1
|
Jiang J, Zhang L, Wu G, Zhang J, Yang Y, He W, Zhu J, Zhang J, Qin Q. Efficient Electrochemical-Enzymatic Conversion of PET to Formate Coupled with Nitrate Reduction Over Ru-Doped Co 3O 4 Catalysts. Angew Chem Int Ed Engl 2025; 64:e202421240. [PMID: 40103537 DOI: 10.1002/anie.202421240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/18/2025] [Accepted: 03/18/2025] [Indexed: 03/20/2025]
Abstract
Electrochemical reforming presents a sustainable route for the conversion of nitrate (NO3 -) and polyethylene terephthalate (PET) into value-added chemicals, such as ammonia (NH3) and formic acid (HCOOH). However, its widespread application has been constrained by low selectivity due to the complexity of reduction processes and thus energy scaling limitations. In this study, the atomically dispersed Ru sites in Co3O4 synergistically interact with Co centers, facilitating the adsorption and activation of hydroxyl radicals (OH*) and ethylene glycol (EG), resulting in a remarkable HCOOH selectivity of 99% and a yield rate of 11.2 mmol h-1 cm-2 surpassing that of pristine Co3O4 (55% and 3.8 mmol h-1 cm-2). Furthermore, when applied as a bifunctional cathode catalyst, Ru-Co3O4 achieves a remarkable Faradaic efficiency (FE) of 98.5% for NH3 production (3.54 mmol h-1 cm-2) at -0.3 V versus RHE. Additionally, we developed a prototype device powered by a commercial silicon photovoltaic cell, enabling on-site solar-driven production of formate and NH3 through enzyme-catalyzed PET and NO3 - conversion. This study offers a viable approach for waste valorization and green chemical production, paving the way for sustainable energy applications.
Collapse
Affiliation(s)
- Jiadi Jiang
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Leting Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Guanzheng Wu
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Jianrui Zhang
- Shenzhen X-institute, Lanjing Middle Road, Shenzhen, 518000, China
| | - Yidong Yang
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Wenhui He
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jun Zhu
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
| | - Jian Zhang
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Qing Qin
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| |
Collapse
|
2
|
Ran W, Zhao H, Zhang X, Chen N, Sun JF, Pan W, Liu J, Liao C, Liu R, Jiang G. Combining a Pd Cluster and a Built-in Electric Field as a Biomimic for Stable C-Cl Bond Polarization. ACS NANO 2025; 19:18843-18855. [PMID: 40340331 DOI: 10.1021/acsnano.5c04994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Adopting the essence of enzyme catalysis, the strong binding of substrates into the active site pocket for their selective activation through multiple noncovalent interactions in the reactive site design can effectively enhance the electrocatalysis process. However, mimicking the enzyme catalytic process, particularly the introduction of reactant activation mechanisms, remains a significant challenge. Herein, we present a Pd cluster inside the Fe2N-Fe3O4-based built-in electric field (BEF), denoted as Pd/Fe2N-Fe3O4, to serve as an enzyme mimic to activate stable C-Cl bonds. Theoretical calculations and in situ Raman indicate that the probe molecule 2,4-dichlorophenol (2,4-DCP) adsorbs onto the Pd site and rotates inside the BEF with the C4-Cl bond being selectively activated and elongated from 1.73 to 1.82 Å. This makes Pd/Fe2N-Fe3O4 an excellent electrocatalytic hydrodechlorination catalyst, with Pd usage down to 2.5 μg cm-2, which is 32.7-360 times less than that of conventional catalysts like Pd/C, and achieving a Faradaic efficiency exceeding 20%. We reveal that besides H*-mediated electrochemical reduction, Pd/Fe2N-Fe3O4 also hydrodechlorinates activated 2,4-DCP via the proton-electron coupled transfer pathway. This understanding of the role of BEF in reactant activation, along with the strategy of integrating BEF and noble metals to mimic enzymes, provides a direction for the design of advanced electrocatalysts.
