1
|
Belkevich AE, Khalil AY, Decatur WA, Palumbo RJ, Knutson BA. Minimization and complete loss of general transcription factor proteins in the intracellular parasite Encephalitozoon cuniculi. Transcription 2024; 15:97-113. [PMID: 38722258 PMCID: PMC11810082 DOI: 10.1080/21541264.2024.2350162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/29/2024] [Accepted: 03/21/2024] [Indexed: 01/06/2025] Open
Abstract
Genome compaction is a common evolutionary feature of parasites. The unicellular, obligate intracellular parasite Encephalitozoon cuniculi has one of smallest known eukaryotic genomes, and is nearly four times smaller than its distant fungi relative, the budding yeast Saccharomyces cerevisiae. Comparison of the proteins encoded by compacted genomes to those encoded by larger genomes can reveal the most highly conserved features of the encoded proteins. In this study, we identified the proteins comprising the RNA polymerases and their corresponding general transcription factors by using several bioinformatic approaches to compare the transcription machinery of E. cuniculi and S. cerevisiae. Surprisingly, our analyses revealed an overall reduction in the size of the proteins comprising transcription machinery of E. cuniculi, which includes the loss of entire regions or functional domains from proteins, as well as the loss of entire proteins and complexes. Unexpectedly, we found that the E. cuniculi ortholog of Rpc37 (a RNA Polymerase III subunit) more closely resembles the H. sapiens ortholog of Rpc37 than the S. cerevisiae ortholog of Rpc37, in both size and structure. Overall, our findings provide new insight into the minimal core eukaryotic transcription machinery and help define the most critical features of Pol components and general transcription factors.
Collapse
Affiliation(s)
- Alana E. Belkevich
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Andrew Y. Khalil
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Wayne A. Decatur
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Ryan J. Palumbo
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Bruce A. Knutson
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
2
|
Lagunas-Rangel FA. Ribosomal RNA Transcription Machineries in Intestinal Protozoan Parasites: A Bioinformatic Analysis. Acta Parasitol 2022; 67:1788-1799. [PMID: 36028726 DOI: 10.1007/s11686-022-00612-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Ribosome biogenesis is a key process in all living organisms, energetically expensive and tightly regulated. Currently, little is known about the components of the ribosomal RNA (rRNA) transcription machinery that are present in intestinal parasites, such as Giardia duodenalis, Cryptosporidium parvum, and Entamoeba histolytica. Thus, in the present work, an analysis was carried out looking for the components of the rRNA transcription machinery that are conserved in intestinal parasites and if these could be used to design new treatment strategies. METHODS The different components of the rRNA transcription machinery were searched in the studied parasites with the NCBI BLAST tool in the EuPathDB Bioinformatics Resource Center database. The sequences of the RRN3 and POLR1F orthologs were aligned and important regions identified. Subsequently, three-dimensional models were built with different bioinformatic tools and a structural analysis was performed. RESULTS Among the protozoa examined, C. parvum is the parasite with the fewest identifiable components of the rRNA transcription machinery. TBP, RRN3, POLR1A, POLR1B, POLR1C, POLR1D, POLR1F, POLR1H, POLR2E, POLR2F and POLR2H subunits were identified in all species studied. Furthermore, the interaction regions between RRN3 and POLR1F were found to be conserved and could be used to design drugs that inhibit rRNA transcription in the parasites studied. CONCLUSION The inhibition of the rRNA transcription machinery in parasites might be a new therapeutic strategy against these microorganisms.
Collapse
|
3
|
Tan X, Awuah SG. A cell-based screening system for RNA polymerase I inhibitors. MEDCHEMCOMM 2019; 10:1765-1774. [PMID: 31803394 PMCID: PMC6844272 DOI: 10.1039/c9md00227h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/16/2019] [Indexed: 12/15/2022]
Abstract
RNA polymerase I (RNA Pol I) is a "factory" that orchestrates the transcription of ribosomal RNA for constructing ribosomes as a primary workshop for protein translation to sustain cell growth. The deregulation of RNA Pol I often causes uncontrolled cell proliferation, leading to cancer. Efficient and reliable methods are needed for the identification of selective inhibitors of RNA Pol I. Yeast (Saccharomyces cerevisiae) is eukaryotic and represents a valuable model system to study RNA Pol I, especially with the availability of the X-ray crystal structure of the yeast homologue of RNA Pol I, offering a structural basis to selectively target this transcriptional machinery. Herein, we developed a cell-based screening strategy by establishing a stable yeast cell line with a stably integrated human RNA Pol I promoter and ribosomal DNA. The model system was validated using the well-known RNA Pol I inhibitor CX-5461 by measuring transcribed human rRNA as readout. Virtual screening coupled with compound library screening using this cell line enabled the identification of a new candidate inhibitor of RNA Pol I, namely, cerivastatin sodium. Furthermore, we used growth and transcription activity assays to biologically evaluate the hit compound. Preliminary studies demonstrated antiproliferative effects of cerivastatin sodium against human cancer cells, namely, A2780 and H460 cell lines. These results implicated cerivastatin sodium as a selective RNA Pol I inhibitor worthy of further development together with potential as a targeted anticancer therapeutic.
Collapse
Affiliation(s)
- Xiao Tan
- Department of Chemistry , University of Kentucky , 505 Rose Street , Lexington , Kentucky 40506 , USA . ; Tel: +1 8593239561
| | - Samuel G Awuah
- Department of Chemistry , University of Kentucky , 505 Rose Street , Lexington , Kentucky 40506 , USA . ; Tel: +1 8593239561
| |
Collapse
|
4
|
Karlova MG, Volokh OI, Chertkov OV, Kirpichnikov MP, Studitsky VM, Sokolova OS. Purification and concentration of RNA polymerase on Ni-lipid monolayers. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1068162017060048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
5
|
Ream TS, Haag JR, Pontvianne F, Nicora CD, Norbeck AD, Paša-Tolić L, Pikaard CS. Subunit compositions of Arabidopsis RNA polymerases I and III reveal Pol I- and Pol III-specific forms of the AC40 subunit and alternative forms of the C53 subunit. Nucleic Acids Res 2015; 43:4163-78. [PMID: 25813043 PMCID: PMC4417161 DOI: 10.1093/nar/gkv247] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 03/10/2015] [Indexed: 12/17/2022] Open
Abstract
Using affinity purification and mass spectrometry, we identified the subunits of Arabidopsis thaliana multisubunit RNA polymerases I and III (abbreviated as Pol I and Pol III), the first analysis of their physical compositions in plants. In all eukaryotes examined to date, AC40 and AC19 subunits are common to Pol I (a.k.a. Pol A) and Pol III (a.k.a. Pol C) and are encoded by single genes. Surprisingly, A. thaliana and related species express two distinct AC40 paralogs, one of which assembles into Pol I and the other of which assembles into Pol III. Changes at eight amino acid positions correlate with the functional divergence of Pol I- and Pol III-specific AC40 paralogs. Two genes encode homologs of the yeast C53 subunit and either protein can assemble into Pol III. By contrast, only one of two potential C17 variants, and one of two potential C31 variants were detected in Pol III. We introduce a new nomenclature system for plant Pol I and Pol III subunits in which the 12 subunits that are structurally and functionally homologous among Pols I through V are assigned equivalent numbers.
Collapse
Affiliation(s)
- Thomas S Ream
- Division of Biology and Biomedical Sciences, Washington University, St. Louis, MO 63130, USA
| | - Jeremy R Haag
- Division of Biology and Biomedical Sciences, Washington University, St. Louis, MO 63130, USA Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Frederic Pontvianne
- Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Carrie D Nicora
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Angela D Norbeck
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Ljiljana Paša-Tolić
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Craig S Pikaard
- Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA Howard Hughes Medical Institute, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
6
|
Viktorovskaya OV, Schneider DA. Functional divergence of eukaryotic RNA polymerases: unique properties of RNA polymerase I suit its cellular role. Gene 2014; 556:19-26. [PMID: 25445273 DOI: 10.1016/j.gene.2014.10.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/16/2014] [Accepted: 10/17/2014] [Indexed: 02/08/2023]
Abstract
Eukaryotic cells express at least three unique nuclear RNA polymerases. The selective advantage provided by this enhanced complexity is a topic of fundamental interest in cell biology. It has long been known that the gene targets and transcription initiation pathways for RNA polymerases (Pols) I, II and III are distinct; however, recent genetic, biochemical and structural data suggest that even the core enzymes have evolved unique properties. Among the three eukaryotic RNA polymerases, Pol I is considered the most divergent. Transcription of the ribosomal DNA by Pol I is unmatched in its high rate of initiation, complex organization within the nucleolus and functional connection to ribosome assembly. Furthermore, ribosome synthesis is intimately linked to cell growth and proliferation. Thus, there is intense selective pressure on Pol I. This review describes key features of Pol I transcription, discusses catalytic activities of the enzyme and focuses on recent advances in understanding its unique role among eukaryotic RNA polymerases.
