosome genes in male development.
Collapse
Affiliation(s)
- Peipei Liu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shuning Yu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wenping Zheng
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qiuyuan Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiao Qiao
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ziniu Li
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhurong Deng
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongyu Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
3
|
Fingerhut JM, Lannes R, Whitfield TW, Thiru P, Yamashita YM. Co-transcriptional splicing facilitates transcription of gigantic genes. PLoS Genet 2024; 20:e1011241. [PMID: 38870220 PMCID: PMC11207136 DOI: 10.1371/journal.pgen.1011241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/26/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024] Open
Abstract
Although introns are typically tens to thousands of nucleotides, there are notable exceptions. In flies as well as humans, a small number of genes contain introns that are more than 1000 times larger than typical introns, exceeding hundreds of kilobases (kb) to megabases (Mb). It remains unknown why gigantic introns exist and how cells overcome the challenges associated with their transcription and RNA processing. The Drosophila Y chromosome contains some of the largest genes identified to date: multiple genes exceed 4Mb, with introns accounting for over 99% of the gene span. Here we demonstrate that co-transcriptional splicing of these gigantic Y-linked genes is important to ensure successful transcription: perturbation of splicing led to the attenuation of transcription, leading to a failure to produce mature mRNA. Cytologically, defective splicing of the Y-linked gigantic genes resulted in disorganization of transcripts within the nucleus suggestive of entanglement of transcripts, likely resulting from unspliced long RNAs. We propose that co-transcriptional splicing maintains the length of nascent transcripts of gigantic genes under a critical threshold, preventing their entanglement and ensuring proper gene expression. Our study reveals a novel biological significance of co-transcriptional splicing.
Collapse
Affiliation(s)
- Jaclyn M. Fingerhut
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Cambridge, Massachusetts, United States of America
| | - Romain Lannes
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Troy W. Whitfield
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Prathapan Thiru
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Yukiko M. Yamashita
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Cambridge, Massachusetts, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
4
|
Hafezi Y, Omurzakov A, Carlisle JA, Caldas IV, Wolfner MF, Clark AG. The Drosophila melanogaster Y-linked gene, WDY, is required for sperm to swim in the female reproductive tract. Commun Biol 2024; 7:90. [PMID: 38216628 PMCID: PMC10786823 DOI: 10.1038/s42003-023-05717-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 12/18/2023] [Indexed: 01/14/2024] Open
Abstract
Unique patterns of inheritance and selection on Y chromosomes have led to the evolution of specialized gene functions. We report CRISPR mutants in Drosophila of the Y-linked gene, WDY, which is required for male fertility. We demonstrate that the sperm tails of WDY mutants beat approximately half as fast as those of wild-type and that mutant sperm do not propel themselves within the male ejaculatory duct or female reproductive tract. Therefore, although mature sperm are produced by WDY mutant males, and are transferred to females, those sperm fail to enter the female sperm storage organs. We report genotype-dependent and regional differences in sperm motility that appear to break the correlation between sperm tail beating and propulsion. Furthermore, we identify a significant change in hydrophobicity at a residue at a putative calcium-binding site in WDY orthologs at the split between the melanogaster and obscura species groups, when WDY first became Y-linked. This suggests that a major functional change in WDY coincided with its appearance on the Y chromosome. Finally, we show that mutants for another Y-linked gene, PRY, also show a sperm storage defect that may explain their subfertility. Overall, we provide direct evidence for the long-held presumption that protein-coding genes on the Drosophila Y regulate sperm motility.
Collapse
Affiliation(s)
- Yassi Hafezi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA.
| | - Arsen Omurzakov
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA
| | - Jolie A Carlisle
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA
| | - Ian V Caldas
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA.
| |
Collapse
|
5
|
Clifton BD, Hariyani I, Kimura A, Luo F, Nguyen A, Ranz JM. Paralog transcriptional differentiation in the D. melanogaster-specific gene family Sdic across populations and spermatogenesis stages. Commun Biol 2023; 6:1069. [PMID: 37864070 PMCID: PMC10589255 DOI: 10.1038/s42003-023-05427-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/05/2023] [Indexed: 10/22/2023] Open
Abstract
How recently originated gene copies become stable genomic components remains uncertain as high sequence similarity of young duplicates precludes their functional characterization. The tandem multigene family Sdic is specific to Drosophila melanogaster and has been annotated across multiple reference-quality genome assemblies. Here we show the existence of a positive correlation between Sdic copy number and total expression, plus vast intrastrain differences in mRNA abundance among paralogs, using RNA-sequencing from testis of four strains with variable paralog composition. Single cell and nucleus RNA-sequencing data expose paralog expression differentiation in meiotic cell types within testis from third instar larva and adults. Additional RNA-sequencing across synthetic strains only differing in their Y chromosomes reveal a tissue-dependent trans-regulatory effect on Sdic: upregulation in testis and downregulation in male accessory gland. By leveraging paralog-specific expression information from tissue- and cell-specific data, our results elucidate the intraspecific functional diversification of a recently expanded tandem gene family.
Collapse
Affiliation(s)
- Bryan D Clifton
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, USA.
| | - Imtiyaz Hariyani
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, USA
| | - Ashlyn Kimura
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, USA
| | - Fangning Luo
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, USA
| | - Alvin Nguyen
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, USA
| | - José M Ranz
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
6
|
Zhang X, Peng J, Wu M, Sun A, Wu X, Zheng J, Shi W, Gao G. Broad phosphorylation mediated by testis-specific serine/threonine kinases contributes to spermiogenesis and male fertility. Nat Commun 2023; 14:2629. [PMID: 37149634 PMCID: PMC10164148 DOI: 10.1038/s41467-023-38357-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/25/2023] [Indexed: 05/08/2023] Open
Abstract
Genetic studies elucidate a link between testis-specific serine/threonine kinases (TSSKs) and male infertility in mammals, but the underlying mechanisms are unclear. Here, we identify a TSSK homolog in Drosophila, CG14305 (termed dTSSK), whose mutation impairs the histone-to-protamine transition during spermiogenesis and causes multiple phenotypic defects in nuclear shaping, DNA condensation, and flagellar organization in spermatids. Genetic analysis demonstrates that kinase catalytic activity of dTSSK, which is functionally conserved with human TSSKs, is essential for male fertility. Phosphoproteomics identify 828 phosphopeptides/449 proteins as potential substrates of dTSSK enriched primarily in microtubule-based processes, flagellar organization and mobility, and spermatid differentiation and development, suggesting that dTSSK phosphorylates various proteins to orchestrate postmeiotic spermiogenesis. Among them, the two substrates, protamine-like protein Mst77F/Ser9 and transition protein Mst33A/Ser237, are biochemically validated to be phosphorylated by dTSSK in vitro, and are genetically demonstrated to be involved in spermiogenesis in vivo. Collectively, our findings demonstrate that broad phosphorylation mediated by TSSKs plays an indispensable role in spermiogenesis.
Collapse
Affiliation(s)
- Xuedi Zhang
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Ju Peng
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Menghua Wu
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Angyang Sun
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Xiangyu Wu
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Jie Zheng
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Wangfei Shi
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Guanjun Gao
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China.
| |
Collapse
|
7
|
Hafezi Y, Omurzakov A, Carlisle JA, Caldas IV, Wolfner MF, Clark AG. The Drosophila melanogaster Y-linked gene, WDY, is required for sperm to swim in the female reproductive tract. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526876. [PMID: 36778485 PMCID: PMC9915733 DOI: 10.1101/2023.02.02.526876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Unique patterns of inheritance and selection on Y chromosomes lead to the evolution of specialized gene functions. Yet characterizing the function of genes on Y chromosomes is notoriously difficult. We report CRISPR mutants in Drosophila of the Y-linked gene, WDY, which is required for male fertility. WDY mutants produce mature sperm with beating tails that can be transferred to females but fail to enter the female sperm storage organs. We demonstrate that the sperm tails of WDY mutants beat approximately half as fast as wild-type sperm's and that the mutant sperm do not propel themselves within the male ejaculatory duct or female reproductive tract (RT). These specific motility defects likely cause the sperm storage defect and sterility of the mutants. Regional and genotype-dependent differences in sperm motility suggest that sperm tail beating and propulsion do not always correlate. Furthermore, we find significant differences in the hydrophobicity of key residues of a putative calcium-binding domain between orthologs of WDY that are Y-linked and those that are autosomal. Given that WDY appears to be evolving under positive selection, our results suggest that WDY's functional evolution coincides with its transition from autosomal to Y-linked in Drosophila melanogaster and its most closely related species. Finally, we show that mutants for another Y-linked gene, PRY, also show a sperm storage defect that may explain their subfertility. In contrast to WDY, PRY mutants do swim in the female RT, suggesting they are defective in yet another mode of motility, navigation, or a necessary interaction with the female RT. Overall, we provide direct evidence for the long-held presumption that protein-coding genes on the Drosophila Y regulate sperm motility.
Collapse
|
8
|
Raz AA, Vida GS, Stern SR, Mahadevaraju S, Fingerhut JM, Viveiros JM, Pal S, Grey JR, Grace MR, Berry CW, Li H, Janssens J, Saelens W, Shao Z, Hu C, Yamashita YM, Przytycka T, Oliver B, Brill JA, Krause H, Matunis EL, White-Cooper H, DiNardo S, Fuller MT. Emergent dynamics of adult stem cell lineages from single nucleus and single cell RNA-Seq of Drosophila testes. eLife 2023; 12:e82201. [PMID: 36795469 PMCID: PMC9934865 DOI: 10.7554/elife.82201] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/19/2023] [Indexed: 02/17/2023] Open
Abstract
Proper differentiation of sperm from germline stem cells, essential for production of the next generation, requires dramatic changes in gene expression that drive remodeling of almost all cellular components, from chromatin to organelles to cell shape itself. Here, we provide a single nucleus and single cell RNA-seq resource covering all of spermatogenesis in Drosophila starting from in-depth analysis of adult testis single nucleus RNA-seq (snRNA-seq) data from the Fly Cell Atlas (FCA) study. With over 44,000 nuclei and 6000 cells analyzed, the data provide identification of rare cell types, mapping of intermediate steps in differentiation, and the potential to identify new factors impacting fertility or controlling differentiation of germline and supporting somatic cells. We justify assignment of key germline and somatic cell types using combinations of known markers, in situ hybridization, and analysis of extant protein traps. Comparison of single cell and single nucleus datasets proved particularly revealing of dynamic developmental transitions in germline differentiation. To complement the web-based portals for data analysis hosted by the FCA, we provide datasets compatible with commonly used software such as Seurat and Monocle. The foundation provided here will enable communities studying spermatogenesis to interrogate the datasets to identify candidate genes to test for function in vivo.
