1
|
Shariati FS, Norouzian D, Valizadeh V, Ahangari Cohan R, Keramati M. Rapid screening of high expressing Escherichia coli colonies using a novel dicistronic-autoinducible system. Microb Cell Fact 2021; 20:223. [PMID: 34895227 PMCID: PMC8666062 DOI: 10.1186/s12934-021-01711-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/23/2021] [Indexed: 11/25/2022] Open
Abstract
Background Identification of high-expressing colonies is one of the main concerns in the upstream process of recombinant protein development. The common method to screen high-producing colonies is SDS-PAGE, a laborious and time-consuming process, which is based on a random and qualitative way. The current study describes the design and development of a rapid screening system composed of a dicistronic expression system containing a reporter (enhanced green fluorescent protein, eGFP), protein model (staphylokinase, SAK), and a self-inducible system containing heat shock protein 27 (Hsp27). Results Dicistronic-autoinducible system expressed eGFP and SAK successfully in 5-ml and 1-L culture volumes. High expressing colonies were identified during 6 h via fluorescent signals. In addition, the biological activity of the protein model was confirmed semi-quantitatively and quantitatively through radial caseinolytic and chromogenic methods, respectively. There was a direct correlation between eGFP fluorescent intensity and SAK activity. The correlation and linearity of expression between the two genes were respectively confirmed with Pearson correlation and linear regression. Additionally, the precision, limit of detection (LOD), and limit of quantification (LOQ) were determined. The expression of eGFP and SAK was stable during four freeze–thaw cycles. In addition, the developed protocol showed that the transformants can be inoculated directly to the culture, saving time and reducing the error-prone step of colony picking. Conclusion The developed system is applicable for rapid screening of high-expressing colonies in most research laboratories. This system can be investigated for other recombinant proteins expressed in E. coli with a potential capability for automation and use at larger scales. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01711-2.
Collapse
Affiliation(s)
- Fatemeh Sadat Shariati
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Dariush Norouzian
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Vahideh Valizadeh
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Ahangari Cohan
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran.
| | - Malihe Keramati
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
2
|
Shariati FS, Keramati M, Valizadeh V, Cohan RA, Norouzian D. Comparison of E. coli based self-inducible expression systems containing different human heat shock proteins. Sci Rep 2021; 11:4576. [PMID: 33633341 PMCID: PMC7907268 DOI: 10.1038/s41598-021-84188-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 02/11/2021] [Indexed: 01/31/2023] Open
Abstract
IPTG-inducible promoter is popularly used for the expression of recombinant proteins. However, it is not suitable at the industrial scale due to the high cost and toxicity on the producing cells. Recently, a Self-Inducible Expression (SILEX) system has developed to bypass such problems using Hsp70 as an autoinducer. Herein, the effect of other heat shock proteins on the autoinduction of green fluorescent protein (EGFP), romiplostim, and interleukin-2 was investigated. For quantitative measurements, EGFP expression was monitored after double-transformation of pET28a-EGFP and pET21a-(Hsp27/Hsp40/Hsp70) plasmids into E. coli using fluorimetry. Moreover, the expression level, bacterial growth curve, and plasmid and expression stability were compared to an IPTG- inducible system using EGFP. Statistical analysis revealed a significant difference in EGFP expression between autoinducible and IPTG-inducible systems. The expression level was higher in Hsp27 system than Hsp70/Hsp40 systems. However, the highest amount of expression was observed for the inducible system. IPTG-inducible and Hsp70 systems showed more lag-time in the bacterial growth curve than Hsp27/Hsp40 systems. A relatively stable EGFP expression was observed in SILEX systems after several freeze-thaw cycles within 90 days, while, IPTG-inducible system showed a decreasing trend compared to the newly transformed bacteria. Moreover, the inducible system showed more variation in the EGFP expression among different clones than clones obtained by SILEX systems. All designed SILEX systems successfully self-induced the expression of protein models. In conclusion, Hsp27 system could be considered as a suitable autoinducible system for protein expression due to less metabolic burden, lower variation in the expression level, suitable plasmid and expression stability, and a higher expression level.
Collapse
Affiliation(s)
- Fatemeh Sadat Shariati
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Malihe Keramati
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Vahideh Valizadeh
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Ahangari Cohan
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran.