Collapse
Affiliation(s)
- Olga V Viktorovskaya
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, United States
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, United States.
| |
Collapse
|
7
|
Penrod Y, Rothblum K, Rothblum LI. Characterization of the interactions of mammalian RNA polymerase I associated proteins PAF53 and PAF49. Biochemistry 2012; 51:6519-26. [PMID: 22849406 DOI: 10.1021/bi300408q] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Masami Muramatsu's laboratory demonstrated the critical role of RNA polymerase I (Pol I)-associated factor PAF53 in mammalian rRNA transcription. They have also identified a second polymerase associated factor, PAF49. Both PAF49 and PAF53 copurify with that fraction of the RNA polymerase I molecules that can function in transcription initiation in vitro. PAF49 and PAF53 are the mammalian homologues of two subunits of yeast RNA polymerase I, A34.5 and A49, that form a TFIIF-related subcomplex in yeast RNA polymerase I. In light of those publications, we investigated the interactions between various deletion and substitution mutants of mammalian PAF49 and PAF53 with the purpose of identifying those domains of the mammalian proteins that interact. Comparison of our results with structural studies on yeast A34.5 and A49 demonstrates that the yeast and mammalian proteins may in fact share structural similarities. In fact, the deletion mutagenesis data confirmed and extended the structural studies. For example, amino acids 41-86 of PAF49 were sufficient to provide the basis for heterodimerization. In silico structural analysis predicted that this region could assume a structure similar to the homologous region of yeast A34.5. Those similarities are insufficient, by themselves, for the proteins to form interspecific heterodimers. However, substitution of amino acids 52-98 of yeast A34.5 with amino acids 41-86 of mammalian PAF49 resulted in a protein that could heterodimerize with mouse PAF53.
Collapse
Affiliation(s)
- Yvonne Penrod
- Department of Cell Biology, University of Oklahoma College of Medicine, Oklahoma City, OK 73104, USA
| | | | | |
Collapse
|
8
|
Vannini A, Cramer P. Conservation between the RNA polymerase I, II, and III transcription initiation machineries. Mol Cell 2012; 45:439-46. [PMID: 22365827 DOI: 10.1016/j.molcel.2012.01.023] [Citation(s) in RCA: 313] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/25/2012] [Accepted: 01/30/2012] [Indexed: 01/24/2023]
Abstract
Recent studies of the three eukaryotic transcription machineries revealed that all initiation complexes share a conserved core. This core consists of the RNA polymerase (I, II, or III), the TATA box-binding protein (TBP), and transcription factors TFIIB, TFIIE, and TFIIF (for Pol II) or proteins structurally and functionally related to parts of these factors (for Pol I and Pol III). The conserved core initiation complex stabilizes the open DNA promoter complex and directs initial RNA synthesis. The periphery of the core initiation complex is decorated by additional polymerase-specific factors that account for functional differences in promoter recognition and opening, and gene class-specific regulation. This review outlines the similarities and differences between these important molecular machines.
Collapse
Affiliation(s)
- Alessandro Vannini
- Gene Center and Department of Biochemistry, Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany.
| | | |
Collapse
|
9
|
Beckouët F, Mariotte-Labarre S, Peyroche G, Nogi Y, Thuriaux P. Rpa43 and its partners in the yeast RNA polymerase I transcription complex. FEBS Lett 2011; 585:3355-9. [PMID: 21983101 DOI: 10.1016/j.febslet.2011.09.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Revised: 08/29/2011] [Accepted: 09/06/2011] [Indexed: 10/17/2022]
Abstract
An Rpa43/Rpa14 stalk protrudes from RNA polymerase I (RNAPI), with homology to Rpb7/Rpb4 (RNAPII), Rpc25/Rpc17 (RNAPIII) and RpoE/RpoF (archaea). In fungi and vertebrates, Rpa43 contains hydrophilic domains forming about half of its size, but these domains lack in Schizosaccharomyces pombe and most other eukaryote lineages. In Saccharomyces cerevisiae, they can be lost with little or no growth effect, as shown by deletion mapping and by domain swapping with fission yeast, but genetically interact with rpa12Δ, rpa34Δ or rpa49Δ, lacking non-essential subunits important for transcript elongation. Two-hybrid data and other genetic evidence suggest that Rpa43 directly bind Spt5, an RNAPI elongation factor also acting in RNAPII-dependent transcription, and may also interact with the nucleosomal chaperone Spt6.
Collapse
Affiliation(s)
- Frédéric Beckouët
- CEA, iBiTec-S, Service de Biologie Intégrative & Génétique Moléculaire, F-91191 Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
10
|
Park SH, Nguyen TN, Kirkham JK, Lee JH, Günzl A. Transcription by the multifunctional RNA polymerase I in Trypanosoma brucei functions independently of RPB7. Mol Biochem Parasitol 2011; 180:35-42. [PMID: 21816181 DOI: 10.1016/j.molbiopara.2011.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 06/10/2011] [Accepted: 06/13/2011] [Indexed: 10/18/2022]
Abstract
Trypanosoma brucei has a multifunctional RNA polymerase (pol) I that transcribes ribosomal gene units (RRNA) and units encoding its major cell surface proteins variant surface glycoprotein (VSG) and procyclin. Previous analysis of tandem affinity-purified, transcriptionally active RNA pol I identified ten subunits including an apparently trypanosomatid-specific protein termed RPA31. Another ortholog was identified in silico. No orthologs of the yeast subunit doublet RPA43/RPA14 have been identified yet. Instead, a recent report presented evidence that RPB7, the RNA pol II paralog of RPA43, is an RNA pol I subunit and essential for RRNA and VSG transcription in bloodstream form trypanosomes [18]. Revisiting this attractive hypothesis, we were unable to detect a stable interaction between RPB7 and RNA pol I in either reciprocal co-immunoprecipitation or tandem affinity purification. Furthermore, immunodepletion of RPB7 from extract virtually abolished RNA pol II transcription in vitro but had no effect on RRNA or VSG ES promoter transcription in the same reactions. Accordingly, chromatin immunoprecipitation analysis revealed cross-linking of RPB7 to known RNA pol II transcription units but not to the VSG ES promoter or to the 18S rRNA coding region. Interestingly, RPB7 did crosslink to the RRNA promoter but so did the RNA pol II-specific subunit RPB9 suggesting that RNA pol II is recruited to this promoter. Overall, our data led to the conclusion that RNA pol I transcription in T. brucei does not require the RNA pol II subunit RPB7.
Collapse
Affiliation(s)
- Sung Hee Park
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030-6403, USA
| | | | | | | | | |
Collapse
|
11
|
Peñate X, López-Farfán D, Landeira D, Wentland A, Vidal I, Navarro M. RNA pol II subunit RPB7 is required for RNA pol I-mediated transcription in Trypanosoma brucei. EMBO Rep 2009; 10:252-7. [PMID: 19165144 DOI: 10.1038/embor.2008.244] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 11/27/2008] [Accepted: 12/03/2008] [Indexed: 01/11/2023] Open
Abstract
In the protozoan parasite Trypanosoma brucei, the two main surface glycoprotein genes are transcribed by RNA polymerase I (pol I) instead of RNA pol II, the polymerase committed to the production of mRNA in eukaryotes. This unusual feature might be accomplished by the recruitment of specific subunits or cofactors that allow pol I to transcribe protein-coding RNAs. Here, we report that transcription mediated by pol I requires TbRPB7, a dissociable subunit of the pol II complex. TbRPB7 was found to interact with two pol I-specific subunits, TbRPA1 and TbRPB6z. Pol I-specific transcription was affected on depletion of TbRPB7 in run-on assays, whereas recombinant TbRPB7 increased transcription driven by a pol I promoter. These results represent a unique example of a functional RNA polymerase chimaera consisting of a core pol I complex that recruits a specific pol II subunit.