Collapse
Affiliation(s)
- Amelie A Raz
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Howard Hughes Medical InstituteCambridgeUnited States
| | - Gabriela S Vida
- Department of Cell and Developmental Biology, The Perelman School of Medicine and The Penn Institute for Regenerative MedicinePhiladelphiaUnited States
| | - Sarah R Stern
- Department of Developmental Biology, Stanford University School of MedicineStanfordUnited States
| | - Sharvani Mahadevaraju
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Jaclyn M Fingerhut
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Howard Hughes Medical InstituteCambridgeUnited States
| | - Jennifer M Viveiros
- Department of Cell Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Soumitra Pal
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Jasmine R Grey
- Department of Cell Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Mara R Grace
- Department of Cell Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Cameron W Berry
- Department of Developmental Biology, Stanford University School of MedicineStanfordUnited States
| | - Hongjie Li
- Huffington Center on Aging and Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Jasper Janssens
- JVIB Center for Brain & Disease Research, and the Department of Human Genetics, KU LeuvenLeuvenBelgium
| | - Wouter Saelens
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, and Department of Applied Mathematics, Computer Science and Statistics, Ghent UniversityGhentBelgium
| | - Zhantao Shao
- Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
| | - Chun Hu
- Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
| | - Yukiko M Yamashita
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Howard Hughes Medical InstituteCambridgeUnited States
| | - Teresa Przytycka
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Brian Oliver
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Julie A Brill
- Cell Biology Program, The Hospital for Sick ChildrenTorontoCanada
- Department of Molecular Genetics, University of TorontoTorontoCanada
- Institute of Medical Science, University of TorontoTorontoCanada
| | - Henry Krause
- Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
- Department of Molecular Genetics, University of TorontoTorontoCanada
| | - Erika L Matunis
- Department of Cell Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | | | - Stephen DiNardo
- Department of Cell and Developmental Biology, The Perelman School of Medicine and The Penn Institute for Regenerative MedicinePhiladelphiaUnited States
| | - Margaret T Fuller
- Department of Developmental Biology, Stanford University School of MedicineStanfordUnited States
- Department of Genetics, Stanford UniversityStanfordUnited States
| |
Collapse
|
9
|
Fingerhut JM, Yamashita YM. Analysis of Gene Expression Patterns and RNA Localization by Fluorescence in Situ Hybridization in Whole Mount Drosophila Testes. Methods Mol Biol 2023; 2666:15-28. [PMID: 37166654 DOI: 10.1007/978-1-0716-3191-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Researchers have used RNA in situ hybridization to detect the presence of RNA in cells and tissues for approximately 50 years. The recent development of a method capable of visualizing a single RNA molecule by utilizing tiled fluorescently labeled oligonucleotide probes that together produce a diffraction-limited spot has greatly increased the resolution of this technique, allowing for the precise determination of subcellular RNA localization and relative abundance. Here, we present our method for single molecule RNA fluorescence in situ hybridization (smFISH) in whole mount Drosophila testes and discuss how we have utilized this method to better understand the expression pattern of the highly unusual Y-linked genes.
Collapse
Affiliation(s)
- Jaclyn M Fingerhut
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Department of Biology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Cambridge, MA, USA.
| | - Yukiko M Yamashita
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Department of Biology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Cambridge, MA, USA.
| |
Collapse
|
10
|
Fingerhut JM, Yamashita YM. The regulation and potential functions of intronic satellite DNA. Semin Cell Dev Biol 2022; 128:69-77. [PMID: 35469677 DOI: 10.1016/j.semcdb.2022.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/15/2022]
Abstract
Satellite DNAs are arrays of tandem repeats found in the eukaryotic genome. They are mainly found in pericentromeric heterochromatin and have been believed to be mostly inert, leading satellite DNAs to be erroneously regarded as junk. Recent studies have started to elucidate the function of satellite DNA, yet little is known about the peculiar case where satellite DNA is found within the introns of protein coding genes, resulting in incredibly large introns, a phenomenon termed intron gigantism. Studies in Drosophila demonstrated that satellite DNA-containing introns are transcribed with the gene and require specialized mechanisms to overcome the burdens imposed by the extremely long stretches of repetitive DNA. Whether intron gigantism confers any benefit or serves any functional purpose for cells and/or organisms remains elusive. Here we review our current understanding of intron gigantism: where it is found, the challenges it imposes, how it is regulated and what purpose it may serve.
Collapse
Affiliation(s)
- Jaclyn M Fingerhut
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Howard Hughes Medical Institute, Cambridge, MA, USA.
| | - Yukiko M Yamashita
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Howard Hughes Medical Institute, Cambridge, MA, USA.
| |
Collapse
|
11
|
Cīrulis A, Hansson B, Abbott JK. Sex-limited chromosomes and non-reproductive traits. BMC Biol 2022; 20:156. [PMID: 35794589 PMCID: PMC9261002 DOI: 10.1186/s12915-022-01357-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 06/22/2022] [Indexed: 12/03/2022] Open
Abstract
Sex chromosomes are typically viewed as having originated from a pair of autosomes, and differentiated as the sex-limited chromosome (e.g. Y) has degenerated by losing most genes through cessation of recombination. While often thought that degenerated sex-limited chromosomes primarily affect traits involved in sex determination and sex cell production, accumulating evidence suggests they also influence traits not sex-limited or directly involved in reproduction. Here, we provide an overview of the effects of sex-limited chromosomes on non-reproductive traits in XY, ZW or UV sex determination systems, and discuss evolutionary processes maintaining variation at sex-limited chromosomes and molecular mechanisms affecting non-reproductive traits.
Collapse
Affiliation(s)
- Aivars Cīrulis
- Department of Biology, Lund University, 223 62, Lund, Sweden.
| | - Bengt Hansson
- Department of Biology, Lund University, 223 62, Lund, Sweden
| | | |
Collapse
|
12
|
Kotov AA, Bazylev SS, Adashev VE, Shatskikh AS, Olenina LV. Drosophila as a Model System for Studying of the Evolution and Functional Specialization of the Y Chromosome. Int J Mol Sci 2022; 23:4184. [PMID: 35457001 PMCID: PMC9031259 DOI: 10.3390/ijms23084184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/07/2023] Open
Abstract
The Y chromosome is one of the sex chromosomes found in males of animals of different taxa, including insects and mammals. Among all chromosomes, the Y chromosome is characterized by a unique chromatin landscape undergoing dynamic evolutionary change. Being entirely heterochromatic, the Y chromosome as a rule preserves few functional genes, but is enriched in tandem repeats and transposons. Due to difficulties in the assembly of the highly repetitive Y chromosome sequence, deep analyses of Y chromosome evolution, structure, and functions are limited to a few species, one of them being Drosophila melanogaster. Despite Y chromosomes exhibiting high structural divergence between even closely related species, Y-linked genes have evolved convergently and are mainly associated with spermatogenesis-related activities. This indicates that male-specific selection is a dominant force shaping evolution of Y chromosomes across species. This review presents our analysis of current knowledge concerning Y chromosome functions, focusing on recent findings in Drosophila. Here we dissect the experimental and bioinformatics data about the Y chromosome accumulated to date in Drosophila species, providing comparative analysis with mammals, and discussing the relevance of our analysis to a wide range of eukaryotic organisms, including humans.
Collapse
Affiliation(s)
| | | | | | | | - Ludmila V. Olenina
- Institute of Molecular Genetics of National Research Center «Kurchatov Institute», 123182 Moscow, Russia; (A.A.K.); (S.S.B.); (V.E.A.); (A.S.S.)
| |
Collapse
|
13
|
Antimicrobial Properties of a Peptide Derived from the Male Fertility Factor kl2 Protein of Drosophila melanogaster. Curr Issues Mol Biol 2022; 44:1169-1181. [PMID: 35723299 PMCID: PMC8947439 DOI: 10.3390/cimb44030076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/13/2022] [Accepted: 02/23/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial peptides (AMPs) are important components of innate immunity. Here, we report the antimicrobial properties of a peptide derived from the Male fertility factor kl2 (MFF-kl2) protein of Drosophila melanogaster, which was identified as a functional analog of the mammalian antibacterial chemerin-p4 peptide. The antimicrobial activity of multifunctional chemerin is mainly associated with a domain localized in the middle of the chemerin sequence, Val66-Pro85 peptide (chemerin-p4). Using bioinformatic tools, we found homologs of the chemerin-p4 peptide in the proteome of D. melanogaster. One of them is MFF-p1, which is a part of the MFF kl2 protein, encoded by the gene male fertility factor kl2 (kl-2) located on the long arm of the Y chromosome. The second detected peptide (Z-p1) is a part of the Zizimin protein belonging to DOCK family, which is involved in cellular signaling processes. After testing the antimicrobial properties of both peptides, we found that only MFF-p1 possesses these properties. Here, we demonstrate its antimicrobial potential both in vitro and in vivo after infecting D. melanogaster with bacteria. MFF-p1 strongly inhibits the viable counts of E. coli and B. subtilis after 2 h of treatment and disrupts bacterial cells. The expression of kl-2 is regulated by exposure to bacteria and by the circadian clock.
Collapse
|
14
|
Ricchio J, Uno F, Carvalho AB. New Genes in the Drosophila Y Chromosome: Lessons from D. willistoni. Genes (Basel) 2021; 12:genes12111815. [PMID: 34828421 PMCID: PMC8623413 DOI: 10.3390/genes12111815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 01/05/2023] Open
Abstract
Y chromosomes play important roles in sex determination and male fertility. In several groups (e.g., mammals) there is strong evidence that they evolved through gene loss from a common X-Y ancestor, but in Drosophila the acquisition of new genes plays a major role. This conclusion came mostly from studies in two species. Here we report the identification of the 22 Y-linked genes in D. willistoni. They all fit the previously observed pattern of autosomal or X-linked testis-specific genes that duplicated to the Y. The ratio of gene gains to gene losses is ~25 in D. willistoni, confirming the prominent role of gene gains in the evolution of Drosophila Y chromosomes. We also found four large segmental duplications (ranging from 62 kb to 303 kb) from autosomal regions to the Y, containing ~58 genes. All but four of these duplicated genes became pseudogenes in the Y or disappeared. In the GK20609 gene the Y-linked copy remained functional, whereas its original autosomal copy degenerated, demonstrating how autosomal genes are transferred to the Y chromosome. Since the segmental duplication that carried GK20609 contained six other testis-specific genes, it seems that chance plays a significant role in the acquisition of new genes by the Drosophila Y chromosome.