Collapse
Affiliation(s)
- Wei Ran
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049 China
| | - Huachao Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049 China
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecological and Resources Engineering, Wuyi University, Wuyishan 354300 China
| | - Xiaoling Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049 China
| | - Ning Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute of Advanced Study, UCAS, Hangzhou 310024 China
| | - Jie-Fang Sun
- Beijing Center for Disease Prevention and Control, Beijing 100013 China
| | - Wenxiao Pan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049 China
| | - Jingfu Liu
- Institute of Environment and Health, Jianghan University, Wuhan 430056 China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049 China
- School of Environment, Hangzhou Institute of Advanced Study, UCAS, Hangzhou 310024 China
| | - Rui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049 China
- School of Environment, Hangzhou Institute of Advanced Study, UCAS, Hangzhou 310024 China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049 China
- School of Environment, Hangzhou Institute of Advanced Study, UCAS, Hangzhou 310024 China
| |
Collapse
|
3
|
Lu S, Li X, Zhang G, Wang S. Unlocking single-atom induced electronic metal-support interactions in electrocatalytic one-electron water oxidation for wastewater purification. Nat Commun 2025; 16:4346. [PMID: 40348776 PMCID: PMC12065883 DOI: 10.1038/s41467-025-59722-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 05/01/2025] [Indexed: 05/14/2025] Open
Abstract
Electro-oxidation is a promising green technology for decentralized wastewater purification. However, its efficacy is primarily constrained by the selectivity and efficiency of hydroxyl radical (•OH) generation through one-electron water oxidation. In this study, we elucidate the mechanism of electronic metal-support interactions (EMSI) of Ni single-atoms on antimony-doped tin oxide anode (Ni/ATO) to enhance •OH production and overall water treatment efficiency. We experimentally and theoretically investigate both the structural evolution process and micro-interface mechanisms associated with the EMSI effects induced by Ni single-atoms. The optimized electronic structures in the interfacial catalysts under EMSI conditions and the co-catalytic role of Ni single-atoms synergistically facilitate selective and efficient •OH generation, resulting in over a fivefold increase in its steady-state concentration and tenfold enhancement in pseudo-first-order rate constant of sulfamethoxazole degradation compared to those on bare ATO. With the EMSI, rapid electron transfer channels were established for a marked enhancement in the adsorption, conversion, and dissociation of interfacial H2O molecules. Notably, it is revealed that Ni single-atoms serve as co-catalytic sites, exhibiting a "H-pulling effect" that is crucial for •OH generation. The Ni/ATO anode demonstrates great efficiency in degrading various refractory organic pollutants, and effectively treats real pharmaceutical wastewater with low energy consumption. Furthermore, it presents remarkable stability and adaptability, while maintaining a minimal environmental footprint during wastewater treatment processes. This work addresses the theoretical gaps between EMSI effects and co-catalysis in electro-oxidation systems, while providing a robust technological solution for wastewater purification.
Collapse
Affiliation(s)
- Sen Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Ecology and Environment, Harbin Institute of Technology, Shenzhen (HITSZ), Shenzhen, 518055, China
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Xuechuan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Ecology and Environment, Harbin Institute of Technology, Shenzhen (HITSZ), Shenzhen, 518055, China
| | - Guan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Ecology and Environment, Harbin Institute of Technology, Shenzhen (HITSZ), Shenzhen, 518055, China.
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
4
|
Ma C, Wang J, Liu X, Duan X, Qi J, Li S, Li N, Li Y, Fan X, Peng W. Enhanced Fe(III)/Fe(II) Cycle by Lattice Sulfur for Continuous Fenton Reactions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:8812-8821. [PMID: 40264343 DOI: 10.1021/acs.est.4c12824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
The Fenton reaction is usually limited by the sluggish regeneration of Fe(II). In this article, we developed a Fenton system that uses metal sulfides (MSx) and diluted Fe(III) to activate H2O2, and the enhanced mechanism of the Fe(III)/Fe(II) cycle in the presence of sulfides was investigated. The lattice sulfur of MSx can donate electrons to reduce Fe(III) into Fe(II) and is partially oxidized to SO42- during H2O2 activation. •OH and 1O2 are the primary reactive oxygen species for pollutant removal. Meanwhile, low-cost iron-based sulfide (FeSx) is selected for scale-up experiments in a fixed-bed reactor, which can maintain 100% atrazine degradation over 240 h. Additionally, the Fukui function is employed to analyze the selective degradation pathway of atrazine, and the biological toxicity of the organic intermediates is also assessed. The novel FeSx/Fe(III) system provides a potential alternative to the traditional Fenton reaction.