Collapse
Affiliation(s)
- Xenia Peñate
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas, CSIC (Spanish National Research Council), Avda. del Conocimiento s/n, 18100 Granada, Spain
| | | | | | | | | | | |
Collapse
|
12
|
Cramer P, Armache KJ, Baumli S, Benkert S, Brueckner F, Buchen C, Damsma GE, Dengl S, Geiger SR, Jasiak AJ, Jawhari A, Jennebach S, Kamenski T, Kettenberger H, Kuhn CD, Lehmann E, Leike K, Sydow JF, Vannini A. Structure of eukaryotic RNA polymerases. Annu Rev Biophys 2008; 37:337-52. [PMID: 18573085 DOI: 10.1146/annurev.biophys.37.032807.130008] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The eukaryotic RNA polymerases Pol I, Pol II, and Pol III are the central multiprotein machines that synthesize ribosomal, messenger, and transfer RNA, respectively. Here we provide a catalog of available structural information for these three enzymes. Most structural data have been accumulated for Pol II and its functional complexes. These studies have provided insights into many aspects of the transcription mechanism, including initiation at promoter DNA, elongation of the mRNA chain, tunability of the polymerase active site, which supports RNA synthesis and cleavage, and the response of Pol II to DNA lesions. Detailed structural studies of Pol I and Pol III were reported recently and showed that the active center region and core enzymes are similar to Pol II and that strong structural differences on the surfaces account for gene class-specific functions.
Collapse
Affiliation(s)
- P Cramer
- Gene Center Munich and Center for Integrated Protein Science CIPSM, Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Genomewide recruitment analysis of Rpb4, a subunit of polymerase II in Saccharomyces cerevisiae, reveals its involvement in transcription elongation. EUKARYOTIC CELL 2008; 7:1009-18. [PMID: 18441121 DOI: 10.1128/ec.00057-08] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Rpb4/Rpb7 subcomplex of yeast RNA polymerase II (Pol II) has counterparts in all multisubunit RNA polymerases from archaebacteria to higher eukaryotes. The Rpb4/7 subcomplex in Saccharomyces cerevisiae is unique in that it easily dissociates from the core, unlike the case in other organisms. The relative levels of Rpb4 and Rpb7 in yeasts affect the differential gene expression and stress response. Rpb4 is nonessential in S. cerevisiae and affects expression of a small number of genes under normal growth conditions. Here, using a chromatin immunoprecipitation ("ChIP on-chip") technique, we compared genomewide binding of Rpb4 to that of a core Pol II subunit, Rpb3. Our results showed that in spite of being nonessential for survival, Rpb4 was recruited on coding regions of most transcriptionally active genes, similar to the case with the core Pol II subunit, Rpb3, albeit to a lesser extent. The extent of Rpb4 recruitment increased with increasing gene length. We also observed Pol II lacking Rpb4 to be defective in transcribing long, GC-rich transcription units, suggesting a role for Rpb4 in transcription elongation. This role in transcription elongation was supported by the observed 6-azauracil (6AU) sensitivity of the rpb4Delta mutant. Unlike most phenotypes of rpb4Delta, the 6AU sensitivity of the rpb4Delta strain was not rescued by overexpression of RPB7. This report provides the first instance of a distinct role for Rpb4 in transcription, which is independent of its interacting partner, Rpb7.
Collapse
|
14
|
Geiger SR, Kuhn CD, Leidig C, Renkawitz J, Cramer P. Crystallization of RNA polymerase I subcomplex A14/A43 by iterative prediction, probing and removal of flexible regions. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:413-8. [PMID: 18453714 DOI: 10.1107/s174430910800972x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Accepted: 04/08/2008] [Indexed: 11/10/2022]
Abstract
The removal of flexible protein regions is generally used to promote crystallization, but advanced strategies to quickly remove multiple flexible regions from proteins or protein complexes are lacking. Here, it is shown how a protein heterodimer with multiple flexibilities, the RNA polymerase I subcomplex A14/A43, could be crystallized with the use of an iterative procedure of predicting flexible regions, experimentally testing and improving these predictions and combining deletions of flexible regions in a stepwise manner. This strategy should enable the crystallization of other proteins and subcomplexes with multiple flexibilities, as required for hybrid structure solution of large macromolecular assemblies.
Collapse
Affiliation(s)
- Sebastian R Geiger
- Gene Center Munich, Center for Integrated Protein Science (CIPSM) and Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | | | | | | | | |
Collapse
|
15
|
Kuhn CD, Geiger SR, Baumli S, Gartmann M, Gerber J, Jennebach S, Mielke T, Tschochner H, Beckmann R, Cramer P. Functional architecture of RNA polymerase I. Cell 2008; 131:1260-72. [PMID: 18160037 DOI: 10.1016/j.cell.2007.10.051] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 10/02/2007] [Accepted: 10/26/2007] [Indexed: 01/10/2023]
Abstract
Synthesis of ribosomal RNA (rRNA) by RNA polymerase (Pol) I is the first step in ribosome biogenesis and a regulatory switch in eukaryotic cell growth. Here we report the 12 A cryo-electron microscopic structure for the complete 14-subunit yeast Pol I, a homology model for the core enzyme, and the crystal structure of the subcomplex A14/43. In the resulting hybrid structure of Pol I, A14/43, the clamp, and the dock domain contribute to a unique surface interacting with promoter-specific initiation factors. The Pol I-specific subunits A49 and A34.5 form a heterodimer near the enzyme funnel that acts as a built-in elongation factor and is related to the Pol II-associated factor TFIIF. In contrast to Pol II, Pol I has a strong intrinsic 3'-RNA cleavage activity, which requires the C-terminal domain of subunit A12.2 and, apparently, enables ribosomal RNA proofreading and 3'-end trimming.
Collapse
MESH Headings
- Binding Sites
- Cryoelectron Microscopy
- Crystallography, X-Ray
- DNA Polymerase I/chemistry
- DNA Polymerase I/genetics
- DNA Polymerase I/metabolism
- Models, Molecular
- Mutation
- Peptide Elongation Factors/chemistry
- Peptide Elongation Factors/metabolism
- Peptide Initiation Factors/chemistry
- Peptide Initiation Factors/metabolism
- Promoter Regions, Genetic
- Protein Conformation
- Protein Interaction Domains and Motifs
- Protein Interaction Mapping
- Protein Structure, Tertiary
- Protein Subunits
- RNA Processing, Post-Transcriptional
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Structure-Activity Relationship
- Transcription Factors, TFII/chemistry
- Transcription Factors, TFII/metabolism
- Transcription, Genetic
- Transcriptional Elongation Factors/chemistry
- Transcriptional Elongation Factors/metabolism
Collapse
Affiliation(s)
- Claus-D Kuhn
- Gene Center Munich and Center for Integrated Protein Science CIPSM, Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Gerber J, Reiter A, Steinbauer R, Jakob S, Kuhn CD, Cramer P, Griesenbeck J, Milkereit P, Tschochner H. Site specific phosphorylation of yeast RNA polymerase I. Nucleic Acids Res 2007; 36:793-802. [PMID: 18084032 PMCID: PMC2241885 DOI: 10.1093/nar/gkm1093] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
All nuclear RNA polymerases are phosphoprotein complexes. Yeast RNA polymerase I (Pol I) contains approximately 15 phosphate groups, distributed to 5 of the 14 subunits. Information about the function of the single phosphosites and their position in the primary, secondary and tertiary structure is lacking. We used a rapid and efficient way to purify yeast RNA Pol I to determine 13 phosphoserines and –threonines. Seven of these phosphoresidues could be located in the 3D-homology model for Pol I, five of them are more at the surface. The single phosphorylated residues were systematically mutated and the resulting strains and Pol I preparations were analyzed in cellular growth, Pol I composition, stability and genetic interaction with non-essential components of the transcription machinery. Surprisingly, all Pol I phosphorylations analyzed were found to be non-essential post-translational modifications. However, one mutation (subunit A190 S685D) led to higher growth rates in the presence of 6AU or under environmental stress conditions, and was synthetically lethal with a deletion of the Pol I subunit A12.2, suggesting a role in RNA cleavage/elongation or termination. Our results suggest that individual major or constitutively phosphorylated residues contribute to non-essential Pol I-functions.
Collapse
Affiliation(s)
- Jochen Gerber
- Institut für Biochemie, Mikrobiologie und Genetik, Universität Regensburg, Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Deletion of Rnt1p alters the proportion of open versus closed rRNA gene repeats in yeast. Mol Cell Biol 2007; 28:619-29. [PMID: 17991894 DOI: 10.1128/mcb.01805-07] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, the double-stranded-RNA-specific RNase III (Rnt1p) is required for the processing of pre-rRNA and coprecipitates with transcriptionally active rRNA gene repeats. Here we show that Rnt1p physically interacts with RNA polymerase I (RNAPI) and its deletion decreases the transcription of the rRNA gene and increases the number of rRNA genes with an open chromatin structure. In contrast, depletion of ribosomal proteins or factors that impair RNAPI termination did not increase the number of open rRNA gene repeats, suggesting that changes in the ratio of open and closed rRNA gene chromatin is not due to a nonspecific response to ribosome depletion or impaired termination. The results demonstrate that defects in pre-rRNA processing can influence the chromatin structure of the rRNA gene arrays and reveal links among the rRNA gene chromatin, transcription, and processing.