Collapse
|
15
|
Charlesworth D, Graham C, Trivedi U, Gardner J, Bergero R. PromethION sequencing and assembly of the genome of Micropoecilia picta, a fish with a highly Degenerated Y chromosome. Genome Biol Evol 2021; 13:6326803. [PMID: 34297069 PMCID: PMC8449826 DOI: 10.1093/gbe/evab171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
We here describe sequencing and assembly of both the autosomes and the sex chromosome in M. picta, the closest related species to the guppy, Poecilia reticulata. Poecilia ()Micropoecilia) picta is a close outgroup for studying the guppy, an important organism for studies in evolutionary ecology and in sex chromosome evolution. The guppy XY pair (LG12) has long been studied as a test case for the importance of sexually antagonistic variants in selection for suppressed recombination between Y and X chromosomes. The guppy Y chromosome is not degenerated, but appears to carry functional copies of all genes that are present on its X counterpart. The X chromosomes of M. picta (and its relative M. parae) are homologous to the guppy XY pair, but their Y chromosomes are highly degenerated, and no genes can be identified in the fully Y-linked region. A complete genome sequence of a M. picta male may therefore contribute to understanding how the guppy Y evolved. These fish species' genomes are estimated to be about 750 Mb, with high densities of repetitive sequences, suggesting that long-read sequencing is needed. We evaluated several assembly approaches, and used our results to investigate the extent of Y chromosome degeneration in this species.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, EH9 3LF, UK
| | - Chay Graham
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, EH9 3LF, UK.,University of Cambridge, Department of Biochemistry, Sanger Building, 80 Tennis Ct Rd, Cambridge, CB2 1GA, UK
| | - Urmi Trivedi
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, EH9 3LF, UK
| | - Jim Gardner
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, EH9 3LF, UK
| | - Roberta Bergero
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, EH9 3LF, UK
| |
Collapse
|
16
|
Zhu L, Fukunaga R. RNA-binding protein Maca is crucial for gigantic male fertility factor gene expression, spermatogenesis, and male fertility, in Drosophila. PLoS Genet 2021; 17:e1009655. [PMID: 34181646 PMCID: PMC8248703 DOI: 10.1371/journal.pgen.1009655] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/01/2021] [Accepted: 06/09/2021] [Indexed: 11/19/2022] Open
Abstract
During spermatogenesis, the process in which sperm for fertilization are produced from germline cells, gene expression is spatiotemporally highly regulated. In Drosophila, successful expression of extremely large male fertility factor genes on Y-chromosome spanning some megabases due to their gigantic intron sizes is crucial for spermatogenesis. Expression of such extremely large genes must be challenging, but the molecular mechanism that allows it remains unknown. Here we report that a novel RNA-binding protein Maca, which contains two RNA-recognition motifs, is crucial for this process. maca null mutant male flies exhibited a failure in the spermatid individualization process during spermatogenesis, lacked mature sperm, and were completely sterile, while maca mutant female flies were fully fertile. Proteomics and transcriptome analyses revealed that both protein and mRNA abundance of the gigantic male fertility factor genes kl-2, kl-3, and kl-5 (kl genes) are significantly decreased, where the decreases of kl-2 are particularly dramatic, in maca mutant testes. Splicing of the kl-3 transcripts was also dysregulated in maca mutant testes. All these physiological and molecular phenotypes were rescued by a maca transgene in the maca mutant background. Furthermore, we found that in the control genetic background, Maca is exclusively expressed in spermatocytes in testes and enriched at Y-loop A/C in the nucleus, where the kl-5 primary transcripts are localized. Our data suggest that Maca increases transcription processivity, promotes successful splicing of gigantic introns, and/or protects transcripts from premature degradation, of the kl genes. Our study identified a novel RNA-binding protein Maca that is crucial for successful expression of the gigantic male fertility factor genes, spermatogenesis, and male fertility.
Collapse
Affiliation(s)
- Li Zhu
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Ryuya Fukunaga
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
17
|
Son JH, Meisel RP. Gene-Level, but Not Chromosome-Wide, Divergence between a Very Young House Fly Proto-Y Chromosome and Its Homologous Proto-X Chromosome. Mol Biol Evol 2021; 38:606-618. [PMID: 32986844 PMCID: PMC7826193 DOI: 10.1093/molbev/msaa250] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
X and Y chromosomes are usually derived from a pair of homologous autosomes, which then diverge from each other over time. Although Y-specific features have been characterized in sex chromosomes of various ages, the earliest stages of Y chromosome evolution remain elusive. In particular, we do not know whether early stages of Y chromosome evolution consist of changes to individual genes or happen via chromosome-scale divergence from the X. To address this question, we quantified divergence between young proto-X and proto-Y chromosomes in the house fly, Musca domestica. We compared proto-sex chromosome sequence and gene expression between genotypic (XY) and sex-reversed (XX) males. We find evidence for sequence divergence between genes on the proto-X and proto-Y, including five genes with mitochondrial functions. There is also an excess of genes with divergent expression between the proto-X and proto-Y, but the number of genes is small. This suggests that individual proto-Y genes, but not the entire proto-Y chromosome, have diverged from the proto-X. We identified one gene, encoding an axonemal dynein assembly factor (which functions in sperm motility), that has higher expression in XY males than XX males because of a disproportionate contribution of the proto-Y allele to gene expression. The upregulation of the proto-Y allele may be favored in males because of this gene's function in spermatogenesis. The evolutionary divergence between proto-X and proto-Y copies of this gene, as well as the mitochondrial genes, is consistent with selection in males affecting the evolution of individual genes during early Y chromosome evolution.
Collapse
Affiliation(s)
- Jae Hak Son
- Department of Biology and Biochemistry, University of Houston, Houston, TX.,Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT
| | - Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, TX
| |
Collapse
|
18
|
Brown EJ, Nguyen AH, Bachtrog D. The Drosophila Y Chromosome Affects Heterochromatin Integrity Genome-Wide. Mol Biol Evol 2021; 37:2808-2824. [PMID: 32211857 PMCID: PMC7530609 DOI: 10.1093/molbev/msaa082] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Drosophila Y chromosome is gene poor and mainly consists of silenced, repetitive DNA. Nonetheless, the Y influences expression of hundreds of genes genome-wide, possibly by sequestering key components of the heterochromatin machinery away from other positions in the genome. To test the influence of the Y chromosome on the genome-wide chromatin landscape, we assayed the genomic distribution of histone modifications associated with gene activation (H3K4me3) or heterochromatin (H3K9me2 and H3K9me3) in fruit flies with varying sex chromosome complements (X0, XY, and XYY males; XX and XXY females). Consistent with the general deficiency of active chromatin modifications on the Y, we find that Y gene dose has little influence on the genomic distribution of H3K4me3. In contrast, both the presence and the number of Y chromosomes strongly influence genome-wide enrichment patterns of repressive chromatin modifications. Highly repetitive regions such as the pericentromeres, the dot, and the Y chromosome (if present) are enriched for heterochromatic modifications in wildtype males and females, and even more strongly in X0 flies. In contrast, the additional Y chromosome in XYY males and XXY females diminishes the heterochromatic signal in these normally silenced, repeat-rich regions, which is accompanied by an increase in expression of Y-linked repeats. We find hundreds of genes that are expressed differentially between individuals with aberrant sex chromosome karyotypes, many of which also show sex-biased expression in wildtype Drosophila. Thus, Y chromosomes influence heterochromatin integrity genome-wide, and differences in the chromatin landscape of males and females may also contribute to sex-biased gene expression and sexual dimorphisms.
Collapse
Affiliation(s)
- Emily J Brown
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA
| | - Alison H Nguyen
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA
| | - Doris Bachtrog
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA
| |
Collapse
|
19
|
Ågren JA, Munasinghe M, Clark AG. Mitochondrial-Y chromosome epistasis in Drosophila melanogaster. Proc Biol Sci 2020; 287:20200469. [PMID: 33081607 DOI: 10.1098/rspb.2020.0469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The coordination between mitochondrial and nuclear genes is crucial to eukaryotic organisms. Predicting the nature of these epistatic interactions can be difficult because of the transmission asymmetry of the genes involved. While autosomes and X-linked genes are transmitted through both sexes, genes on the Y chromosome and in the mitochondrial genome are uniparentally transmitted through males and females, respectively. Here, we generate 36 otherwise isogenic Drosophila melanogaster strains differing only in the geographical origin of their mitochondrial genome and Y chromosome, to experimentally examine the effects of the uniparentally inherited parts of the genome, as well as their interaction, in males. We assay longevity and gene expression through RNA-sequencing. We detect an important role for both mitochondrial and Y-linked genes, as well as extensive mitochondrial-Y chromosome epistasis. In particular, genes involved in male reproduction appear to be especially sensitive to such interactions, and variation on the Y chromosome is associated with differences in longevity. Despite these interactions, we find no evidence that the mitochondrial genome and Y chromosome are co-adapted within a geographical region. Overall, our study demonstrates a key role for the uniparentally inherited parts of the genome for male biology, but also that mito-nuclear interactions are complex and not easily predicted from simple transmission asymmetries.
Collapse
Affiliation(s)
- J Arvid Ågren
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Manisha Munasinghe
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.,Department of Computational Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
20
|
Fingerhut JM, Yamashita YM. mRNA localization mediates maturation of cytoplasmic cilia in Drosophila spermatogenesis. J Cell Biol 2020; 219:e202003084. [PMID: 32706373 PMCID: PMC7480094 DOI: 10.1083/jcb.202003084] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 01/26/2023] Open
Abstract
Cytoplasmic cilia, a specialized type of cilia in which the axoneme resides within the cytoplasm rather than within the ciliary compartment, are proposed to allow for the efficient assembly of very long cilia. Despite being found diversely in male gametes (e.g., Plasmodium falciparum microgametocytes and human and Drosophila melanogaster sperm), very little is known about cytoplasmic cilia assembly. Here, we show that a novel RNP granule containing the mRNAs for axonemal dynein motor proteins becomes highly polarized to the distal end of the cilia during cytoplasmic ciliogenesis in Drosophila sperm. This allows for the incorporation of these axonemal dyneins into the axoneme directly from the cytoplasm, possibly by localizing translation. We found that this RNP granule contains the proteins Reptin and Pontin, loss of which perturbs granule formation and prevents incorporation of the axonemal dyneins, leading to sterility. We propose that cytoplasmic cilia assembly requires the precise localization of mRNAs encoding key axonemal constituents, allowing these proteins to incorporate efficiently into the axoneme.
Collapse
Affiliation(s)
- Jaclyn M. Fingerhut
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | - Yukiko M. Yamashita
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI
| |
Collapse
|
21
|
Peichel CL, McCann SR, Ross JA, Naftaly AFS, Urton JR, Cech JN, Grimwood J, Schmutz J, Myers RM, Kingsley DM, White MA. Assembly of the threespine stickleback Y chromosome reveals convergent signatures of sex chromosome evolution. Genome Biol 2020; 21:177. [PMID: 32684159 PMCID: PMC7368989 DOI: 10.1186/s13059-020-02097-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/08/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Heteromorphic sex chromosomes have evolved repeatedly across diverse species. Suppression of recombination between X and Y chromosomes leads to degeneration of the Y chromosome. The progression of degeneration is not well understood, as complete sequence assemblies of heteromorphic Y chromosomes have only been generated across a handful of taxa with highly degenerate sex chromosomes. Here, we describe the assembly of the threespine stickleback (Gasterosteus aculeatus) Y chromosome, which is less than 26 million years old and at an intermediate stage of degeneration. Our previous work identified that the non-recombining region between the X and the Y spans approximately 17.5 Mb on the X chromosome. RESULTS We combine long-read sequencing with a Hi-C-based proximity guided assembly to generate a 15.87 Mb assembly of the Y chromosome. Our assembly is concordant with cytogenetic maps and Sanger sequences of over 90 Y chromosome BAC clones. We find three evolutionary strata on the Y chromosome, consistent with the three inversions identified by our previous cytogenetic analyses. The threespine stickleback Y shows convergence with more degenerate sex chromosomes in the retention of haploinsufficient genes and the accumulation of genes with testis-biased expression, many of which are recent duplicates. However, we find no evidence for large amplicons identified in other sex chromosome systems. We also report an excellent candidate for the master sex-determination gene: a translocated copy of Amh (Amhy). CONCLUSIONS Together, our work shows that the evolutionary forces shaping sex chromosomes can cause relatively rapid changes in the overall genetic architecture of Y chromosomes.