Collapse
Affiliation(s)
- Chengbo Ma
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jun Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaomei Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Junjie Qi
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300131, China
| | - Shuai Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Ning Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaobin Fan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Wenchao Peng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
5
|
Liu Y, Lei F, Li T, Wang S, Li Y. Noble-Metal-Free Electrocatalysts for Selective Hydrogen Peroxide Generation via Oxygen Reduction Reaction. Chemistry 2025; 31:e202404164. [PMID: 39833120 DOI: 10.1002/chem.202404164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/26/2024] [Accepted: 01/20/2025] [Indexed: 01/22/2025]
Abstract
Hydrogen peroxide (H2O2) is a versatile chemical widely used in various industries. The traditional anthraquinone method for H2O2 synthesis has environmental and safety concerns due to the use of organic solvents and hazardous by-products. The direct synthesis of H2O2 from H2 and O2 poses risks of flammability and explosion. Recently, the 2-electron oxygen reduction reaction (2e- ORR) method has emerged as a promising alternative, offering safety, environmental friendliness, and cost-effectiveness. This method utilizes gas diffusion electrodes to efficiently generate H2O2 without the need for additional dilution. In this review, we focus on the recent advancements in noble-metal-free materials for 2e- ORR electrocatalysis, which play a crucial role in the efficient production of H2O2. These materials, including transition metal compounds, macrocyclic complexes, carbon-based catalysts, framework materials, and MXenes catalysts, demonstrate significant advantages in enhancing H2O2 yield. The development of these non-precious metal catalysts can reduce costs and improve sustainability and promote the commercialization of related technologies. The review concludes with an outlook on the future trends of 2e- ORR electrocatalysts.
Collapse
Affiliation(s)
- Yuepeng Liu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Fang Lei
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300203, P. R. China
| | - Tingting Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Siyu Wang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Yi Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P R China
| |
Collapse
|
6
|
Wang C, Li T, Deng Q, Xie M, Ye Z. Stability challenges of transition metal-modified cathodes for electro-Fenton process: A mini-review. CHEMOSPHERE 2025; 373:144159. [PMID: 39889645 DOI: 10.1016/j.chemosphere.2025.144159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/14/2024] [Accepted: 01/23/2025] [Indexed: 02/03/2025]
Abstract
Electro-Fenton (EF) process with transition-metal (TM) modified cathode has been regarded as a green and promising technology for wastewater treatment. Recently, breakthroughs in boosting catalyst activity for both two-electron oxygen reduction reaction (2e- ORR) and Fenton's reaction have gained intensive attention. However, achieving long-term stability of catalysts remains challenging, but is decisive for large-scale applications. This minireview provides fundamental understanding on the activity-stability correlation and the deactivation mechanisms of TM-based catalysts in EF systems, focusing on physical and chemical evolution, metal dissolution, catalyst detachment and structure collapse during long-term electrolysis. Subsequently, ongoing efforts from catalyst design to electrode engineering to stabilize the metal active sites are highlighted. Finally, the challenges and future perspectives in developing active and durable TM-modified cathodes are discussed, serving as a roadmap towards the large-scale application of EF process for wastewater treatment.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| | - Tongxu Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| | - Qianyin Deng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| | - Mengchu Xie
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| | - Zhihong Ye
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
7
|
Li L, Shi X, Liu L, Tu Y, Liu Y, Zhang Y, Yang HB, Dou S, Liu B. Modulation of Single-Iron-Atom Coordination Environment Toward Three-Electron Oxygen Reduction for Photocatalytic CH 4 Conversion to CH 3OH. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2500835. [PMID: 39935085 DOI: 10.1002/smll.202500835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Indexed: 02/13/2025]
Abstract
By modifying the coordination environment of single-Fe-atom active site, effective regulation of the photocatalytic oxygen reduction pathway can be achieved to attain high activity for photocatalytic oxidation of CH4 to CH3OH in an aqueous solution. A comprehensive investigation is conducted to study the impact of different coordination numbers of single Fe atoms on photocatalytic CH4 oxidation reaction over carbon nitride. Among which, Fe1/C3-xN4 with a Fe-N3 coordination exhibit an exceptional photocatalytic performance in CH4 oxidation, reaching a remarkable methanol yield of 928.27 µmol gcat -1, much higher than Fe1/C3N4 and Fe1/C3N4-x (308.47 and 473.26 µmol gcat -1, respectively). Based on a collection of in situ characterizations and time-dependent density functional theory calculations, it is determined that Fe1/C3-xN4 with an optimal coordination number possesses the optimized electronic configuration that enables three-electron oxygen reduction to generate hydroxyl radicals for photocatalytic conversion of CH4 to CH3OH.