Collapse
|
18
|
Nguyen TN, Schimanski B, Günzl A. Active RNA polymerase I of Trypanosoma brucei harbors a novel subunit essential for transcription. Mol Cell Biol 2007; 27:6254-63. [PMID: 17606628 PMCID: PMC1952147 DOI: 10.1128/mcb.00382-07] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A unique characteristic of the protistan parasite Trypanosoma brucei is a multifunctional RNA polymerase I which, in addition to synthesizing rRNA as in other eukaryotes, transcribes gene units encoding the major cell surface antigens variant surface glycoprotein and procyclin. Thus far, purification of this enzyme has revealed nine orthologues of known subunits but no active enzyme. Here, we have epitope tagged the specific subunit RPB6z and tandem affinity purified RNA polymerase I from crude extract. The purified enzyme was active in both a nonspecific and a promoter-dependent transcription assay and exhibited enriched protein bands with apparent sizes of 31, 29, and 27 kDa. p31 and its trypanosomatid orthologues were identified, but their amino acid sequences have no similarity to proteins of other eukaryotes, nor do they contain a conserved sequence motif. Nevertheless, p31 cosedimented with purified RNA polymerase I, and RNA interferance-mediated silencing of p31 was lethal, affecting the abundance of rRNA. Moreover, extract of p31-silenced cells exhibited a specific defect in transcription of class I templates, which was remedied by the addition of purified RNA polymerase I, and an anti-p31 serum completely blocked RNA polymerase I-mediated transcription. We therefore dubbed this novel functional component of T. brucei RNA polymerase I TbRPA31.
Collapse
Affiliation(s)
- Tu N Nguyen
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3301, USA
| | | | | |
Collapse
|
19
|
Singh SR, Pillai B, Balakrishnan B, Naorem A, Sadhale PP. Relative levels of RNA polII subunits differentially affect starvation response in budding yeast. Biochem Biophys Res Commun 2007; 356:266-72. [PMID: 17346670 DOI: 10.1016/j.bbrc.2007.02.120] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Accepted: 02/22/2007] [Indexed: 10/23/2022]
Abstract
The Rpb4/7 subcomplex of RNA polymerase II in Saccharomyces cerevisiae is known to play an important role in stress response and stress survival. These two proteins perform overlapping functions ensuring an appropriate cellular response through transcriptional regulation of gene expression. Rpb4 and Rpb7 also perform many cellular functions either together or independent of one another. Here, we show that Rpb4 and Rpb7 differently affect during the nutritional starvation response pathways of sporulation and pseudohyphae formation. Rpb4 enhances the cells' proficiency to sporulate but suppresses pseudohyphal growth. On the other hand, Rpb7 promotes pseudohyphal growth and suppresses sporulation in a dose-dependent manner. We present a model whereby the stoichiometry of Rpb4 and Rpb7 and their relative levels in the cell play a switch like role in establishing either sporulation or pseudohyphal gene expression.
Collapse
Affiliation(s)
- Sunanda R Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 12, India
| | | | | | | | | |
Collapse
|
20
|
Naji S, Grünberg S, Thomm M. The RPB7 orthologue E' is required for transcriptional activity of a reconstituted archaeal core enzyme at low temperatures and stimulates open complex formation. J Biol Chem 2007; 282:11047-57. [PMID: 17311916 DOI: 10.1074/jbc.m611674200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNA polymerases from Archaea and Eukaryotes consist of a core enzyme associated with a dimeric E'F (Rpb7/Rpb4) subcomplex but the functional contribution of the two subunit subcomplexes to the transcription process is poorly understood. Here we report the reconstitution of the 11-subunit RNA polymerase and of the core enzyme from the hyperthermophilic Archaeon Pyrococcus furiosus. The core enzyme showed significant activity between 70 and 80 degrees C but was almost inactive at 60 degrees C. E' stimulated the activity of the core enzyme at 60 degrees C, dramatically suggesting an important role of this subunit at low growth temperatures. Subunit F did not contribute significantly to catalytic activity. Permanganate footprinting at low temperatures dissected the contributions of the core enzyme, subunit E', and of archaeal TFE to open complex formation. Opening in the -2 and -4 region could be achieved by the core enzyme, subunit E' stimulated bubble formation in general and opening at the upstream end of the transcription bubble was preferably stimulated by TFE. Analyses of the kinetic stabilities of open complexes revealed an unexpected E'-independent role of TFE in the stabilization of open complexes.
Collapse
Affiliation(s)
- Souad Naji
- Lehrstuhl für Mikrobiologie und Archaeenzentrum, Universität Regensburg, 93053 Regensburg, Germany
| | | | | |
Collapse
|
21
|
Abstract
Here, I review three new structural studies from our laboratory. First, the crystal structure of RNA polymerase (Pol) II in complex with an RNA inhibitor revealed that this RNA blocks transcription initiation by preventing DNA loading into the active-centre cleft. Secondly, the structure of the SRI (Set2 Rpb1-interacting) domain of the histone methyltransferase Set2 revealed a novel fold for specific interaction with the doubly phosphorylated CTD (C-terminal repeat domain) of Pol II. Finally, we obtained the first structural information on Pol III, in the form of an 11-subunit model obtained by combining a homology model of the nine-subunit core enzyme with a new X-ray structure of the subcomplex C17/25.
Collapse
Affiliation(s)
- P Cramer
- Gene Center Munich, Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany.
| |
Collapse
|
22
|
Zaros C, Briand JF, Boulard Y, Labarre-Mariotte S, Garcia-Lopez MC, Thuriaux P, Navarro F. Functional organization of the Rpb5 subunit shared by the three yeast RNA polymerases. Nucleic Acids Res 2006; 35:634-47. [PMID: 17179178 PMCID: PMC1802627 DOI: 10.1093/nar/gkl686] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Revised: 07/30/2006] [Accepted: 09/07/2006] [Indexed: 12/05/2022] Open
Abstract
Rpb5, a subunit shared by the three yeast RNA polymerases, combines a eukaryotic N-terminal module with a globular C-end conserved in all non-bacterial enzymes. Conditional and lethal mutants of the moderately conserved eukaryotic module showed that its large N-terminal helix and a short motif at the end of the module are critical in vivo. Lethal or conditional mutants of the C-terminal globe altered the binding of Rpb5 to Rpb1-beta25/26 (prolonging the Bridge helix) and Rpb1-alpha44/47 (ahead of the Switch 1 loop and binding Rpb5 in a two-hybrid assay). The large intervening segment of Rpb1 is held across the DNA Cleft by Rpb9, consistent with the synergy observed for rpb5 mutants and rpb9Delta or its RNA polymerase I rpa12Delta counterpart. Rpb1-beta25/26, Rpb1-alpha44/45 and the Switch 1 loop were only found in Rpb5-containing polymerases, but the Bridge and Rpb1-alpha46/47 helix bundle were universally conserved. We conclude that the main function of the dual Rpb5-Rpb1 binding and the Rpb9-Rpb1 interaction is to hold the Bridge helix, the Rpb1-alpha44/47 helix bundle and the Switch 1 loop into a closely packed DNA-binding fold around the transcription bubble, in an organization shared by the two other nuclear RNA polymerases and by the archaeal and viral enzymes.
Collapse
Affiliation(s)
- Cécile Zaros
- Service de Biochimie & Génétique Moléculaire.Bâtiment 144 CEA-Saclay, F-91191, Gif-sur-Yvette, CEDEX, France
| | - Jean-François Briand
- Service de Biochimie & Génétique Moléculaire.Bâtiment 144 CEA-Saclay, F-91191, Gif-sur-Yvette, CEDEX, France
| | - Yves Boulard
- Service de Biochimie & Génétique Moléculaire.Bâtiment 144 CEA-Saclay, F-91191, Gif-sur-Yvette, CEDEX, France
| | - Sylvie Labarre-Mariotte
- Service de Biochimie & Génétique Moléculaire.Bâtiment 144 CEA-Saclay, F-91191, Gif-sur-Yvette, CEDEX, France
| | - M. Carmen Garcia-Lopez
- Department Biología Experimental—Area de Genética (ED.B3) Universidad de Jaén Paraje lasLagunillas E-23071 Jaén, SPAIN
| | - Pierre Thuriaux
- Service de Biochimie & Génétique Moléculaire.Bâtiment 144 CEA-Saclay, F-91191, Gif-sur-Yvette, CEDEX, France
| | - Francisco Navarro
- Department Biología Experimental—Area de Genética (ED.B3) Universidad de Jaén Paraje lasLagunillas E-23071 Jaén, SPAIN
| |
Collapse
|
23
|
Jasiak AJ, Armache KJ, Martens B, Jansen RP, Cramer P. Structural biology of RNA polymerase III: subcomplex C17/25 X-ray structure and 11 subunit enzyme model. Mol Cell 2006; 23:71-81. [PMID: 16818233 DOI: 10.1016/j.molcel.2006.05.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 04/27/2006] [Accepted: 05/08/2006] [Indexed: 01/22/2023]
Abstract
We obtained an 11 subunit model of RNA polymerase (Pol) III by combining a homology model of the nine subunit core enzyme with a new X-ray structure of the subcomplex C17/25. Compared to Pol II, Pol III shows a conserved active center for RNA synthesis but a structurally different upstream face for specific initiation complex assembly during promoter selection. The Pol III upstream face includes a HRDC domain in subunit C17 that is translated by 35 A and rotated by 150 degrees compared to its Pol II counterpart. The HRDC domain is essential in vivo, folds independently in vitro, and, unlike other HRDC domains, shows no indication of nucleic acid binding. Thus, the HRDC domain is a functional module that could account for the role of C17 in Pol III promoter-specific initiation. During elongation, C17/25 may bind Pol III transcripts emerging from the adjacent exit pore, because the subcomplex binds to tRNA in vitro.