Collapse
Affiliation(s)
- Catherine L. Peichel
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
| | - Shaugnessy R. McCann
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
| | - Joseph A. Ross
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195 USA
| | | | - James R. Urton
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195 USA
| | - Jennifer N. Cech
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195 USA
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806 USA
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806 USA
| | - Richard M. Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806 USA
| | - David M. Kingsley
- Department of Developmental Biology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Michael A. White
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
- Department of Genetics, University of Georgia, Athens, GA 30602 USA
| |
Collapse
|
22
|
Deng Z, Zhang Y, Zhang M, Huang J, Li C, Ni X, Li X. Characterization of the First W-Specific Protein-Coding Gene for Sex Identification in Helicoverpa armigera. Front Genet 2020; 11:649. [PMID: 32636875 PMCID: PMC7317607 DOI: 10.3389/fgene.2020.00649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
Helicoverpa armigera is a globally-important crop pest with a WZ (female)/ZZ (male) sex chromosome system. The absence of discernible sexual dimorphism in its egg and larval stages makes it impossible to address any sex-related theoretical and applied questions before pupation unless a W-specific sequence marker is available for sex diagnosis. To this end, we used one pair of morphologically pre-sexed pupae to PCR-screen 17 non-transposon transcripts selected from 4855 W-linked candidate reads identified by mapping a publicly available egg transcriptome of both sexes to the male genome of this species and detected the read SRR1015458.67499 only in the female pupa. Subsequent PCR screenings of this read and the previously reported female-specific RAPD (random amplified polymorphic DNA) marker AF18 with ten more pairs of pre-sexed pupae and different annealing positions and/or temperatures as well as its co-occurrence with the female-specific transcript splicing isoforms of doublesex gene of H. armigera (Hadsx) and amplification and sequencing of their 5′ unknown flanking sequences in three additional pairs of pre-sexed pupae verified that SRR1015458.67499 is a single copy protein-coding gene unique to W chromosome (named GUW1) while AF18 is a multicopy MITE transposon located on various chromosomes. Test application of GUW1 as a marker to sex 30 neonates of H. armigera yielded a female/male ratio of 1.14: 1.00. Both GUW1 and Hadsx splicing isoforms assays revealed that the H. armigera embryo cell line QB-Ha-E-1 is a male cell line. Taken together, GUW1 is not only a reliable DNA marker for sexing all stages of H. armigera and its cell lines, but also represents the first W-specific protein-coding gene in lepidopterans.
Collapse
Affiliation(s)
- Zhongyuan Deng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yakun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Min Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jinyong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Changyou Li
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Xinzhi Ni
- Agricultural Research Service, U.S. Department of Agriculture, Crop Genetics and Breeding Research Unit, University of Georgia - Tifton Campus, Tifton, GA, United States
| | - Xianchun Li
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
23
|
The Role of Y Chromosome Genes in Male Fertility in Drosophila melanogaster. Genetics 2020; 215:623-633. [PMID: 32404399 DOI: 10.1534/genetics.120.303324] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/09/2020] [Indexed: 11/18/2022] Open
Abstract
The Y chromosome of Drosophila melanogaster is pivotal for male fertility. Yet, only 16 protein-coding genes reside on this chromosome. The Y chromosome is comprised primarily of heterochromatic sequences, including DNA repeats and satellite DNA, and most of the Y chromosome is still missing from the genome sequence. Furthermore, the functions of the majority of genes on the Y chromosome remain elusive. Through multiple genetic strategies, six distinct segments on the Y chromosome have been identified as "male fertility factors," and candidate gene sequences corresponding to each of these loci have been ascribed. In one case, kl-3, a specific protein coding sequence for a fertility factor has been confirmed molecularly. Here, we employed CRISPR/Cas9 to generate mutations, and RNAi, to interrogate the requirements of protein coding sequences on the Y chromosome for male fertility. We show that CRISPR/Cas9-mediated editing of kl-2 and kl-5 causes male sterility, supporting the model that these gene sequences correspond to the cognate fertility factors. We show that another gene, CCY, also functions in male fertility and may be the ks-2 fertility factor. We demonstrate that editing of kl-2, kl-3, and kl-5, and RNAi knockdown of CCY, disrupts nuclear elongation, and leads to defects in sperm individualization, including impairments in the individualization complex (IC) and synchronization. However, CRISPR/Cas9 mediated knockout of some genes on the Y chromosome, such as FDY, Ppr-Y, and Pp1-Y2 do not cause sterility, indicating that not all Y chromosome genes are essential for male fertility.
Collapse
|
24
|
Shatskikh AS, Kotov AA, Adashev VE, Bazylev SS, Olenina LV. Functional Significance of Satellite DNAs: Insights From Drosophila. Front Cell Dev Biol 2020; 8:312. [PMID: 32432114 PMCID: PMC7214746 DOI: 10.3389/fcell.2020.00312] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
Since their discovery more than 60 years ago, satellite repeats are still one of the most enigmatic parts of eukaryotic genomes. Being non-coding DNA, satellites were earlier considered to be non-functional “junk,” but recently this concept has been extensively revised. Satellite DNA contributes to the essential processes of formation of crucial chromosome structures, heterochromatin establishment, dosage compensation, reproductive isolation, genome stability and development. Genomic abundance of satellites is under stabilizing selection owing of their role in the maintenance of vital regions of the genome – centromeres, pericentromeric regions, and telomeres. Many satellites are transcribed with the generation of long or small non-coding RNAs. Misregulation of their expression is found to lead to various defects in the maintenance of genomic architecture, chromosome segregation and gametogenesis. This review summarizes our current knowledge concerning satellite functions, the mechanisms of regulation and evolution of satellites, focusing on recent findings in Drosophila. We discuss here experimental and bioinformatics data obtained in Drosophila in recent years, suggesting relevance of our analysis to a wide range of eukaryotic organisms.
Collapse
Affiliation(s)
- Aleksei S Shatskikh
- Laboratory of Analysis of Clinical and Model Tumor Pathologies on the Organismal Level, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Alexei A Kotov
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir E Adashev
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Sergei S Bazylev
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Ludmila V Olenina
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
25
|
Dissecting Fertility Functions of Drosophila Y Chromosome Genes with CRISPR. Genetics 2020; 214:977-990. [PMID: 32098759 DOI: 10.1534/genetics.120.302672] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 02/20/2020] [Indexed: 12/27/2022] Open
Abstract
Gene-poor, repeat-rich regions of the genome are poorly understood and have been understudied due to technical challenges and the misconception that they are degenerating "junk." Yet multiple lines of evidence indicate these regions may be an important source of variation that could drive adaptation and species divergence, particularly through regulation of fertility. The ∼40 Mb Y chromosome of Drosophila melanoga st er contains only 16 known protein-coding genes, and is highly repetitive and entirely heterochromatic. Most of the genes originated from duplication of autosomal genes and have reduced nonsynonymous substitution rates, suggesting functional constraint. We devised a genetic strategy for recovering and retaining stocks with sterile Y-linked mutations and combined it with CRISPR to create mutants with deletions that disrupt three Y-linked genes. Two genes, PRY and FDY, had no previously identified functions. We found that PRY mutant males are subfertile, but FDY mutant males had no detectable fertility defects. FDY, the newest known gene on the Y chromosome, may have fertility effects that are conditional or too subtle to detect. The third gene, CCY, had been predicted but never formally shown to be required for male fertility. CRISPR targeting and RNA interference of CCY caused male sterility. Surprisingly, however, our CCY mutants were sterile even in the presence of an extra wild-type Y chromosome, suggesting that perturbation of the Y chromosome can lead to dominant sterility. Our approach provides an important step toward understanding the complex functions of the Y chromosome and parsing which functions are accomplished by genes vs. repeat elements.
Collapse
|
26
|
Massive gene amplification on a recently formed Drosophila Y chromosome. Nat Ecol Evol 2019; 3:1587-1597. [PMID: 31666742 PMCID: PMC7217032 DOI: 10.1038/s41559-019-1009-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 09/16/2019] [Indexed: 12/27/2022]
Abstract
Widespread loss of genes on the Y is considered a hallmark of sex chromosome differentiation. Here we show that the initial stages of Y evolution are driven by massive amplification of distinct classes of genes. The neo-Y chromosome of Drosophila miranda initially contained about 3000 protein-coding genes, but has gained over 3200 genes since its formation about 1.5 MY ago, primarily by tandem amplification of protein-coding genes ancestrally present on this chromosome. We show that distinct evolutionary processes may account for this drastic increase in gene number on the Y. Testis-specific and dosage sensitive genes appear to have amplified on the Y to increase male fitness. A distinct class of meiosis-related multi-copy Y genes independently co-amplified on the X, and their expansion is likely driven by conflicts over segregation. Co-amplified X/Y genes are highly expressed in testis, enriched for meiosis and RNAi functions, and are frequently targeted by small RNAs in testis. This suggests that their amplification is driven by X vs. Y antagonism for increased transmission, where sex chromosome drive suppression is likely mediated by sequence homology between the suppressor and distorter, through RNAi mechanism. Thus, our analysis suggests that newly emerged sex chromosomes are a battleground for sexual and meiotic conflict.
Collapse
|
27
|
A New Portrait of Constitutive Heterochromatin: Lessons from Drosophila melanogaster. Trends Genet 2019; 35:615-631. [PMID: 31320181 DOI: 10.1016/j.tig.2019.06.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 12/14/2022]
Abstract
Constitutive heterochromatin represents a significant portion of eukaryotic genomes, but its functions still need to be elucidated. Even in the most updated genetics and molecular biology textbooks, constitutive heterochromatin is portrayed mainly as the 'silent' component of eukaryotic genomes. However, there may be more complexity to the relationship between heterochromatin and gene expression. In the fruit fly Drosophila melanogaster, a model for heterochromatin studies, about one-third of the genome is heterochromatic and is concentrated in the centric, pericentric, and telomeric regions of the chromosomes. Recent findings indicate that hundreds of D. melanogaster genes can 'live and work' properly within constitutive heterochromatin. The genomic size of these genes is generally larger than that of euchromatic genes and together they account for a significant fraction of the entire constitutive heterochromatin. Thus, this peculiar genome component in spite its ability to induce silencing, has in fact the means for being quite dynamic. A major scope of this review is to revisit the 'dogma of silent heterochromatin'.