Collapse
Affiliation(s)
- Laiquan Li
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xiuwen Shi
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Lingyue Liu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 100872, China
| | - Ying Tu
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Yuhang Liu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yuhang Zhang
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Hong Bin Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Shixue Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Bin Liu
- Department of Materials Science and Engineering, Department of Chemistry, Hong Kong Institute of Clean Energy (HKICE) & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, 999077, China
| |
Collapse
|
8
|
Zhou Z, Zhao S, Li Z, Wang P, Zhan S, Wang M. Activating Oxygen via the 3-Electron Pathway to Hydroxyl Radical by La-O 4 Single-atom on WO 3 for Water Purification. Angew Chem Int Ed Engl 2025; 64:e202418122. [PMID: 39537570 DOI: 10.1002/anie.202418122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/31/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Shifting photocatalytic oxygen activation towards 3-electron (e-) pathway to hydroxyl radicals, instead of the normal 1 e- to superoxide radicals, becomes increasingly important for pollution degradation since hydroxyl radicals possess a high oxidation potential (2.80 V). Here, we demonstrate a selective oxygen activation to hydroxyl radicals via 3 e- pathway using single atomically dispersed La based on WO3 fabricated with oxygen vacancies to weaken La-O coordination strength (denoted as LaO4-WOv). Unsaturated-state La overcomes the rate-limited step of 2 e- oxygen reduction reaction towards to hydrogen peroxide via tuning binding free energy of key reaction intermediate *OOH, stepped by easy generation of hydroxyl radicals via 1 e-. This strategy alters the activation of oxygen process from 1 e- to 3 e-. Hydrogen peroxide and hydroxyl radicals over LaO4-WOv produces 3.8 and 3.3 mmol L-1 h-1, 35 and 8 times that of detected over WO3, respectively. Rapid and complete removal of tetracycline realizes over LaO4-WOv with 0.077 min-1 of rate constant, 38 times that of WO3. Degradation efficiencies keep greater than 98 % following five repeats, revealing a practical-utilization-level robust stability. This work builds an unsaturated-state transition metal site for manipulating oxygen activation towards an effective water purification as a representative application.
Collapse
Affiliation(s)
- Zhiruo Zhou
- School of Environmental Science and Engineering, Zhejiang Gongshang University, 310012, Hangzhou, P. R. China
| | - Shiyi Zhao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, 310012, Hangzhou, P. R. China
| | - Zhihao Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, 310012, Hangzhou, P. R. China
| | - Pengfei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 300350, Tianjin, P. R. China
| | - Sihui Zhan
- School of Environmental Science and Engineering, Tianjin University, 300350, Tianjin, P. R. China
| | - Meizhen Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, 310012, Hangzhou, P. R. China
| |
Collapse
|
9
|
Zhao G, Tao X, Guo T, Fu L, Yang H. Mineral-Mediated Epitaxial Growth of CoO Nanoparticles for Efficient Electrochemical H 2O 2 Activation. ACS NANO 2025; 19:1509-1518. [PMID: 39714967 DOI: 10.1021/acsnano.4c14453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Solution-phase epitaxy is a versatile method to synthesize functional nanomaterials with customized properties, where supports play a central role as they not only serve as nucleation templates but also greatly affect the local electronic structures. However, developing functional supports remains a great challenge. Herein, inspired by the commonly observed epitaxy of minerals in the natural environment, we report using calcination-modified kaolinite as the support for the epitaxial growth of hexagonal CoO nanoparticles (h-CoO NPs), which enables over 40 times higher mass-specific activity toward H2O2 electrochemical activation than the counterpart without the support. High-resolution electron microscopy, magic-angle spinning nuclear magnetic resonance, and X-ray absorption fine structure results prove that the Al sites in kaolinite play a crucial role in the formation of h-CoO NPs. Moreover, the five-coordinate Al (AlV) sites produced by the dehydration of kaolinite are indispensable for forming the epitaxial interface. Theoretical calculations reveal that the local electron densities around AlV sites are lower than those of general six-coordinate Al sites, which render AlV sites with strong adsorption capability that facilitates the nucleation of h-CoO NPs. Also, the AlV sites induce the electron transfer from h-CoO to the kaolinite support that results in the upshift of the Co 3d band center and hence improve the H2O2 activation kinetics. Our results demonstrate the superiority of nanoclay as functional supports and could offer a more benign strategy to the solution-phase epitaxy production of functional nanomaterials for diverse applications.
Collapse
Affiliation(s)
- Guoqiang Zhao
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
| | - Xiaoyu Tao
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Tongsen Guo
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Liangjie Fu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
| | - Huaming Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| |
Collapse
|
10
|
Hou Z, Cui C, Yang Y, Huang Z, Zhuang Y, Zeng Y, Gong X, Zhang T. Strong Metal-Support Interactions in Heterogeneous Oxygen Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407167. [PMID: 39460492 DOI: 10.1002/smll.202407167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/04/2024] [Indexed: 10/28/2024]
Abstract
Molecular oxygen redox electrocatalysis involves oxygen reduction and evolution as core reactions in various energy conversion and environmental technology fields. Strong metal-support interactions (SMSIs) based nanomaterials are regarded as desirable and state-of-the-art heterogeneous electrocatalysts due to their exceptional physicochemical properties. Over the past decades, considerable advancements in theory and experiment have been achieved in related studies, especially in modulating the electronic structure and geometrical configuration of SMSIs to enable activity, selectivity, and stability. In this focuses on the concept of SMSI, explore their various manifestations and mechanisms of action, and summarizes recent advances in SMSIs for efficient energy conversion in oxygen redox electrocatalysis applications. Additionally, the correlation between the physicochemical properties of different metals and supports is systematically elucidated, and the potential mechanisms of the structure-activity relationships between SMSIs and catalytic performance are outlined through theoretical models. Finally, the obstacles confronting this burgeoning field are comprehensively concluded, targeted recommendations and coping strategies are proposed, and future research perspectives are outlined.
Collapse
Affiliation(s)
- Zhiqian Hou
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
| | - Chenghao Cui
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, P. R. China
| | - Yanan Yang
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
| | - Zhikun Huang
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
| | - Yu Zhuang
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, P. R. China
| | - Ye Zeng
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, P. R. China
| | - Xi Gong
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, P. R. China
| | - Tao Zhang
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
11
|
Qi F, Peng J, Liang Z, Guo J, Liu J, Fang T, Mao H. Strong metal-support interaction (SMSI) in environmental catalysis: Mechanisms, application, regulation strategies, and breakthroughs. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 22:100443. [PMID: 39157790 PMCID: PMC11327470 DOI: 10.1016/j.ese.2024.100443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 08/20/2024]
Abstract
The strong metal-support interaction (SMSI) in supported catalysts plays a dominant role in catalytic degradation, upgrading, and remanufacturing of environmental pollutants. Previous studies have shown that SMSI is crucial in supported catalysts' activity and stability. However, for redox reactions catalyzed in environmental catalysis, the enhancement mechanism of SMSI-induced oxygen vacancy and electron transfer needs to be clarified. Additionally, the precise control of SMSI interface sites remains to be fully understood. Here we provide a systematic review of SMSI's catalytic mechanisms and control strategies in purifying gaseous pollutants, treating organic wastewater, and valorizing biomass solid waste. We explore the adsorption and activation mechanisms of SMSI in redox reactions by examining interfacial electron transfer, interfacial oxygen vacancy, and interfacial acidic sites. Furthermore, we develop a precise regulation strategy of SMSI from systematical perspectives of interface effect, crystal facet effect, size effect, guest ion doping, and modification effect. Importantly, we point out the drawbacks and breakthrough directions for SMSI regulation in environmental catalysis, including partial encapsulation strategy, size optimization strategy, interface oxygen vacancy strategy, and multi-component strategy. This review article provides the potential applications of SMSI and offers guidance for its controlled regulation in environmental catalysis.