Collapse
Affiliation(s)
- Anna J Jasiak
- Department of Chemistry and Biochemistry, Gene Center, Ludwig-Maximilians-University of Munich, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | | | | | | | | |
Collapse
|
24
|
Proshkina GM, Shematorova EK, Proshkin SA, Zaros C, Thuriaux P, Shpakovski GV. Ancient origin, functional conservation and fast evolution of DNA-dependent RNA polymerase III. Nucleic Acids Res 2006; 34:3615-24. [PMID: 16877568 PMCID: PMC1540719 DOI: 10.1093/nar/gkl421] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
RNA polymerase III contains seventeen subunits in yeasts (Saccharomyces cerevisiae and Schizosaccharomyces pombe) and in human cells. Twelve of them are akin to the core RNA polymerase I or II. The five other are RNA polymerase III-specific and form the functionally distinct groups Rpc31-Rpc34-Rpc82 and Rpc37-Rpc53. Currently sequenced eukaryotic genomes revealed significant homology to these seventeen subunits in Fungi, Animals, Plants and Amoebozoans. Except for subunit Rpc31, this also extended to the much more distantly related genomes of Alveolates and Excavates, indicating that the complex subunit organization of RNA polymerase III emerged at a very early stage of eukaryotic evolution. The Sch.pombe subunits were expressed in S.cerevisiae null mutants and tested for growth. Ten core subunits showed heterospecific complementation, but the two largest catalytic subunits (Rpc1 and Rpc2) and all five RNA polymerase III-specific subunits (Rpc82, Rpc53, Rpc37, Rpc34 and Rpc31) were non-functional. Three highly conserved RNA polymerase III-specific domains were found in the twelve-subunit core structure. They correspond to the Rpc17-Rpc25 dimer, involved in transcription initiation, to an N-terminal domain of the largest subunit Rpc1 important to anchor Rpc31, Rpc34 and Rpc82, and to a C-terminal domain of Rpc1 that presumably holds Rpc37, Rpc53 and their Rpc11 partner.
Collapse
Affiliation(s)
| | | | | | - Cécile Zaros
- Laboratoire de Physiogénomique, Service de Biochimie & Génétique MoléculaireBâtiment 144, CEA/Saclay, F-91191 Gif-sur-Yvette, cedex, France
| | - Pierre Thuriaux
- Laboratoire de Physiogénomique, Service de Biochimie & Génétique MoléculaireBâtiment 144, CEA/Saclay, F-91191 Gif-sur-Yvette, cedex, France
- Correspondence may also be addressed to Pierre Thuriaux. Tel: 33 1 69 08 35 86; Fax: 33 1 69 08 47 12;
| | - George V. Shpakovski
- To whom correspondence should be addressed. Tel: +7 495 3306583; Fax: +7 495 3357103;
| |
Collapse
|
25
|
Panov KI, Panova TB, Gadal O, Nishiyama K, Saito T, Russell J, Zomerdijk JCBM. RNA polymerase I-specific subunit CAST/hPAF49 has a role in the activation of transcription by upstream binding factor. Mol Cell Biol 2006; 26:5436-48. [PMID: 16809778 PMCID: PMC1592716 DOI: 10.1128/mcb.00230-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Revised: 03/10/2006] [Accepted: 04/27/2006] [Indexed: 01/05/2023] Open
Abstract
Eukaryotic RNA polymerases are large complexes, 12 subunits of which are structurally or functionally homologous across the three polymerase classes. Each class has a set of specific subunits, likely targets of their cognate transcription factors. We have identified and characterized a human RNA polymerase I (Pol I)-specific subunit, previously identified as ASE-1 (antisense of ERCC1) and as CD3epsilon-associated signal transducer (CAST), and here termed CAST or human Pol I-associated factor of 49 kDa (hPAF49), after mouse orthologue PAF49. We provide evidence for growth-regulated Tyr phosphorylation of CAST/hPAF49, specifically in initiation-competent Pol Ibeta complexes in HeLa cells, at a conserved residue also known to be important for signaling during T-cell activation. CAST/hPAF49 can interact with activator upstream binding factor (UBF) and, weakly, with selectivity factor 1 (SL1) at the rDNA (ribosomal DNA repeat sequence encoding the 18S, 5.8S, and 28S rRNA genes) promoter. CAST/hPAF49-specific antibodies and excess CAST/hPAF49 protein, which have no effect on basal Pol I transcription, inhibit UBF-activated transcription following functional SL1-Pol I-rDNA complex assembly and disrupt the interaction of UBF with CAST/hPAF49, suggesting that interaction of this Pol I-specific subunit with UBF is crucial for activation. Drawing on parallels between mammalian and Saccharomyces cerevisiae Pol I transcription machineries, we advance one model for CAST/hPAF49 function in which the network of interactions of Pol I-specific subunits with UBF facilitates conformational changes of the polymerase, leading to stabilization of the Pol I-template complex and, thereby, activation of transcription.
Collapse
Affiliation(s)
- Kostya I Panov
- Division of Gene Regulation and Expression, School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee DD1 5EH, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
The rRNAs constitute the catalytic and structural components of the ribosome, the protein synthesis machinery of cells. The level of rRNA synthesis, mediated by Pol I (RNA polymerase I), therefore has a major impact on the life and destiny of a cell. In order to elucidate how cells achieve the stringent control of Pol I transcription, matching the supply of rRNA to demand under different cellular growth conditions, it is essential to understand the components and mechanics of the Pol I transcription machinery. In this review, we discuss: (i) the molecular composition and functions of the Pol I enzyme complex and the two main Pol I transcription factors, SL1 (selectivity factor 1) and UBF (upstream binding factor); (ii) the interplay between these factors during pre-initiation complex formation at the rDNA promoter in mammalian cells; and (iii) the cellular control of the Pol I transcription machinery.
Collapse
|
27
|
Nguyen TN, Schimanski B, Zahn A, Klumpp B, Günzl A. Purification of an eight subunit RNA polymerase I complex in Trypanosoma brucei. Mol Biochem Parasitol 2006; 149:27-37. [PMID: 16730080 DOI: 10.1016/j.molbiopara.2006.02.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 02/20/2006] [Accepted: 02/28/2006] [Indexed: 11/25/2022]
Abstract
Trypanosoma brucei harbors a unique multifunctional RNA polymerase (pol) I which transcribes, in addition to ribosomal RNA genes, the gene units encoding the major cell surface antigens variant surface glycoprotein and procyclin. In consequence, this RNA pol I is recruited to three structurally different types of promoters and sequestered to two distinct nuclear locations, namely the nucleolus and the expression site body. This versatility may require parasite-specific protein-protein interactions, subunits or subunit domains. Thus far, data mining of trypanosomatid genomes have revealed 13 potential RNA pol I subunits which include two paralogous sets of RPB5, RPB6, and RPB10. Here, we analyzed a cDNA library prepared from procyclic insect form T. brucei and found that all 13 candidate subunits are co-expressed. Moreover, we PTP-tagged the largest subunit TbRPA1, tandem affinity-purified the enzyme complex to homogeneity, and determined its subunit composition. In addition to the already known subunits RPA1, RPA2, RPC40, 1RPB5, and RPA12, the complex contained RPC19, RPB8, and 1RPB10. Finally, to evaluate the absence of RPB6 in our purifications, we used a combination of epitope-tagging and reciprocal coimmunoprecipitation to demonstrate that 1RPB6 but not 2RPB6 binds to RNA pol I albeit in an unstable manner. Collectively, our data strongly suggest that T. brucei RNA pol I binds a distinct set of the RPB5, RPB6, and RPB10 paralogs.
Collapse
Affiliation(s)
- Tu N Nguyen
- Department of Genetics and Developmental Biology and Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3301, USA
| | | | | | | | | |
Collapse
|
28
|
An in silico analysis of trypanosomatid RNA polymerases: insights into their unusual transcription. Biochem Soc Trans 2005; 33:1435-7. [PMID: 16246139 DOI: 10.1042/bst0331435] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
African trypanosomes employ both Pol I (RNA polymerase I) and Pol II to transcribe protein-coding genes in large polycistronic units of up to 50 genes. Subsequent processing produces mature capped mRNAs. Evidence suggests that regulation of gene expression is primarily exerted post-transcriptionally. Here, we use the recently completed genome sequences of three trypanosomatids, Trypanosoma brucei, Trypanosoma cruzi and Leishmania major, in an in silico analysis of their fundamental RNA polymerase complexes. The core complement of Pol II subunits, including those that are shared with Pol I and Pol III are present. However, both Pol I and Pol III complexes are missing members of the rpoE-rpoF subunit groups. Out of the five shared subunits, both RPB5 and RPB6 have two isoforms in the three trypanosomes. One represents the canonical polymerase subunit and the other differs by insertion or deletion of stretches of charged residues. We propose that these alternative isoforms function in distinct polymerase complexes, and may influence recruitment of the trypanosome RPB4-RPB7 heterodimer.
Collapse
|
29
|
Zaros C, Thuriaux P. Rpc25, a conserved RNA polymerase III subunit, is critical for transcription initiation. Mol Microbiol 2005; 55:104-14. [PMID: 15612920 DOI: 10.1111/j.1365-2958.2004.04375.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rpc25 is a strongly conserved subunit of RNA polymerase III with homology to Rpa43 in RNA polymerase I, Rpb7 in RNA polymerase II and the archaeal RpoE subunit. A central domain of Rpc25 can replaced the corresponding region of Rpb7 with little or no growth defect, underscoring the functional relatedness of these proteins. Rpc25 forms a heterodimer with Rpc17, another conserved component of RNA polymerase III. A conditional mutant (rpc25-S100P) impairs this interaction. rpc25-S100P and another conditional mutant obtained by complementation with the Schizosaccharomyces pombe subunit (rpc25-Sp) were investigated for the properties of their purified RNA polymerase III. The mutant enzymes were defective in the specific synthesis of pre-tRNA transcripts but acted at a wild-type level on poly[d(A-T)] templates. They were also indistinguishable from wild type in transcript elongation, cleavage and termination. These data indicate that Rpc25 is needed for transcription initiation but is not critical for the elongating properties of RNA polymerase III.
Collapse
Affiliation(s)
- Cécile Zaros
- Service de Biochimie & Génétique Moléculaire, Bâtiment 144, CEA-Saclay, F-91191, Gif sur Yvette, CEDEX, France
| | | |
Collapse
|
30
|
Morency E, Couté Y, Thomas J, Texier P, Lomonte P. The protein ICP0 of herpes simplex virus type 1 is targeted to nucleoli of infected cells. Arch Virol 2005; 150:2387-95. [PMID: 15883654 DOI: 10.1007/s00705-005-0546-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Accepted: 03/23/2005] [Indexed: 10/25/2022]
Abstract
This study describes the nucleolar localization of the viral protein ICP0 of herpes simplex virus type 1. We show that the RING finger domain of ICP0 is essential for ICP0 to localize in nucleoli of transfected and 4 hour-infected cells. ICP0 forms particular intranucleolar domains that do not correspond to any known nucleolar domains. This distribution was confirmed by immunoblots performed on fractionated infected cells. Quantitative RT-PCR experiments indicated that ICP0 did not increase the transcription from the RNA polymerase I (Pol I) promoter in transfected cells, an effect opposite to that observed on viral and cellular Pol II promoters. Nucleoli are thus, after PML bodies and centromeres, a novel nuclear structure targeted by ICP0.
Collapse
Affiliation(s)
- E Morency
- Centre de Génétique Moléculaire et Cellulaire, UMR5534-CNRS, Equipe Silencing Viral et Remodelage de la Chromatine Université Claude Bernard Lyon 1, Villeurbanne, France
| | | | | | | | | |
Collapse
|
31
|
Imazawa Y, Hisatake K, Mitsuzawa H, Matsumoto M, Tsukui T, Nakagawa K, Nakadai T, Shimada M, Ishihama A, Nogi Y. The Fission Yeast Protein Ker1p Is an Ortholog of RNA Polymerase I Subunit A14 in Saccharomyces cerevisiae and Is Required for Stable Association of Rrn3p and RPA21 in RNA Polymerase I. J Biol Chem 2005; 280:11467-74. [PMID: 15647272 DOI: 10.1074/jbc.m411150200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A heterodimer formed by the A14 and A43 subunits of RNA polymerase (pol) I in Saccharomyces cerevisiae is proposed to correspond to the Rpb4/Rpb7 and C17/C25 heterodimers in pol II and pol III, respectively, and to play a role(s) in the recruitment of pol I to the promoter. However, the question of whether the A14/A43 heterodimer is conserved in eukaryotes other than S. cerevisiae remains unanswered, although both Rpb4/Rpb7 and C17/C25 are conserved from yeast to human. To address this question, we have isolated a Schizosaccharomyces pombe gene named ker1+ using a yeast two-hybrid system, including rpa21+, which encodes an ortholog of A43, as bait. Although no homolog of A14 has previously been found in the S. pombe genome, functional characterization of Ker1p and alignment of Ker1p and A14 showed that Ker1p is an ortholog of A14. Disruption of ker1+ resulted in temperature-sensitive growth, and the temperature-sensitive deficit of ker1delta was suppressed by overexpression of either rpa21+ or rrn3+, which encodes the rDNA transcription factor Rrn3p, suggesting that Ker1p is involved in stabilizing the association of RPA21 and Rrn3p in pol I. We also found that Ker1p dissociated from pol I in post-log-phase cells, suggesting that Ker1p is involved in growth-dependent regulation of rDNA transcription.
Collapse
Affiliation(s)
- Yukiko Imazawa
- Department of Molecular Biology, Saitama Medical School, 38 Morohongo, Moroyama, Iruma-gun, Saitama 350-0495, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Sampath V, Sadhale P. Rpb4 and Rpb7: A Sub-complex Integral to Multi-subunit RNA Polymerases Performs a Multitude of Functions. IUBMB Life 2005; 57:93-102. [PMID: 16036568 DOI: 10.1080/15216540500078905] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Rpb4 and Rpb7, are conserved subunits of RNA polymerase II that play important roles in stress responses such as growth at extreme temperatures, recovery from stationary phase, sporulation and pseudohyphal growth. Recent reports have shown that apart from stress response, these proteins also affect a multitude of processes including activated transcription, mRNA export, transcription coupled repair etc. We propose a model that integrates the multifarious roles of this sub-complex. We suggest that these proteins function by modulating interactions of one or more ancillary factors with the polymerase leading to specific transcription of subsets of these genes. Preliminary experimental evidence in support of such a model is discussed.
Collapse
Affiliation(s)
- Vinaya Sampath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
33
|
Abstract
New structural studies of RNA polymerase II (Pol II) complexes mark the beginning of a detailed mechanistic analysis of the eukaryotic mRNA transcription cycle. Crystallographic models of the complete Pol II, together with new biochemical and electron microscopic data, give insights into transcription initiation. The first X-ray analysis of a Pol II complex with a transcription factor, the elongation factor TFIIS, supports the idea that the polymerase has a 'tunable' active site that switches between mRNA synthesis and cleavage. The new studies also show that domains of transcription factors can enter polymerase openings, to modulate function during transcription.
Collapse
Affiliation(s)
- Patrick Cramer
- Institute of Biochemistry and Gene Center, University of Munich, Feodor-Lynen-Str. 25, 81377 Munich, Germany.
| |
Collapse
|
34
|
Ouhammouch M, Werner F, Weinzierl ROJ, Geiduschek EP. A fully recombinant system for activator-dependent archaeal transcription. J Biol Chem 2004; 279:51719-21. [PMID: 15485836 DOI: 10.1074/jbc.c400446200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The core components of the archaeal transcription apparatus closely resemble those of eukaryotic RNA polymerase II, while the DNA-binding transcriptional regulators are predominantly of bacterial type. Here we report the construction of an entirely recombinant system for positively regulated archaeal transcription. By omitting individual subunits, or sets of subunits, from the in vitro assembly of the 12-subunit RNA polymerase from the hyperthermophile Methanocaldococcus jannaschii, we describe a functional dissection of this RNA polymerase II-like enzyme, and its interactions with the general transcription factor TFE, as well as with the transcriptional activator Ptr2.
Collapse
Affiliation(s)
- Mohamed Ouhammouch
- Division of Biological Sciences and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093-0634, USA.
| | | | | | | |
Collapse
|
35
|
Bric A, Radebaugh CA, Paule MR. Photocross-linking of the RNA Polymerase I Preinitiation and Immediate Postinitiation Complexes. J Biol Chem 2004; 279:31259-67. [PMID: 15161919 DOI: 10.1074/jbc.m311828200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The architecture of eukaryotic rRNA transcription complexes was analyzed, revealing facts significant to the RNA polymerase (pol) I initiation process. Functional initiation and elongation complexes were mapped by site-specific photocross-linking to template DNA. Polymerase I is recruited to the promoter via protein-protein interactions with DNA-bound transcription initiation factor-IB. The latter's TATA-binding protein (TBP) and TAFs photocross-link to the promoter from -78 to +10 relative to the tis (+1). Although TBP does not bind DNA using its TATA-binding saddle, it does photocross-link to a 22-bp sequence that does not resemble a TATA box. Only TAF(I)96 (the mammalian TAF(I) 68, yeast Rrn7p homolog) overlaps significantly with the DNA interaction cleft of pol I based on modeling to the pol II crystal structure. None of the pol I-specific subunits that are localized on the lips of the cleft (A49 and A34.5) or the pol I-specific stalk (A43 and A14) cross-link to DNA. Pol I does not extend significantly upstream of the promoter-proximal border of the factor complex (-11 to -14), and similarly in the promoter proximal elongation complex, the enzyme does not contact DNA upstream of its normal exit from the cleft.
Collapse
Affiliation(s)
- Anka Bric
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870, USA
| | | | | |
Collapse
|
36
|
Singh SR, Rekha N, Pillai B, Singh V, Naorem A, Sampath V, Srinivasan N, Sadhale PP. Domainal organization of the lower eukaryotic homologs of the yeast RNA polymerase II core subunit Rpb7 reflects functional conservation. Nucleic Acids Res 2004; 32:201-10. [PMID: 14704357 PMCID: PMC373273 DOI: 10.1093/nar/gkh163] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The subcomplex of Rpb4 and Rpb7 subunits of RNA pol II in Saccharomyces cerevisiae is known to be an important determinant of transcription under a variety of physiological stresses. In S.cerevisiae, RPB7 is essential for cell viability while rpb4 null strains are temperature sensitive at low and high temperatures. The rpb4 null strain also shows defect in sporulation and a predisposed state of pseudohyphal growth. We show here that, apart from S.cerevisiae Rpb7, the Rpb7 homologs from other lower eukaryotes like Schizosaccharomyces pombe, Candida albicans and Dictyostelium discoideum can complement for the absence of S.cerevisiae RPB7. This is the first report where we have shown that both the C.albicans and D.discoideum homologs are functional orthologs of the yeast RPB7. We also show that high expression levels of S.cerevisiae RPB7 and its homologs rescue the sporulation defect of rpb4 homozygous null diploids, but only some of them cause significant enhancement of the pseudohyphal phenotype. Structural modeling of Rpb7 and its homologs show a high degree of conservation in the overall structure. This study indicates a structural and functional conservation of different Rpb7 across species and also a conserved role of Rpb7 in the subcomplex with respect to nutritional stress.
Collapse
Affiliation(s)
- Sunanda R Singh
- Department of Microbiology, Indian Institute of Science, Bangalore-12, India
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Affiliation(s)
- Patrick Cramer
- Institute of Biochemistry and Gene Center, University of Munich, 81377 Munich, Germany
| |
Collapse
|
38
|
Sampath V, Rekha N, Srinivasan N, Sadhale P. The Conserved and Non-conserved Regions of Rpb4 Are Involved in Multiple Phenotypes in Saccharomyces cerevisiae. J Biol Chem 2003; 278:51566-76. [PMID: 14530281 DOI: 10.1074/jbc.m305863200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rpb4, the fourth largest subunit of RNA polymerase II in Saccharomyces cerevisiae, is required for many phenotypes, including growth at high and low temperatures, sporulation, pseudohyphal growth, activated transcription of a subset of genes, and efficient carbon and energy metabolism. We have used deletion analysis to delineate the domains of the protein involved in these multiple phenotypes. The scRpb4 protein is conserved at the N and C termini but possesses certain non-conserved regions in the central portion. Our deletion analysis and molecular modeling results show that the N- and C-terminal conserved regions of Rpb4 are involved in interaction with Rpb7, the Rpb4 interacting partner in the RNA polymerase II. We further show that the conserved N terminus is required for efficient activated transcription from the INO1 promoter but not the GAL10- or the HSE-containing promoters. The N terminus is not required for any of the stress responses tested: growth at high temperatures, sporulation, and pseudohyphal growth. The conserved C-terminal 23 amino acids are not required for the role of Rpb4 in the pseudohyphal growth phenotype but might play a role in other stress responses and activated transcription. From the deletion analysis of the non-conserved regions, we report that they influence phenotypes involving both the N and C termini (interaction with Rpb7 and transcription from the INO1 promoter) but not any of the stress-responsive phenotypes tested suggesting that they might be involved in maintaining the two conserved domains in an appropriate conformation for interaction with Rpb7 and other proteins. Taken together, our results allow us to assign phenotype-specific roles for the different conserved and non-conserved regions of Rpb4.
Collapse
Affiliation(s)
- Vinaya Sampath
- Department of Microbiology & Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | | | | | |
Collapse
|
39
|
Meka H, Daoust G, Arnvig KB, Werner F, Brick P, Onesti S. Structural and functional homology between the RNAP(I) subunits A14/A43 and the archaeal RNAP subunits E/F. Nucleic Acids Res 2003; 31:4391-400. [PMID: 12888498 PMCID: PMC169954 DOI: 10.1093/nar/gkg652] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2003] [Revised: 06/03/2003] [Accepted: 06/12/2003] [Indexed: 11/12/2022] Open
Abstract
In the archaeal RNA polymerase and the eukaryotic RNA polymerase II, two subunits (E/F and RPB4/RPB7, respectively) form a heterodimer that reversibly associates with the core of the enzyme. Recently it has emerged that this heterodimer also has a counterpart in the other eukaryotic RNA polymerases: in particular two subunits of RNA polymerase I (A14 and A43) display genetic and biochemical characteristics that are similar to those of the RPB4 and RPB7 subunits, despite the fact that only A43 shows some sequence homology to RPB7. We demonstrate that the sequence of A14 strongly suggests the presence of a HRDC domain, a motif that is found at the C-terminus of a number of helicases and RNases. The same motif is also seen in the structure of the F subunit, suggesting a structural link between A14 and the RPB4/C17/subunit F family, even in the absence of direct sequence homology. We show that it is possible to co-express and co-purify large amounts of the recombinant A14/A43 heterodimer, indicating a tight and specific interaction between the two subunits. To shed light on the function of the heterodimer, we performed gel mobility shift assays and showed that the A14/A43 heterodimer binds single-stranded RNA in a similar way to the archaeal E/F complex.
Collapse
Affiliation(s)
- Hedije Meka
- Department of Biological Sciences, Imperial College, Exhibition Road, London SW7 2AZ, UK
| | | | | | | | | | | |
Collapse
|
40
|
De Carlo S, Carles C, Riva M, Schultz P. Cryo-negative staining reveals conformational flexibility within yeast RNA polymerase I. J Mol Biol 2003; 329:891-902. [PMID: 12798680 DOI: 10.1016/s0022-2836(03)00510-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The structure of the yeast DNA-dependent RNA polymerase I (RNA Pol I), prepared by cryo-negative staining, was studied by electron microscopy. A structural model of the enzyme at a resolution of 1.8 nm was determined from the analysis of isolated molecules and showed an excellent fit with the atomic structure of the RNA Pol II Delta4/7. The high signal-to-noise ratio (SNR) of the stained molecular images revealed a conformational flexibility within the image data set that could be recovered in three-dimensions after implementation of a novel strategy to sort the "open" and "closed" conformations in our heterogeneous data set. This conformational change mapped in the "wall/flap" domain of the second largest subunit (beta-like) and allows a better accessibility of the DNA-binding groove. This displacement of the wall/flap domain could play an important role in the transition between initiation and elongation state of the enzyme. Moreover, a protrusion was apparent in the cryo-negatively stained model, which was absent in the atomic structure and was not detected in previous 3D models of RNA Pol I. This structure could, however, be detected in unstained views of the enzyme obtained from frozen hydrated 2D crystals, indicating that this novel feature is not induced by the staining process. Unexpectedly, negatively charged molybdenum compounds were found to accumulate within the DNA-binding groove, which is best explained by the highly positive electrostatic potential of this region of the molecule, thus, suggesting that the stain distribution reflects the overall surface charge of the molecule.