| | - Dariush Norouzian
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
3
|
Fusion of polymeric material-binding peptide to cell-adhesion artificial proteins enhances their biological function. Biointerphases 2017; 12:021002. [DOI: 10.1116/1.4979577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
4
|
Waku T, Tanaka N. Recent advances in nanofibrous assemblies based on β-sheet-forming peptides for biomedical applications. POLYM INT 2016. [DOI: 10.1002/pi.5195] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Tomonori Waku
- Faculty of Molecular Chemistry and Engineering; Kyoto Institute of Technology; Gosyokaido-cho, Matsugasaki Sakyo-ku Kyoto 606-8585 Japan
| | - Naoki Tanaka
- Faculty of Molecular Chemistry and Engineering; Kyoto Institute of Technology; Gosyokaido-cho, Matsugasaki Sakyo-ku Kyoto 606-8585 Japan
| |
Collapse
|
5
|
Takano A, Kajita T, Mochizuki M, Endo T, Yoshihisa T. Cytosolic Hsp70 and co-chaperones constitute a novel system for tRNA import into the nucleus. eLife 2015; 4:e04659. [PMID: 25853343 PMCID: PMC4432389 DOI: 10.7554/elife.04659] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 04/05/2015] [Indexed: 01/31/2023] Open
Abstract
tRNAs are unique among various RNAs in that they shuttle between the nucleus and the cytoplasm, and their localization is regulated by nutrient conditions. Although nuclear export of tRNAs has been well documented, the import machinery is poorly understood. Here, we identified Ssa2p, a major cytoplasmic Hsp70 in Saccharomyces cerevisiae, as a tRNA-binding protein whose deletion compromises nuclear accumulation of tRNAs upon nutrient starvation. Ssa2p recognizes several structural features of tRNAs through its nucleotide-binding domain, but prefers loosely-folded tRNAs, suggesting that Ssa2p has a chaperone-like activity for RNAs. Ssa2p also binds Nup116, one of the yeast nucleoporins. Sis1p and Ydj1p, cytoplasmic co-chaperones for Ssa proteins, were also found to contribute to the tRNA import. These results unveil a novel function of the Ssa2p system as a tRNA carrier for nuclear import by a novel mode of substrate recognition. Such Ssa2p-mediated tRNA import likely contributes to quality control of cytosolic tRNAs.
Collapse
Affiliation(s)
- Akira Takano
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Takuya Kajita
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Makoto Mochizuki
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Toshiya Endo
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Tohru Yoshihisa
- Graduate School of Life Science, University of Hyogo, Kobe, Japan
| |
Collapse
|
6
|
Sawada T, Mihara H, Serizawa T. Peptides as New Smart Bionanomaterials: Molecular-Recognition and Self-Assembly Capabilities. CHEM REC 2013; 13:172-86. [DOI: 10.1002/tcr.201200020] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Indexed: 12/14/2022]
Affiliation(s)
- Toshiki Sawada
- Department of Organic and Polymeric Materials; Tokyo Institute of Technology; 2-12-1-H121 Ookayama; Meguro-ku; Tokyo; Japan
| | - Hisakazu Mihara
- Department of Bioengineering; Tokyo Institute of Technology; 4259-B40 Nagatsuta-cho, Midori-ku; Yokohama; Japan
| | - Takeshi Serizawa
- Department of Organic and Polymeric Materials; Tokyo Institute of Technology; 2-12-1-H121 Ookayama; Meguro-ku; Tokyo; Japan
| |
Collapse
|
7
|
Fukuhara S, Nishigaki T, Miyata K, Tsuchiya N, Waku T, Tanaka N. Mechanism of the Chaperone-like and Antichaperone Activities of Amyloid Fibrils of Peptides from αA-Crystallin. Biochemistry 2012; 51:5394-401. [DOI: 10.1021/bi3004236] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Sayuri Fukuhara
- Department of Biomolecular Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo,
Kyoto 606-8585, Japan
| | - Tatsutoshi Nishigaki
- Department of Biomolecular Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo,
Kyoto 606-8585, Japan
| | - Keisuke Miyata
- Department of Biomolecular Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo,
Kyoto 606-8585, Japan
| | - Nobuhiko Tsuchiya
- Department of Biomolecular Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo,
Kyoto 606-8585, Japan
| | - Tomonori Waku
- Department of Biomolecular Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo,
Kyoto 606-8585, Japan
| | - Naoki Tanaka
- Department of Biomolecular Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo,
Kyoto 606-8585, Japan
| |
Collapse
|
8
|
Serizawa T, Matsuno H, Sawada T. Specific interfaces between synthetic polymers and biologically identified peptides. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm10602c] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Ternary system of solution additives with arginine and salt for refolding of beta-galactosidase. Protein J 2010; 29:161-6. [PMID: 20213119 DOI: 10.1007/s10930-010-9235-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
(L)-Arginine hydrochloride (Arg HCl) has been used for protein refolding as a universal aggregation suppressor for monomeric proteins. This paper presents an investigation of the refolding of tetrameric beta-galactosidase (beta-gal) using Arg HCl and other salts. In a binary system using only Arg HCl, the refolding yield of beta-gal increased with increasing concentration up to 0.2 M. However, the refolding yield sharply decreased above this concentration, reaching the level below the control yield of 5% at 0.5 M and near zero above 0.75 M, an observation unexpected from monomeric proteins. In a ternary system using both 0.2 M Arg HCl and another salt, the refolding yield increased up to 1.5-fold higher than that in the binary system. These data indicate that aggregation suppressive effects of protein increase with Arg HCl concentration, but also are deleterious to self-association of the protein. This dual nature of Arg HCl effects may have to be taken into account in its application for refolding of oligomeric proteins.
Collapse
|
10
|
Bonomo J, Welsh JP, Manthiram K, Swartz JR. Comparing the functional properties of the Hsp70 chaperones, DnaK and BiP. Biophys Chem 2010; 149:58-66. [PMID: 20435400 PMCID: PMC3175487 DOI: 10.1016/j.bpc.2010.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 04/05/2010] [Accepted: 04/05/2010] [Indexed: 11/23/2022]
Abstract
The Hsp70 family of molecular chaperones is an essential class of chaperones that is present in many different cell types and cellular compartments. We have compared the bioactivities of the prokaryotic cytosolic Hsp70, DnaK, to that of the eukaryotic Hsp70, BiP, located in the endoplasmic reticulum (ER). