1
|
Buffan L, Condamine FL, Stutz NS, Pujos F, Antoine PO, Marivaux L. The fate of South America's endemic mammalian fauna in response to the most dramatic Cenozoic climate disruption. Proc Natl Acad Sci U S A 2025; 122:e2419520122. [PMID: 40324071 PMCID: PMC12107189 DOI: 10.1073/pnas.2419520122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/30/2025] [Indexed: 05/07/2025] Open
Abstract
Around 34 Mya, the Eocene-Oligocene transition (EOT) marked the most dramatic global climatic cooling of the Cenozoic. On a planetary scale, paleontological evidence suggests that this transition was associated with major faunal turnovers, sometimes even regarded as a mass extinction crisis. In South America, there is no consensus on the response of the endemic mammals to this transition. Here, using a vetted fossil dataset and cutting-edge Bayesian methods, we analyzed the dynamics of South American mammal (SAM) diversification and their possible drivers across latitude (tropical vs. extratropical), taxonomic groups, and trophic guilds throughout the Eocene-Oligocene (ca. 56 to 23 Ma). Our results did not evidence any mass extinction among SAM at the EOT. Instead, they experienced a gradual and long-term diversity decline from the middle Eocene to the early Oligocene, followed by a sudden waxing-and-waning diversity associated with a large taxonomic-but not ecological-turnover. Tropical and extratropical lineages have had very distinct macroevolutionary histories. No effective change in the pace at which tropical lineages diversify was found, thus favoring the tropical stability hypothesis proposed by Wallace. Diversity-dependent effects, temperature, and Andean uplift were recovered as probable drivers of SAM diversification across the period. Contrasting evidence casts doubt on the common hypothesis primarily linking Oligocene faunal changes to grassland expansion. Our findings illustrate the uniqueness of the deep-time interplay between endemic SAM and their physical environment in a context of climatic shift, highlighting the need to consider regional idiosyncrasies for understanding the coevolution of life and climate.
Collapse
Affiliation(s)
- Lucas Buffan
- Équipes Paléontologie − Phylogénie Évolution Moléculaire, Institut des Sciences de l’Évolution de Montpellier, Université de Montpellier, CNRS, Institut de Recherche pour le Développement, Montpellier cedex 534095, France
| | - Fabien L. Condamine
- Équipes Paléontologie − Phylogénie Évolution Moléculaire, Institut des Sciences de l’Évolution de Montpellier, Université de Montpellier, CNRS, Institut de Recherche pour le Développement, Montpellier cedex 534095, France
| | - Narla S. Stutz
- Équipes Paléontologie − Phylogénie Évolution Moléculaire, Institut des Sciences de l’Évolution de Montpellier, Université de Montpellier, CNRS, Institut de Recherche pour le Développement, Montpellier cedex 534095, France
| | - François Pujos
- Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales, Centro Científico Tecnológico–Consejo Nacional de Investigaciones Científicas y Técnicas–Mendoza, Parque General San Martín, Mendoza5500, Argentina
| | - Pierre-Olivier Antoine
- Équipes Paléontologie − Phylogénie Évolution Moléculaire, Institut des Sciences de l’Évolution de Montpellier, Université de Montpellier, CNRS, Institut de Recherche pour le Développement, Montpellier cedex 534095, France
| | - Laurent Marivaux
- Équipes Paléontologie − Phylogénie Évolution Moléculaire, Institut des Sciences de l’Évolution de Montpellier, Université de Montpellier, CNRS, Institut de Recherche pour le Développement, Montpellier cedex 534095, France
| |
Collapse
|
2
|
Saulsbury JG, Parins-Fukuchi CT, Wilson CJ, Reitan T, Liow LH. Reply to Johnson: Holistic evaluation of ecological models in paleobiology. Proc Natl Acad Sci U S A 2025; 122:e2415303122. [PMID: 40030032 PMCID: PMC11912387 DOI: 10.1073/pnas.2415303122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Affiliation(s)
- James G. Saulsbury
- Natural History Museum, University of Oslo, Oslo0187, Norway
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS66045
| | - C. Tomomi Parins-Fukuchi
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ONM5S 3B2, Canada
| | - Connor J. Wilson
- Natural History Museum, University of Oslo, Oslo0187, Norway
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ85721
| | - Trond Reitan
- Natural History Museum, University of Oslo, Oslo0187, Norway
- Department of Geosciences, Center for Planetary Habitability, University of Oslo, Oslo0371, Norway
| | - Lee Hsiang Liow
- Natural History Museum, University of Oslo, Oslo0187, Norway
- Department of Geosciences, Center for Planetary Habitability, University of Oslo, Oslo0371, Norway
| |
Collapse
|
3
|
Johnson EC. Curve-fitting alone cannot validate neutral theory. Proc Natl Acad Sci U S A 2025; 122:e2412160122. [PMID: 40030020 PMCID: PMC11912361 DOI: 10.1073/pnas.2412160122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Affiliation(s)
- Evan C Johnson
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
4
|
Zeng Y, Hembry DH. Coevolution-induced selection for and against phenotypic novelty shapes species richness in clade co-diversification. J Evol Biol 2024; 37:1510-1522. [PMID: 38824405 DOI: 10.1093/jeb/voae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024]
Abstract
Coevolution can occur because of species interactions. However, it remains unclear how coevolutionary processes translate into the accumulation of species richness over macroevolutionary timescales. Assuming speciation occurs as a result of genetic differentiation across space due to dispersal limitation, we examine the effects of coevolution-induced phenotypic selection on species diversification. Based on the idea that dispersers often carry novel phenotypes, we propose and test two hypotheses. (1) Stability hypothesis: selection against phenotypic novelty enhances species diversification by strengthening dispersal limitation. (2) Novelty hypothesis: selection for phenotypic novelty impedes species diversification by weakening dispersal limitation. We simulate clade co-diversification using an individual-based model, considering scenarios where phenotypic selection is shaped by neutral dynamics, mutualistic coevolution, or antagonistic coevolution, where coevolution operates through trait matching or trait difference, and where the strength of coevolutionary selection is symmetrical or asymmetrical. Our key assumption that interactions occur between an independent party (whose individuals can establish or persist independently, e.g., hosts) and a dependent party (whose individuals cannot establish or persist independently, for example, parasites or obligate mutualists) yields two contrasting results. The stability hypothesis is supported in the dependent clade but not in the independent clade. Conversely, the novelty hypothesis is supported in the independent clade but not in the dependent clade. These results are partially corroborated by empirical dispersal data, suggesting that these mechanisms might potentially explain the diversification of some of the most species-rich clades in the Tree of Life.
Collapse
Affiliation(s)
- Yichao Zeng
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, United States
| | - David H Hembry
- Department of Biology, University of Texas Permian Basin, Odessa, TX, United States
| |
Collapse
|
5
|
Enquist BJ, Erwin D, Savage V, Marquet PA. Scaling approaches and macroecology provide a foundation for assessing ecological resilience in the Anthropocene. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230010. [PMID: 38583479 PMCID: PMC10999275 DOI: 10.1098/rstb.2023.0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 02/26/2024] [Indexed: 04/09/2024] Open
Abstract
In the Anthropocene, intensifying ecological disturbances pose significant challenges to our predictive capabilities for ecosystem responses. Macroecology-which focuses on emergent statistical patterns in ecological systems-unveils consistent regularities in the organization of biodiversity and ecosystems. These regularities appear in terms of abundance, body size, geographical range, species interaction networks, or the flux of matter and energy. This paper argues for moving beyond qualitative resilience metaphors, such as the 'ball and cup', towards a more quantitative macroecological framework. We suggest a conceptual and theoretical basis for ecological resilience that integrates macroecology with a stochastic diffusion approximation constrained by principles of biological symmetry. This approach provides an alternative novel framework for studying ecological resilience in the Anthropocene. We demonstrate how our framework can effectively quantify the impacts of major disturbances and their extensive ecological ramifications. We further show how biological scaling insights can help quantify the consequences of major disturbances, emphasizing their cascading ecological impacts. The nature of these impacts prompts a re-evaluation of our understanding of resilience. Emphasis on regularities of ecological assemblages can help illuminate resilience dynamics and offer a novel basis to predict and manage the impacts of disturbance in the Anthropocene more efficiently. This article is part of the theme issue 'Ecological novelty and planetary stewardship: biodiversity dynamics in a transforming biosphere'.
Collapse
Affiliation(s)
- Brian J. Enquist
- The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Arizona, AZ 85721, USA
| | - Doug Erwin
- The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
- Department of Paleobiology, MRC-121, National Museum of Natural History, Washington, DC 20013-7012, USA
| | - Van Savage
- The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
- Department of Ecology and Evolutionary Biology and Department of Computational Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Pablo A. Marquet
- The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
- Instituto de Sistemas Complejos de Valparaíso (ISCV), CP 2340000 Valparaíso, Chile
- Departamento de Ecología, Facultad de Ciemcias Biológicas, Pontificia Universidad Católica de Chile, CP 8331150, Santiago, Chile
- Centro de Modelamiento Matemático (CMM), Universidad de Chile, International Research Laboratory, 2807, CNRS, CP 8370456 Santiago, Chile
| |
Collapse
|