Collapse
Affiliation(s)
- Sacha De Carlo
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 1 rue Laurent Fries, BP163, F-67404 Illkirch Cedex, C.U. de Strasbourg, France.
| | | | | | | |
Collapse
|
41
|
Armache KJ, Kettenberger H, Cramer P. Architecture of initiation-competent 12-subunit RNA polymerase II. Proc Natl Acad Sci U S A 2003; 100:6964-8. [PMID: 12746495 PMCID: PMC165813 DOI: 10.1073/pnas.1030608100] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2003] [Indexed: 12/17/2022] Open
Abstract
RNA polymerase (Pol) II consists of a 10-polypeptide catalytic core and the two-subunit Rpb4/7 complex that is required for transcription initiation. Previous structures of the Pol II core revealed a "clamp," which binds the DNA template strand via three "switch regions," and a flexible "linker" to the C-terminal repeat domain (CTD). Here we derived a model of the complete Pol II by fitting structures of the core and Rpb4/7 to a 4.2-A crystallographic electron density map. Rpb4/7 protrudes from the polymerase "upstream face," on which initiation factors assemble for promoter DNA loading. Rpb7 forms a wedge between the clamp and the linker, restricting the clamp to a closed position. The wedge allosterically prevents entry of the promoter DNA duplex into the active center cleft and induces in two switch regions a conformation poised for template-strand binding. Interaction of Rpb4/7 with the linker explains Rpb4-mediated recruitment of the CTD phosphatase to the CTD during Pol II recycling. The core-Rpb7 interaction and some functions of Rpb4/7 are apparently conserved in all eukaryotic and archaeal RNA polymerases but not in the bacterial enzyme.
Collapse
Affiliation(s)
- Karim-Jean Armache
- Institute of Biochemistry and Gene Center, University of Munich, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | | | | |
Collapse
|
42
|
Bushnell DA, Kornberg RD. Complete, 12-subunit RNA polymerase II at 4.1-A resolution: implications for the initiation of transcription. Proc Natl Acad Sci U S A 2003; 100:6969-73. [PMID: 12746498 PMCID: PMC165814 DOI: 10.1073/pnas.1130601100] [Citation(s) in RCA: 225] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2003] [Indexed: 01/22/2023] Open
Abstract
The x-ray structure of complete RNA polymerase II from Saccharomyces cerevisiae has been determined, including a heterodimer of subunits Rpb4 and Rpb7 not present in previous "core" polymerase II structures. The heterodimer maintains the polymerase in the conformation of a transcribing complex, may bind RNA as it emerges from the enzyme, and is in a position to interact with general transcription factors and the Mediator of transcriptional regulation.
Collapse
Affiliation(s)
- David A Bushnell
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
43
|
Nakagawa K, Hisatake K, Imazawa Y, Ishiguro A, Matsumoto M, Pape L, Ishihama A, Nogi Y. The fission yeast RPA51 is a functional homolog of the budding yeast A49 subunit of RNA polymerase I and required for maximizing transcription of ribosomal DNA. Genes Genet Syst 2003; 78:199-209. [PMID: 12893961 DOI: 10.1266/ggs.78.199] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Saccharomyces cerevisiae A49 and mouse PAF53 are subunits specific to RNA polymerase I (Pol I) in eukaryotes. It has been known that Pol I without A49 or PAF53 maintains non-specific transcription activities but a molecular role(s) of A49 (and PAF53) remains totally unknown. We studied the fission yeast gene encoding a protein of 415 amino acids exhibiting 30% and 19% identities to A49 and PAF53, respectively. We designate the corresponding protein RPA51 and gene encoding it rpa51+ since the gene encodes a Pol I subunit and an apparent molecular mass of the protein is 51 kDa. rpa51+ is required for cell growth at lower but not at higher temperatures and is able to complement S. cerevisiae rpa49Delta mutation, indicating that RPA51 is a functionally-conserved subunit of Pol I between the budding yeast and the fission yeast. Deletion analysis of rpa51+ shows that only two-thirds of the C-terminal region are required for the function. Transcripts analysis in vivo and in vitro shows that RPA51 plays a general role for maximizing transcription of rDNA whereas it is dispensable for non-specific transcription. We also found that RPA51 associates significantly with Pol I in the stationary phase, suggesting that Pol I inactivation in the stationary phase of yeast does not result from the RPA51 dissociation.
Collapse
Affiliation(s)
- Kaori Nakagawa
- Department of Molecular Biology, Saitama Medical School, Iruma-Gun, Saitama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Tan Q, Prysak MH, Woychik NA. Loss of the Rpb4/Rpb7 subcomplex in a mutant form of the Rpb6 subunit shared by RNA polymerases I, II, and III. Mol Cell Biol 2003; 23:3329-38. [PMID: 12697831 PMCID: PMC153193 DOI: 10.1128/mcb.23.9.3329-3338.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2002] [Revised: 10/16/2002] [Accepted: 01/17/2003] [Indexed: 11/20/2022] Open
Abstract
We have identified a conditional mutation in the shared Rpb6 subunit, assembled in RNA polymerases I, II, and III, that illuminated a new role that is independent of its assembly function. RNA polymerase II and III activities were significantly reduced in mutant cells before and after the shift to nonpermissive temperature. In contrast, RNA polymerase I was marginally affected. Although the Rpb6 mutant strain contained two mutations (P75S and Q100R), the majority of growth and transcription defects originated from substitution of an amino acid nearly identical in all eukaryotic counterparts as well as bacterial omega subunits (Q100R). Purification of mutant RNA polymerase II revealed that two subunits, Rpb4 and Rpb7, are selectively lost in mutant cells. Rpb4 and Rpb7 are present at substoichiometric levels, form a dissociable subcomplex, are required for RNA polymerase II activity at high temperatures, and have been implicated in the regulation of enzyme activity. Interaction experiments support a direct association between the Rpb6 and Rpb4 subunits, indicating that Rpb6 is one point of contact between the Rpb4/Rpb7 subcomplex and RNA polymerase II. The association of Rpb4/Rpb7 with Rpb6 suggests that analogous subunits of each RNA polymerase impart class-specific functions through a conserved core subunit.
Collapse
Affiliation(s)
- Qian Tan
- Department of Molecular Genetics, Microbiology and Immunology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854-5635, USA
| | | | | |
Collapse
|
45
|
Current awareness on yeast. Yeast 2003; 20:455-62. [PMID: 12728936 DOI: 10.1002/yea.943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
46
|
Siaut M, Zaros C, Levivier E, Ferri ML, Court M, Werner M, Callebaut I, Thuriaux P, Sentenac A, Conesa C. An Rpb4/Rpb7-like complex in yeast RNA polymerase III contains the orthologue of mammalian CGRP-RCP. Mol Cell Biol 2003; 23:195-205. [PMID: 12482973 PMCID: PMC140662 DOI: 10.1128/mcb.23.1.195-205.2003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2002] [Revised: 08/06/2002] [Accepted: 09/30/2002] [Indexed: 11/20/2022] Open
Abstract
The essential C17 subunit of yeast RNA polymerase (Pol) III interacts with Brf1, a component of TFIIIB, suggesting a role for C17 in the initiation step of transcription. The protein sequence of C17 (encoded by RPC17) is conserved from yeasts to humans. However, mammalian homologues of C17 (named CGRP-RCP) are known to be involved in a signal transduction pathway related to G protein-coupled receptors, not in transcription. In the present work, we first establish that human CGRP-RCP is the genuine orthologue of C17. CGRP-RCP was found to functionally replace C17 in Deltarpc17 yeast cells; the purified mutant Pol III contained CGRP-RCP and had a decreased specific activity but initiated faithfully. Furthermore, CGRP-RCP was identified by mass spectrometry in a highly purified human Pol III preparation. These results suggest that CGRP-RCP has a dual function in mammals. Next, we demonstrate by genetic and biochemical approaches that C17 forms with C25 (encoded by RPC25) a heterodimer akin to Rpb4/Rpb7 in Pol II. C17 and C25 were found to interact genetically in suppression screens and physically in coimmunopurification and two-hybrid experiments. Sequence analysis and molecular modeling indicated that the C17/C25 heterodimer likely adopts a structure similar to that of the archaeal RpoE/RpoF counterpart of the Rpb4/Rpb7 complex. These RNA polymerase subunits appear to have evolved to meet the distinct requirements of the multiple forms of RNA polymerases.
Collapse
Affiliation(s)
- Magali Siaut
- Service de Biochimie et de Génétique Moléculaire, CEA/Saclay, F-91191 Gif sur Yvette Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|