Collapse
|
28
|
Satellite DNA-containing gigantic introns in a unique gene expression program during Drosophila spermatogenesis. PLoS Genet 2019; 15:e1008028. [PMID: 31071079 PMCID: PMC6508621 DOI: 10.1371/journal.pgen.1008028] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/18/2019] [Indexed: 11/19/2022] Open
Abstract
Intron gigantism, where genes contain megabase-sized introns, is observed across species, yet little is known about its purpose or regulation. Here we identify a unique gene expression program utilized for the proper expression of genes with intron gigantism. We find that two Drosophila genes with intron gigantism, kl-3 and kl-5, are transcribed in a spatiotemporal manner over the course of spermatocyte differentiation, which spans ~90 hours. The introns of these genes contain megabases of simple satellite DNA repeats that comprise over 99% of the gene loci, and these satellite-DNA containing introns are transcribed. We identify two RNA-binding proteins that specifically localize to kl-3 and kl-5 transcripts and are needed for the successful transcription or processing of these genes. We propose that genes with intron gigantism require a unique gene expression program, which may serve as a platform to regulate gene expression during cellular differentiation. Introns are non-coding elements of eukaryotic genes, often containing important regulatory sequences. Curiously, some genes contain introns so large that more than 99% of the gene locus is non-coding. One of the best-studied large genes, Dystrophin, a causative gene for Duchenne Muscular Dystrophy, spans 2.2Mb, only 11kb of which is coding. This phenomenon, ‘intron gigantism’, is observed across species, yet little is known about its purpose or regulation. Here we identify a unique gene expression program utilized for the proper expression of genes with intron gigantism using Drosophila spermatogenic genes as a model system. We show that the gigantic introns of these genes are transcribed in line with the exons, likely as a single transcript. We identify two RNA-binding proteins that specifically localize to the site of transcription and are needed for the successful transcription or processing of these genes. We propose that genes with intron gigantism require a unique gene expression program, which may serve as a platform to regulate gene expression during cellular differentiation.
Collapse
|
29
|
Zur Lage P, Newton FG, Jarman AP. Survey of the Ciliary Motility Machinery of Drosophila Sperm and Ciliated Mechanosensory Neurons Reveals Unexpected Cell-Type Specific Variations: A Model for Motile Ciliopathies. Front Genet 2019; 10:24. [PMID: 30774648 PMCID: PMC6367277 DOI: 10.3389/fgene.2019.00024] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 01/15/2019] [Indexed: 12/11/2022] Open
Abstract
The motile cilium/flagellum is an ancient eukaryotic organelle. The molecular machinery of ciliary motility comprises a variety of cilium-specific dynein motor complexes along with other complexes that regulate their activity. Assembling the motors requires the function of dedicated “assembly factors” and transport processes. In humans, mutation of any one of at least 40 different genes encoding components of the motility apparatus causes Primary Ciliary Dyskinesia (PCD), a disease of defective ciliary motility. Recently, Drosophila has emerged as a model for motile cilia biology and motile ciliopathies. This is somewhat surprising as most Drosophila cells lack cilia, and motile cilia are confined to just two specialized cell types: the sperm flagellum with a 9+2 axoneme and the ciliated dendrite of auditory/proprioceptive (chordotonal, Ch) neurons with a 9+0 axoneme. To determine the utility of Drosophila as a model for motile cilia, we survey the Drosophila genome for ciliary motility gene homologs, and assess their expression and function. We find that the molecules of cilium motility are well conserved in Drosophila. Most are readily characterized by their restricted cell-type specific expression patterns and phenotypes. There are also striking differences between the two motile ciliated cell types. Notably, sperm and Ch neuron cilia express and require entirely different outer dynein arm variants—the first time this has been clearly established in any organism. These differences might reflect the specialized functions for motility in the two cilium types. Moreover, the Ch neuron cilia lack the critical two-headed inner arm dynein (I1/f) but surprisingly retain key regulatory proteins previously associated with it. This may have implications for other motile 9+0 cilia, including vertebrate embryonic nodal cilia required for left-right axis asymmetry. We discuss the possibility that cell-type specificity in ciliary motility machinery might occur in humans, and therefore underlie some of the phenotypic variation observed in PCD caused by different gene mutations. Our work lays the foundation for the increasing use of Drosophila as an excellent model for new motile ciliary gene discovery and validation, for understanding motile cilium function and assembly, as well as understanding the nature of genetic defects underlying human motile ciliopathies.
Collapse
Affiliation(s)
- Petra Zur Lage
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
| | - Fay G Newton
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew P Jarman
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
30
|
Heterochromatin-Enriched Assemblies Reveal the Sequence and Organization of the Drosophila melanogaster Y Chromosome. Genetics 2018; 211:333-348. [PMID: 30420487 PMCID: PMC6325706 DOI: 10.1534/genetics.118.301765] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 11/05/2018] [Indexed: 12/21/2022] Open
Abstract
Heterochromatic regions of the genome are repeat-rich and poor in protein coding genes, and are therefore underrepresented in even the best genome assemblies. One of the most difficult regions of the genome to assemble are sex-limited chromosomes. The Drosophila melanogaster Y chromosome is entirely heterochromatic, yet has wide-ranging effects on male fertility, fitness, and genome-wide gene expression. The genetic basis of this phenotypic variation is difficult to study, in part because we do not know the detailed organization of the Y chromosome. To study Y chromosome organization in D. melanogaster, we develop an assembly strategy involving the in silico enrichment of heterochromatic long single-molecule reads and use these reads to create targeted de novo assemblies of heterochromatic sequences. We assigned contigs to the Y chromosome using Illumina reads to identify male-specific sequences. Our pipeline extends the D. melanogaster reference genome by 11.9 Mb, closes 43.8% of the gaps, and improves overall contiguity. The addition of 10.6 MB of Y-linked sequence permitted us to study the organization of repeats and genes along the Y chromosome. We detected a high rate of duplication to the pericentric regions of the Y chromosome from other regions in the genome. Most of these duplicated genes exist in multiple copies. We detail the evolutionary history of one sex-linked gene family, crystal-Stellate While the Y chromosome does not undergo crossing over, we observed high gene conversion rates within and between members of the crystal-Stellate gene family, Su(Ste), and PCKR, compared to genome-wide estimates. Our results suggest that gene conversion and gene duplication play an important role in the evolution of Y-linked genes.
Collapse
|
31
|
Dupim EG, Goldstein G, Vanderlinde T, Vaz SC, Krsticevic F, Bastos A, Pinhão T, Torres M, David JR, Vilela CR, Carvalho AB. An investigation of Y chromosome incorporations in 400 species of Drosophila and related genera. PLoS Genet 2018; 14:e1007770. [PMID: 30388103 PMCID: PMC6235401 DOI: 10.1371/journal.pgen.1007770] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 11/14/2018] [Accepted: 10/17/2018] [Indexed: 11/23/2022] Open
Abstract
Y chromosomes are widely believed to evolve from a normal autosome through a process of massive gene loss (with preservation of some male genes), shaped by sex-antagonistic selection and complemented by occasional gains of male-related genes. The net result of these processes is a male-specialized chromosome. This might be expected to be an irreversible process, but it was found in 2005 that the Drosophila pseudoobscura Y chromosome was incorporated into an autosome. Y chromosome incorporations have important consequences: a formerly male-restricted chromosome reverts to autosomal inheritance, and the species may shift from an XY/XX to X0/XX sex-chromosome system. In order to assess the frequency and causes of this phenomenon we searched for Y chromosome incorporations in 400 species from Drosophila and related genera. We found one additional large scale event of Y chromosome incorporation, affecting the whole montium subgroup (40 species in our sample); overall 13% of the sampled species (52/400) have Y incorporations. While previous data indicated that after the Y incorporation the ancestral Y disappeared as a free chromosome, the much larger data set analyzed here indicates that a copy of the Y survived as a free chromosome both in montium and pseudoobscura species, and that the current Y of the pseudoobscura lineage results from a fusion between this free Y and the neoY. The 400 species sample also showed that the previously suggested causal connection between X-autosome fusions and Y incorporations is, at best, weak: the new case of Y incorporation (montium) does not have X-autosome fusion, whereas nine independent cases of X-autosome fusions were not followed by Y incorporations. Y incorporation is an underappreciated mechanism affecting Y chromosome evolution; our results show that at least in Drosophila it plays a relevant role and highlight the need of similar studies in other groups. In contrast to other chromosomes (X and autosomes), which are present in males and females, Y chromosomes spend all time in males. Hence it is not surprising that along evolution they became male specialized, e.g., containing a disproportionate amount of male-fertility genes. Interestingly it was found in 2005 that in Drosophila pseudoobscura the Y chromosome reverted to "male-female existence", being incorporated into an autosome. These "Y chromosome incorporations" have important consequences on sex-chromosome evolution, and allow the study of the evolutionary forces that shaped Y chromosomes as they act backwards. As D. pseudoobscura was the second Drosophila species investigated in this respect, it is likely that other cases exist, and that perhaps it is a common phenomenon. In order to answer this question we studied 400 Drosophila species. We found one additional case of Y incorporation, which occurred in the ancestor of Drosophila montium, and currently affects a large number of species; overall 13% of the species we sampled (52/400) have Y incorporations. We also found that a previously suggested cause of Y incorporations (X-autosome fusions) is not a general explanation. Our results show that in Drosophila Y incorporations play a relevant role and highlight the need of similar studies in other groups.
Collapse
Affiliation(s)
- Eduardo G. Dupim
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gabriel Goldstein
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Thyago Vanderlinde
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Suzana C. Vaz
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Flávia Krsticevic
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- CIFASIS, CONICET, Rosario, Santa Fe, Argentina
| | - Aline Bastos
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Thadeo Pinhão
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marcos Torres
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Jean R. David
- Laboratoire Evolution, Génomes et Spéciation (LEGS), CNRS, France
| | - Carlos R. Vilela
- Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Antonio Bernardo Carvalho
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- * E-mail: ,
| |
Collapse
|
32
|
Subcellular Specialization and Organelle Behavior in Germ Cells. Genetics 2018; 208:19-51. [PMID: 29301947 DOI: 10.1534/genetics.117.300184] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 08/17/2017] [Indexed: 11/18/2022] Open
Abstract
Gametes, eggs and sperm, are the highly specialized cell types on which the development of new life solely depends. Although all cells share essential organelles, such as the ER (endoplasmic reticulum), Golgi, mitochondria, and centrosomes, germ cells display unique regulation and behavior of organelles during gametogenesis. These germ cell-specific functions of organelles serve critical roles in successful gamete production. In this chapter, I will review the behaviors and roles of organelles during germ cell differentiation.
Collapse
|
33
|
Kess T, Galindo J, Boulding EG. Genomic divergence between Spanish Littorina saxatilis ecotypes unravels limited admixture and extensive parallelism associated with population history. Ecol Evol 2018; 8:8311-8327. [PMID: 30250705 PMCID: PMC6145028 DOI: 10.1002/ece3.4304] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/14/2018] [Accepted: 05/29/2018] [Indexed: 12/23/2022] Open
Abstract
The rough periwinkle, Littorina saxatilis, is a model system for studying parallel ecological speciation in microparapatry. Phenotypically parallel wave-adapted and crab-adapted ecotypes that hybridize within the middle shore are replicated along the northwestern coast of Spain and have likely arisen from two separate glacial refugia. We tested whether greater geographic separation corresponding to reduced opportunity for contemporary or historical gene flow between parallel ecotypes resulted in less parallel genomic divergence. We sequenced double-digested restriction-associated DNA (ddRAD) libraries from individual snails from upper, mid, and low intertidal levels of three separate sites colonized from two separate refugia. Outlier analysis of 4256 SNP markers identified 34.4% sharing of divergent loci between two geographically close sites; however, these sites each shared only 9.9%-15.1% of their divergent loci with a third more-distant site. STRUCTURE analysis revealed that genotypes from only three of 166 phenotypically intermediate mid-shore individuals appeared to result from recent hybridization, suggesting that hybrids cannot be reliably identified using shell traits. Hierarchical AMOVA indicated that the primary source of genomic differentiation was geographic separation, but also revealed greater similarity of the same ecotype across the two geographically close sites than previously estimated with dominant markers. These results from a model system for ecological speciation suggest that genomic parallelism is affected by the opportunity for historical or contemporary gene flow between populations.
Collapse
Affiliation(s)
- Tony Kess
- Department of Integrative BiologyUniversity of GuelphGuelphONCanada
| | - Juan Galindo
- Departamento de BioquímicaGenética e InmunologíaFacultad de BiologíaUniversidade de VigoVigoSpain
- Centro de Investigación Mariña da Universidade de Vigo (CIM‐UVIGO)VigoSpain
| | | |
Collapse
|
34
|
Argyridou E, Parsch J. Regulation of the X Chromosome in the Germline and Soma of Drosophila melanogaster Males. Genes (Basel) 2018; 9:genes9050242. [PMID: 29734690 PMCID: PMC5977182 DOI: 10.3390/genes9050242] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 12/22/2022] Open
Abstract
During the evolution of heteromorphic sex chromosomes, the sex-specific Y chromosome degenerates, while the X chromosome evolves new mechanisms of regulation. Using bioinformatic and experimental approaches, we investigate the expression of the X chromosome in Drosophila melanogaster. We observe nearly complete X chromosome dosage compensation in male somatic tissues, but not in testis. The X chromosome contains disproportionately fewer genes with high expression in testis than the autosomes, even after accounting for the lack of dosage compensation, which suggests that another mechanism suppresses their expression in the male germline. This is consistent with studies of reporter genes and transposed genes, which find that the same gene has higher expression when autosomal than when X-linked. Using a new reporter gene that is expressed in both testis and somatic tissues, we find that the suppression of X-linked gene expression is limited to genes with high expression in testis and that the extent of the suppression is positively correlated with expression level.
Collapse
Affiliation(s)
- Eliza Argyridou
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Grosshaderner Str. 2, 82152 Planegg-Martinsried, Germany.
| | - John Parsch
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Grosshaderner Str. 2, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
35
|
Congrains C, Campanini EB, Torres FR, Rezende VB, Nakamura AM, de Oliveira JL, Lima ALA, Chahad-Ehlers S, Sobrinho IS, de Brito RA. Evidence of Adaptive Evolution and Relaxed Constraints in Sex-Biased Genes of South American and West Indies Fruit Flies (Diptera: Tephritidae). Genome Biol Evol 2018; 10:380-395. [PMID: 29346618 PMCID: PMC5786236 DOI: 10.1093/gbe/evy009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2018] [Indexed: 12/29/2022] Open
Abstract
Several studies have demonstrated that genes differentially expressed between sexes (sex-biased genes) tend to evolve faster than unbiased genes, particularly in males. The reason for this accelerated evolution is not clear, but several explanations have involved adaptive and nonadaptive mechanisms. Furthermore, the differences of sex-biased expression patterns of closely related species are also little explored out of Drosophila. To address the evolutionary processes involved with sex-biased expression in species with incipient differentiation, we analyzed male and female transcriptomes of Anastrepha fraterculus and Anastrepha obliqua, a pair of species that have diverged recently, likely in the presence of gene flow. Using these data, we inferred differentiation indexes and evolutionary rates and tested for signals of selection in thousands of genes expressed in head and reproductive transcriptomes from both species. Our results indicate that sex-biased and reproductive-biased genes evolve faster than unbiased genes in both species, which is due to both adaptive pressure and relaxed constraints. Furthermore, among male-biased genes evolving under positive selection, we identified some related to sexual functions such as courtship behavior and fertility. These findings suggest that sex-biased genes may have played important roles in the establishment of reproductive isolation between these species, due to a combination of selection and drift, and unveil a plethora of genetic markers useful for more studies in these species and their differentiation.
Collapse
Affiliation(s)
- Carlos Congrains
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, SP, Brazil
| | - Emeline B Campanini
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, SP, Brazil
| | - Felipe R Torres
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, SP, Brazil
| | - Víctor B Rezende
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, SP, Brazil
| | - Aline M Nakamura
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, SP, Brazil
| | | | - André L A Lima
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, SP, Brazil
| | - Samira Chahad-Ehlers
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, SP, Brazil
| | | | - Reinaldo A de Brito
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, SP, Brazil
| |
Collapse
|
36
|
Mahajan S, Bachtrog D. Convergent evolution of Y chromosome gene content in flies. Nat Commun 2017; 8:785. [PMID: 28978907 PMCID: PMC5627270 DOI: 10.1038/s41467-017-00653-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 07/18/2017] [Indexed: 11/25/2022] Open
Abstract
Sex-chromosomes have formed repeatedly across Diptera from ordinary autosomes, and X-chromosomes mostly conserve their ancestral genes. Y-chromosomes are characterized by abundant gene-loss and an accumulation of repetitive DNA, yet the nature of the gene repertoire of fly Y-chromosomes is largely unknown. Here we trace gene-content evolution of Y-chromosomes across 22 Diptera species, using a subtraction pipeline that infers Y genes from male and female genome, and transcriptome data. Few genes remain on old Y-chromosomes, but the number of inferred Y-genes varies substantially between species. Young Y-chromosomes still show clear evidence of their autosomal origins, but most genes on old Y-chromosomes are not simply remnants of genes originally present on the proto-sex-chromosome that escaped degeneration, but instead were recruited secondarily from autosomes. Despite almost no overlap in Y-linked gene content in different species with independently formed sex-chromosomes, we find that Y-linked genes have evolved convergent gene functions associated with testis expression. Thus, male-specific selection appears as a dominant force shaping gene-content evolution of Y-chromosomes across fly species. While X-chromosome gene content tends to be conserved, Y-chromosome evolution is dynamic and difficult to reconstruct. Here, Mahajan and Bachtrog use a subtraction pipeline to identify Y-linked genes in 22 Diptera species, revealing patterns of Y-chromosome gene-content evolution.
Collapse
Affiliation(s)
- Shivani Mahajan
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, 94720, USA
| | - Doris Bachtrog
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, 94720, USA.
| |
Collapse
|
37
|
The New RNA World: Growing Evidence for Long Noncoding RNA Functionality. Trends Genet 2017; 33:665-676. [DOI: 10.1016/j.tig.2017.08.002] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 12/18/2022]
|
38
|
Lu K, Jensen L, Lei L, Yamashita YM. Stay Connected: A Germ Cell Strategy. Trends Genet 2017; 33:971-978. [PMID: 28947158 DOI: 10.1016/j.tig.2017.09.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/24/2017] [Accepted: 09/05/2017] [Indexed: 01/20/2023]
Abstract
Germ cells develop as a cyst of interconnected sibling cells in a broad range of organisms in both sexes. A well-established function of intercellular connectivity is to transport cytoplasmic materials from 'nurse' cells to oocytes, a critical process for developing functional oocytes in ovaries of many species. However, there are situations where connectivity exists without a nursing mechanism, and the biological meaning of such connectivity remains obscure. In this review, we summarize current knowledge on the formation of intercellular connectivity, and discuss its meaning by visiting multiple examples of germ cell connectivity observed in evolutionarily distant species.
Collapse
Affiliation(s)
- Kevin Lu
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA; Medical Scientist Training Program, University of Michigan, Ann Arbor, MI 48109, USA; Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lindy Jensen
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lei Lei
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yukiko M Yamashita
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA; Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
39
|
A Short History and Description of Drosophila melanogaster Classical Genetics: Chromosome Aberrations, Forward Genetic Screens, and the Nature of Mutations. Genetics 2017; 206:665-689. [PMID: 28592503 DOI: 10.1534/genetics.117.199950] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/06/2017] [Indexed: 12/21/2022] Open
Abstract
The purpose of this chapter in FlyBook is to acquaint the reader with the Drosophila genome and the ways in which it can be altered by mutation. Much of what follows will be familiar to the experienced Fly Pusher but hopefully will be useful to those just entering the field and are thus unfamiliar with the genome, the history of how it has been and can be altered, and the consequences of those alterations. I will begin with the structure, content, and organization of the genome, followed by the kinds of structural alterations (karyotypic aberrations), how they affect the behavior of chromosomes in meiotic cell division, and how that behavior can be used. Finally, screens for mutations as they have been performed will be discussed. There are several excellent sources of detailed information on Drosophila husbandry and screening that are recommended for those interested in further expanding their familiarity with Drosophila as a research tool and model organism. These are a book by Ralph Greenspan and a review article by John Roote and Andreas Prokop, which should be required reading for any new student entering a fly lab for the first time.
Collapse
|
40
|
Wallner B, Palmieri N, Vogl C, Rigler D, Bozlak E, Druml T, Jagannathan V, Leeb T, Fries R, Tetens J, Thaller G, Metzger J, Distl O, Lindgren G, Rubin CJ, Andersson L, Schaefer R, McCue M, Neuditschko M, Rieder S, Schlötterer C, Brem G. Y Chromosome Uncovers the Recent Oriental Origin of Modern Stallions. Curr Biol 2017; 27:2029-2035.e5. [PMID: 28669755 DOI: 10.1016/j.cub.2017.05.086] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/19/2017] [Accepted: 05/26/2017] [Indexed: 11/25/2022]
Abstract
The Y chromosome directly reflects male genealogies, but the extremely low Y chromosome sequence diversity in horses has prevented the reconstruction of stallion genealogies [1, 2]. Here, we resolve the first Y chromosome genealogy of modern horses by screening 1.46 Mb of the male-specific region of the Y chromosome (MSY) in 52 horses from 21 breeds. Based on highly accurate pedigree data, we estimated the de novo mutation rate of the horse MSY and showed that various modern horse Y chromosome lineages split much later than the domestication of the species. Apart from few private northern European haplotypes, all modern horse breeds clustered together in a roughly 700-year-old haplogroup that was transmitted to Europe by the import of Oriental stallions. The Oriental horse group consisted of two major subclades: the Original Arabian lineage and the Turkoman horse lineage. We show that the English Thoroughbred MSY was derived from the Turkoman lineage and that English Thoroughbred sires are largely responsible for the predominance of this haplotype in modern horses.
Collapse
Affiliation(s)
- Barbara Wallner
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna 1210, Austria.
| | - Nicola Palmieri
- Institut für Populationsgenetik, University of Veterinary Medicine Vienna, Vienna 1210, Austria; Institute of Parasitology, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Claus Vogl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Doris Rigler
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Elif Bozlak
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Thomas Druml
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern 3001, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern 3001, Switzerland
| | - Ruedi Fries
- Lehrstuhl für Tierzucht, Technische Universität München, Freising 85354, Germany
| | - Jens Tetens
- Institute of Animal Breeding and Husbandry, University of Kiel, Kiel 24098, Germany; Functional Breeding Group, Department of Animal Sciences, Georg-August-University Göttingen, Göttingen 37077, Germany
| | - Georg Thaller
- Institute of Animal Breeding and Husbandry, University of Kiel, Kiel 24098, Germany
| | - Julia Metzger
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover 30559, Germany
| | - Ottmar Distl
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover 30559, Germany
| | - Gabriella Lindgren
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala 75007, Sweden
| | - Carl-Johan Rubin
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala 75123, Sweden
| | - Leif Andersson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala 75007, Sweden; Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala 75123, Sweden; Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4461, USA
| | - Robert Schaefer
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, MN 55108, USA
| | - Molly McCue
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, MN 55108, USA
| | | | - Stefan Rieder
- Agroscope, Swiss National Stud Farm, Avenches 1580, Switzerland
| | - Christian Schlötterer
- Institut für Populationsgenetik, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Gottfried Brem
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| |
Collapse
|
41
|
Meisel RP, Gonzales CA, Luu H. The house fly Y Chromosome is young and minimally differentiated from its ancient X Chromosome partner. Genome Res 2017; 27:1417-1426. [PMID: 28619849 PMCID: PMC5538557 DOI: 10.1101/gr.215509.116] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 06/08/2017] [Indexed: 12/21/2022]
Abstract
Canonical ancient sex chromosome pairs consist of a gene rich X (or Z) Chromosome and a male-limited (or female-limited) Y (or W) Chromosome that is gene poor. In contrast to highly differentiated sex chromosomes, nascent sex chromosome pairs are homomorphic or very similar in sequence content. Nascent sex chromosomes can arise if an existing sex chromosome fuses to an autosome or an autosome acquires a new sex-determining locus/allele. Sex chromosomes often differ between closely related species and can even be polymorphic within species, suggesting that nascent sex chromosomes arise frequently over the course of evolution. Previously documented sex chromosome transitions involve changes to both members of the sex chromosome pair (X and Y, or Z and W). The house fly has sex chromosomes that resemble the ancestral fly karyotype that originated ∼100 million yr ago; therefore, the house fly is expected to have X and Y Chromosomes with different gene content. We tested this hypothesis using whole-genome sequencing and transcriptomic data, and we discovered little evidence for genetic differentiation between the X and Y in house fly. We propose that the house fly has retained the ancient X Chromosome, but the ancestral Y was replaced by an X Chromosome carrying a new male determining gene. Our proposed hypothesis provides a mechanism for how one member of a sex chromosome pair can experience evolutionary turnover while the other member remains unaffected.
Collapse
Affiliation(s)
- Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA
| | - Christopher A Gonzales
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA
| | - Hoang Luu
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA
| |
Collapse
|
42
|
Lipinska AP, Toda NRT, Heesch S, Peters AF, Cock JM, Coelho SM. Multiple gene movements into and out of haploid sex chromosomes. Genome Biol 2017; 18:104. [PMID: 28595587 PMCID: PMC5463336 DOI: 10.1186/s13059-017-1201-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/27/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Long-term evolution of sex chromosomes is a dynamic process shaped by gene gain and gene loss. Sex chromosome gene traffic has been studied in XY and ZW systems but no detailed analyses have been carried out for haploid phase UV sex chromosomes. Here, we explore sex-specific sequences of seven brown algal species to understand the dynamics of the sex-determining region (SDR) gene content across 100 million years of evolution. RESULTS A core set of sex-linked genes is conserved across all the species investigated, but we also identify modifications of both the U and the V SDRs that occurred in a lineage-specific fashion. These modifications involve gene loss, gene gain and relocation of genes from the SDR to autosomes. Evolutionary analyses suggest that the SDR genes are evolving rapidly and that this is due to relaxed purifying selection. Expression analysis indicates that genes that were acquired from the autosomes have been retained in the SDR because they confer a sex-specific role in reproduction. By examining retroposed genes in Saccharina japonica, we demonstrate that UV sex chromosomes have generated a disproportionate number of functional orphan retrogenes compared with autosomes. Movement of genes out of the UV sex chromosome could be a means to compensate for gene loss from the non-recombining region, as has been suggested for Y-derived retrogenes in XY sexual systems. CONCLUSION This study provides the first analysis of gene traffic in a haploid UV system and identifies several features of general relevance to the evolution of sex chromosomes.
Collapse
Affiliation(s)
- Agnieszka P Lipinska
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Nicholas R T Toda
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Svenja Heesch
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | | | - J Mark Cock
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Susana M Coelho
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France.
| |
Collapse
|
43
|
Hybrid sterility and evolution in Hawaiian Drosophila: differential gene and allele-specific expression analysis of backcross males. Heredity (Edinb) 2016; 117:100-8. [PMID: 27220308 DOI: 10.1038/hdy.2016.31] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/18/2016] [Accepted: 02/24/2016] [Indexed: 12/25/2022] Open
Abstract
The Hawaiian Drosophila are an iconic example of sequential colonization, adaptive radiation and speciation on islands. Genetic and phenotypic analysis of closely related species pairs that exhibit incomplete reproductive isolation can provide insights into the mechanisms of speciation. Drosophila silvestris from Hawai'i Island and Drosophila planitibia from Maui are two closely related allopatric Hawaiian picture-winged Drosophila that produce sterile F1 males but fertile F1 females, a pattern consistent with Haldane's rule. Backcrossing F1 hybrid females between these two species to parental species gives rise to recombinant males with three distinct sperm phenotypes despite a similar genomic background: motile sperm, no sperm (sterile), and immotile sperm. We found that these three reproductive morphologies of backcross hybrid males produce divergent gene expression profiles in testes, as measured with RNA sequencing. There were a total of 71 genes significantly differentially expressed between backcross males with no sperm compared with those backcross males with motile sperm and immotile sperm, but no significant differential gene expression between backcross males with motile sperm and backcross males with immotile sperm. All of these genes were underexpressed in males with no sperm, including a number of genes with previously known activities in adult testis. An allele-specific expression analysis showed overwhelmingly more cis-divergent than trans-divergent genes, with no significant difference in the ratio of cis- and trans-divergent genes among the sperm phenotypes. Overall, the results indicate that the regulation of gene expression involved in sperm production likely diverged relatively rapidly between these two closely related species.
Collapse
|
44
|
Araripe LO, Tao Y, Lemos B. Interspecific Y chromosome variation is sufficient to rescue hybrid male sterility and is influenced by the grandparental origin of the chromosomes. Heredity (Edinb) 2016; 116:516-22. [PMID: 26980343 DOI: 10.1038/hdy.2016.11] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 11/25/2015] [Accepted: 12/29/2015] [Indexed: 12/15/2022] Open
Abstract
Y chromosomes display population variation within and between species. Co-evolution within populations is expected to produce adaptive interactions between Y chromosomes and the rest of the genome. One consequence is that Y chromosomes from disparate populations could disrupt harmonious interactions between co-evolved genetic elements and result in reduced male fertility, sterility or inviability. Here we address the contribution of 'heterospecific Y chromosomes' to fertility in hybrid males carrying a homozygous region of Drosophila mauritiana introgressed in the Drosophila simulans background. In order to detect Y chromosome-autosome interactions, which may go unnoticed in a single-species background of autosomes, we constructed hybrid genotypes involving three sister species: Drosophila simulans, D. mauritiana, and D. sechellia. These engineered strains varied due to: (i) species origin of the Y chromosome (D. simulans or D. sechellia); (ii) location of the introgressed D. mauritiana segment on the D. simulans third chromosome, and (iii) grandparental genomic background (three genotypes of D. simulans). We find complex interactions between the species origin of the Y chromosome, the identity of the D. mauritiana segment and the grandparental genetic background donating the chromosomes. Unexpectedly, the interaction of the Y chromosome and one segment of D. mauritiana drastically reduced fertility in the presence of Ysim, whereas the fertility is partially rescued by the Y chromosome of D. sechellia when it descends from a specific grandparental genotype. The restoration of fertility occurs in spite of an autosomal and X-linked genome that is mostly of D. simulans origin. These results illustrate the multifactorial basis of genetic interactions involving the Y chromosome. Our study supports the hypothesis that the Y chromosome can contribute significantly to the evolution of reproductive isolation and highlights the conditional manifestation of infertility in specific genotypic combinations.
Collapse
Affiliation(s)
- L O Araripe
- Laboratório de Biologia Molecular de Insetos, Fundação Oswaldo Cruz, IOC, Rio de Janeiro, Brasil
| | - Y Tao
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, USA
| | - B Lemos
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
45
|
Koerich LB, Dupim EG, Faria LL, Dias FA, Dias AF, Trindade GS, Mesquita RD, Carvalho AB. First report of Y-linked genes in the kissing bug Rhodnius prolixus. BMC Genomics 2016; 17:100. [PMID: 26861771 PMCID: PMC4746886 DOI: 10.1186/s12864-016-2425-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/01/2016] [Indexed: 12/13/2022] Open
Abstract
Background Due to an abundance of repetitive DNA, the annotation of heterochromatic regions of the genome such as the Y chromosome is problematic. The Y chromosome is involved in key biological functions such as male-fertility and sex-determination and hence, accurate identification of its sequences is vital. The hemipteran insect Rhodnius prolixus is an important vector of Chagas disease, a trypanosomiasis affecting 6–7 million people worldwide. Here we report the identification of the first Y-linked genes of this species. Results The R. prolixus genome was recently sequenced using separate libraries for each sex and the sequences assembled only with male reads are candidates for Y linkage. We found 766 such candidates and PCR tests with the ten largest ones, confirmed Y-linkage for all of them, suggesting that "separate libraries" is a reliable method for the identification of Y-linked sequences. BLAST analyses of the 766 candidate scaffolds revealed that 568 scaffolds contained genes or part of putative genes. We tested Y-linkage for 36 candidates and found that nine of them are Y-linked (the PCR results for the other 25 genes were inconclusive or revealed autosomal/X-linkage). Hence, we describe in this study, for the first time, Y-linked genes in the R. prolixus genome: two zinc finger proteins (Znf-Y1 and Znf-Y2), one metalloproteinase (Met-Y), one aconitase/iron regulatory protein (Aco-Y) and five genes devoid of matches in any database (Rpr-Y1 to Rpr-Y5). Expression profile studies revealed that eight genes are expressed mainly in adult testis (some of which presented a weak expression in the initial developmental stages), while Aco-Y has a gut-restricted expression. Conclusions In this study we showed that the approach used for the R. prolixus genome project (separate sequencing of male and female DNA) is key to easy and fast identification of sex-specific (e.g. Y chromosome sequences). The nine new R. prolixus Y-linked genes reported here provide unique markers for population and phylogenetic analysis and further functional studies of these genes may answer some questions about sex determination, male fertility and Y chromosome evolution in this important species. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2425-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Leonardo B Koerich
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil. .,Departamento de Parasitologia, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Eduardo G Dupim
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Leonardo L Faria
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Felipe A Dias
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Ana F Dias
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Gabriela S Trindade
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Rafael D Mesquita
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Antonio B Carvalho
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
46
|
Abstract
Contrary to the pattern seen in mammalian sex chromosomes, where most Y-linked genes have X-linked homologs, the Drosophila X and Y chromosomes appear to be unrelated. Most of the Y-linked genes have autosomal paralogs, so autosome-to-Y transposition must be the main source of Drosophila Y-linked genes. Here we show how these genes were acquired. We found a previously unidentified gene (flagrante delicto Y, FDY) that originated from a recent duplication of the autosomal gene vig2 to the Y chromosome of Drosophila melanogaster. Four contiguous genes were duplicated along with vig2, but they became pseudogenes through the accumulation of deletions and transposable element insertions, whereas FDY remained functional, acquired testis-specific expression, and now accounts for ∼20% of the vig2-like mRNA in testis. FDY is absent in the closest relatives of D. melanogaster, and DNA sequence divergence indicates that the duplication to the Y chromosome occurred ∼2 million years ago. Thus, FDY provides a snapshot of the early stages of the establishment of a Y-linked gene and demonstrates how the Drosophila Y has been accumulating autosomal genes.