Collapse
Affiliation(s)
- Fuyuan Qi
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Jianfei Peng
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Zilu Liang
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Jiliang Guo
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Jiayuan Liu
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Tiange Fang
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Hongjun Mao
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| |
Collapse
|
12
|
Qin Y, Han T, Chen L, Yan K, Wang J, Wang N, Hou B. O v-rich γ-MnO 2 enhanced electrocatalytic three-electron oxygen reduction to hydroxyl radicals for sterilization in neutral media. NANOSCALE HORIZONS 2024; 9:1999-2006. [PMID: 39224025 DOI: 10.1039/d4nh00289j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Marine biofouling severely limits the development of the marine economy, and reactive oxygen species (ROS) produced by electrocatalytic antifouling techniques could inactivate marine microorganisms and inhibit the formation of marine biofouling. Compared with an electro-Fenton reaction, a three-electron oxygen reduction reaction (3e- ORR) could generate a hydroxyl radical (˙OH) in situ without the limitation of pH and iron mud pollutants. Herein, Ov-rich γ-MnO2 is designed to enhance the 3e- ORR performance in neutral media and exhibits excellent sterilization performance for typical marine bacteria. DFT calculation reveals that Ov is beneficial to the "end-on" adsorption and activation of O2, and the Mn site could accept the electrons from *OOH and promote its further reduction to form ˙OH; Ov and Mn sites together guarantee the high 3e- ORR efficiency. In addition, liquid chromatography-tandem mass spectrometry (LC-MS/MS) proves the vast formation of ˙OH in the primary reaction stage, which is the key to sterilization. This work explores the reaction mechanism of the 3e- ORR in neutral media and provides the possibility for the application of electrocatalysis technology in the treatment of marine biofouling pollution.
Collapse
Affiliation(s)
- Yingnan Qin
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Tongzhu Han
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Ligang Chen
- State Power Investment Corporation Hydrogen Energy Company, Limited, Beijing 102600, China.
| | - Kexin Yan
- College of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Jing Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Ning Wang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Baorong Hou
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
| |
Collapse
|
13
|
Wang Z, Hu N, Wang L, Zhao H, Zhao G. In Situ Production of Hydroxyl Radicals via Three-Electron Oxygen Reduction: Opportunities for Water Treatment. Angew Chem Int Ed Engl 2024; 63:e202407628. [PMID: 39007234 DOI: 10.1002/anie.202407628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/08/2024] [Accepted: 07/14/2024] [Indexed: 07/16/2024]
Abstract
The electro-Fenton (EF) process is an advanced oxidation technology with significant potential; however, it is limited by two steps: generation and activation of H2O2. In contrast to the production of H2O2 via the electrochemical two-electron oxygen reduction reaction (ORR), the electrochemical three-electron (3e-) ORR can directly activate molecular oxygen to yield the hydroxyl radical (⋅OH), thus breaking through the conceptual and operational limitations of the traditional EF reaction. Therefore, the 3e- ORR is a vital process for efficiently producing ⋅OH in situ, thus charting a new path toward the development of green water-treatment technologies. This review summarizes the characteristics and mechanisms of the 3e- ORR, focusing on the basic principles and latest progress in the in situ generation and efficient utilization of ⋅OH through the modulation of the reaction pathway, shedding light on the rational design of 3e- ORR catalysts, mechanistic exploration, and practical applications for water treatment. Finally, the future developments and challenges of efficient, stable, and large-scale utilization of ⋅OH are discussed based on achieving optimal 3e- ORR regulation and the potential to combine it with other technologies.
Collapse
Affiliation(s)
- Zhiming Wang
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, P. R. China
| | - Nan Hu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, P. R. China
| | - Lan Wang
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, P. R. China
| | - Hongying Zhao
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, P. R. China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
14
|
Shang D, Wang S, Li J, Zhan S, Hu W, Li Y. Constructing Nano-Heterostructure with Dual-Site to Boost H 2O 2 Activation and Regulate the Transformation of Free Radicals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311984. [PMID: 38461526 DOI: 10.1002/smll.202311984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/18/2024] [Indexed: 03/12/2024]
Abstract
A major issue with Fenton-like reaction is the excessive consumption of H2O2 caused by the sluggish regeneration rate of low-valent metal, and how to improve the activation efficiency of H2O2 has become a key in current research. Herein, a nano-heterostructure catalyst (1.0-MnCu/C) based on nano-interface engineering is constructed by supporting Cu and MnO on carbon skeleton, and its kinetic rate for the degradation of tetracycline hydrochloride is 0.0436 min-1, which is 2.9 times higher than that of Cu/C system (0.0151 min-1). The enhancement of removal rate results from the introduced Mn species can aggregate and transfer electrons to Cu sites through the electron bridge Mn-N/O-Cu, thus preventing Cu2+ from oxidizing H2O2 to form O2 •-, and facilitating the reduction of Cu2+ and generating more reactive oxygen species (1O2 and ·OH) with stronger oxidation ability, resulting in H2O2 utilization efficiency is 1.9 times as much as that of Cu/C. Additionally, the good and stable practical application capacity in different bodies demonstrates that it has great potential for practical environmental remediation.
Collapse
Affiliation(s)
- Denghui Shang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Siyu Wang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Jialu Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Sihui Zhan
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Yi Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| |
Collapse
|
15
|
Liu Y, Wang P, Xie L, Xia Y, Zhan S, Hu W, Li Y. Electronic Metal-Support Interactions Boost *OOH Intermediate Generation in Cu/In 2Se 3 for Electrochemical H 2O 2 Production. Angew Chem Int Ed Engl 2024; 63:e202319470. [PMID: 38566301 DOI: 10.1002/anie.202319470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/04/2024]
Abstract
Two-electron oxygen reduction reaction (2e- ORR) is a promising method for the synthesis of hydrogen peroxide (H2O2). However, high energy barriers for the generation of key *OOH intermediates hinder the process of 2e- ORR. Herein, we prepared a copper-supported indium selenide catalyst (Cu/In2Se3) to enhance the selectivity and yield of 2e- ORR by employing an electronic metal-support interactions (EMSIs) strategy. EMSIs-induced charge rearrangement between metallic Cu and In2Se3 is conducive to *OOH intermediate generation, promoting H2O2 production. Theoretical investigations reveal that the inclusion of Cu significantly lowers the energy barrier of the 2e- ORR intermediate and impedes the 4e- ORR pathway, thus favoring the formation of H2O2. The concentration of H2O2 produced by Cu/In2Se3 is ~2 times than In2Se3, and Cu/In2Se3 shows promising applications in antibiotic degradation. This research presents a valuable approach for the future utilization of EMSIs in 2e- ORR.
Collapse
Affiliation(s)
- Yuepeng Liu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, 300072, Tianjin, P. R. China
| | - Pengfei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350, Tianjin, P. R. China
| | - Liangbo Xie
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, 300072, Tianjin, P. R. China
| | - Yuguo Xia
- School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, P. R. China
| | - Sihui Zhan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350, Tianjin, P. R. China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, 300072, Tianjin, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, P. R. China
| | - Yi Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, 300072, Tianjin, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, P. R. China
| |
Collapse
|
16
|
Liu Y, Liu X, Wang J, Zhao S, Zhan S, Hu W, Li Y. Enhanced molecular oxygen activation via K/O interfacial modification for boosted electrocatalytic degradation over a broad pH range. J Colloid Interface Sci 2024; 657:300-308. [PMID: 38043231 DOI: 10.1016/j.jcis.2023.11.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 12/05/2023]
Abstract
Molecular oxygen activation plays an important role in the electrocatalytic degradation of recalcitrant pollutants. And the key lies in the tailoring of electronic structures over catalysts. Herein, carbon nitride with K/O interfacial modification (KOCN) was designed and fabricated for efficient molecular oxygen activation. Theoretical screening results revealed the possible substitution of peripheral N atoms by O atoms and the location of K atoms in the six-fold cavities of g-C3N4 framework. Spectroscopic and experimental results reveal that the existence of K/O promotes charge redistribution over as-prepared catalysts, leading to optimized electronic structures. Therefore, optimized oxygen adsorption was realized over 8 % KOCN, which was further converted into superoxide and singlet oxygen effectively. The rate constant of 8 % KOCN (1.8 × 10-2 min-1) reached 2.2 folds of pristine g-C3N4 (8.1 × 10-3 min-1) counterpart during tetracycline degradation. Moreover, the high electron mobility and excellent structural stability endow the catalyst with remarkable catalytic performance in a broad pH range of 3-11.
Collapse
Affiliation(s)
- Yuepeng Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Xingyu Liu
- School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Jiaojiao Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Shuo Zhao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Sihui Zhan
- College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China; Joint School of National University of Singapore and Tianjin University, Fuzhou International Campus, Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Yi Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China; Joint School of National University of Singapore and Tianjin University, Fuzhou International Campus, Tianjin University, Binhai New City, Fuzhou 350207, China.
| |
Collapse
|