Collapse
|
47
|
Dean R, Lemos B, Dowling DK. Context-dependent effects of Y chromosome and mitochondrial haplotype on male locomotive activity in Drosophila melanogaster. J Evol Biol 2015. [DOI: 10.1111/jeb.12702] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- R. Dean
- School of Biological Sciences; Monash University; Clayton Vic. Australia
- Department of Genetics, Environment and Evolution; University College London; London UK
| | - B. Lemos
- Molecular and Integrative Physiological Sciences Program; Department of Environmental Health; Harvard School of Public Health; Boston MA USA
| | - D. K. Dowling
- School of Biological Sciences; Monash University; Clayton Vic. Australia
| |
Collapse
|
48
|
Meisel RP, Scott JG, Clark AG. Transcriptome Differences between Alternative Sex Determining Genotypes in the House Fly, Musca domestica. Genome Biol Evol 2015; 7:2051-61. [PMID: 26142430 PMCID: PMC4524491 DOI: 10.1093/gbe/evv128] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Sex determination evolves rapidly, often because of turnover of the genes at the top of the pathway. The house fly, Musca domestica, has a multifactorial sex determination system, allowing us to identify the selective forces responsible for the evolutionary turnover of sex determination in action. There is a male determining factor, M, on the Y chromosome (YM), which is probably the ancestral state. An M factor on the third chromosome (IIIM) has reached high frequencies in multiple populations across the world, but the evolutionary forces responsible for the invasion of IIIM are not resolved. To test whether the IIIM chromosome invaded because of sex-specific selection pressures, we used mRNA sequencing to determine whether isogenic males that differ only in the presence of the YM or IIIM chromosome have different gene expression profiles. We find that more genes are differentially expressed between YM and IIIM males in testis than head, and that genes with male-biased expression are most likely to be differentially expressed between YM and IIIM males. We additionally find that IIIM males have a “masculinized” gene expression profile, suggesting that the IIIM chromosome has accumulated an excess of male-beneficial alleles because of its male-limited transmission. These results are consistent with the hypothesis that sex-specific selection acts on alleles linked to the male-determining locus driving evolutionary turnover in the sex determination pathway.
Collapse
Affiliation(s)
| | | | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University
| |
Collapse
|
49
|
Bidon T, Schreck N, Hailer F, Nilsson MA, Janke A. Genome-Wide Search Identifies 1.9 Mb from the Polar Bear Y Chromosome for Evolutionary Analyses. Genome Biol Evol 2015; 7:2010-22. [PMID: 26019166 PMCID: PMC4524476 DOI: 10.1093/gbe/evv103] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The male-inherited Y chromosome is the major haploid fraction of the mammalian genome, rendering Y-linked sequences an indispensable resource for evolutionary research. However, despite recent large-scale genome sequencing approaches, only a handful of Y chromosome sequences have been characterized to date, mainly in model organisms. Using polar bear (Ursus maritimus) genomes, we compare two different in silico approaches to identify Y-linked sequences: 1) Similarity to known Y-linked genes and 2) difference in the average read depth of autosomal versus sex chromosomal scaffolds. Specifically, we mapped available genomic sequencing short reads from a male and a female polar bear against the reference genome and identify 112 Y-chromosomal scaffolds with a combined length of 1.9 Mb. We verified the in silico findings for the longer polar bear scaffolds by male-specific in vitro amplification, demonstrating the reliability of the average read depth approach. The obtained Y chromosome sequences contain protein-coding sequences, single nucleotide polymorphisms, microsatellites, and transposable elements that are useful for evolutionary studies. A high-resolution phylogeny of the polar bear patriline shows two highly divergent Y chromosome lineages, obtained from analysis of the identified Y scaffolds in 12 previously published male polar bear genomes. Moreover, we find evidence of gene conversion among ZFX and ZFY sequences in the giant panda lineage and in the ancestor of ursine and tremarctine bears. Thus, the identification of Y-linked scaffold sequences from unordered genome sequences yields valuable data to infer phylogenomic and population-genomic patterns in bears.
Collapse
Affiliation(s)
- Tobias Bidon
- Senckenberg Biodiversity and Climate Research Centre Frankfurt, Frankfurt am Main, Germany International Graduate School of Science and Engineering (IGSSE), Technische Universität München, Garching, Germany
| | - Nancy Schreck
- Senckenberg Biodiversity and Climate Research Centre Frankfurt, Frankfurt am Main, Germany
| | - Frank Hailer
- Senckenberg Biodiversity and Climate Research Centre Frankfurt, Frankfurt am Main, Germany School of Biosciences, Cardiff University, Wales, United Kingdom
| | - Maria A Nilsson
- Senckenberg Biodiversity and Climate Research Centre Frankfurt, Frankfurt am Main, Germany
| | - Axel Janke
- Senckenberg Biodiversity and Climate Research Centre Frankfurt, Frankfurt am Main, Germany Institute for Ecology, Evolution & Diversity, Goethe University Frankfurt, Germany
| |
Collapse
|
50
|
Hoskins RA, Carlson JW, Wan KH, Park S, Mendez I, Galle SE, Booth BW, Pfeiffer BD, George RA, Svirskas R, Krzywinski M, Schein J, Accardo MC, Damia E, Messina G, Méndez-Lago M, de Pablos B, Demakova OV, Andreyeva EN, Boldyreva LV, Marra M, Carvalho AB, Dimitri P, Villasante A, Zhimulev IF, Rubin GM, Karpen GH, Celniker SE. The Release 6 reference sequence of the Drosophila melanogaster genome. Genome Res 2015; 25:445-58. [PMID: 25589440 PMCID: PMC4352887 DOI: 10.1101/gr.185579.114] [Citation(s) in RCA: 313] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Drosophila melanogaster plays an important role in molecular,
genetic, and genomic studies of heredity, development, metabolism, behavior, and
human disease. The initial reference genome sequence reported more than a decade ago
had a profound impact on progress in Drosophila research, and
improving the accuracy and completeness of this sequence continues to be important to
further progress. We previously described improvement of the 117-Mb sequence in the
euchromatic portion of the genome and 21 Mb in the heterochromatic portion, using a
whole-genome shotgun assembly, BAC physical mapping, and clone-based finishing. Here,
we report an improved reference sequence of the single-copy and middle-repetitive
regions of the genome, produced using cytogenetic mapping to mitotic and polytene
chromosomes, clone-based finishing and BAC fingerprint verification, ordering of
scaffolds by alignment to cDNA sequences, incorporation of other map and sequence
data, and validation by whole-genome optical restriction mapping. These data
substantially improve the accuracy and completeness of the reference sequence and the
order and orientation of sequence scaffolds into chromosome arm assemblies.
Representation of the Y chromosome and other heterochromatic regions
is particularly improved. The new 143.9-Mb reference sequence, designated Release 6,
effectively exhausts clone-based technologies for mapping and sequencing. Highly
repeat-rich regions, including large satellite blocks and functional elements such as
the ribosomal RNA genes and the centromeres, are largely inaccessible to current
sequencing and assembly methods and remain poorly represented. Further significant
improvements will require sequencing technologies that do not depend on molecular
cloning and that produce very long reads.
Collapse
Affiliation(s)
- Roger A Hoskins
- Department of Genome Dynamics, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA;
| | - Joseph W Carlson
- Department of Genome Dynamics, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Kenneth H Wan
- Department of Genome Dynamics, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Soo Park
- Department of Genome Dynamics, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Ivonne Mendez
- Department of Genome Dynamics, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Samuel E Galle
- Department of Genome Dynamics, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Benjamin W Booth
- Department of Genome Dynamics, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Barret D Pfeiffer
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA
| | - Reed A George
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA
| | - Robert Svirskas
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA
| | - Martin Krzywinski
- Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
| | - Jacqueline Schein
- Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
| | - Maria Carmela Accardo
- Dipartimento di Biologia e Biotecnologie "Charles Darwin" and Istituto Pasteur Fondazione Cenci-Bolognetti, Sapienza Università di Roma, 00185 Roma, Italy
| | - Elisabetta Damia
- Dipartimento di Biologia e Biotecnologie "Charles Darwin" and Istituto Pasteur Fondazione Cenci-Bolognetti, Sapienza Università di Roma, 00185 Roma, Italy
| | - Giovanni Messina
- Dipartimento di Biologia e Biotecnologie "Charles Darwin" and Istituto Pasteur Fondazione Cenci-Bolognetti, Sapienza Università di Roma, 00185 Roma, Italy
| | - María Méndez-Lago
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Beatriz de Pablos
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Olga V Demakova
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Evgeniya N Andreyeva
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Lidiya V Boldyreva
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Marco Marra
- Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
| | - A Bernardo Carvalho
- Departamento de Genética, Universidade Federal do Rio de Janeiro, CEP 21944-970, Rio de Janeiro, Brazil
| | - Patrizio Dimitri
- Dipartimento di Biologia e Biotecnologie "Charles Darwin" and Istituto Pasteur Fondazione Cenci-Bolognetti, Sapienza Università di Roma, 00185 Roma, Italy
| | - Alfredo Villasante
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Igor F Zhimulev
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Novosibirsk, 630090, Russia; Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Gerald M Rubin
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA
| | - Gary H Karpen
- Department of Genome Dynamics, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - Susan E Celniker
- Department of Genome Dynamics, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA;
| |
Collapse
|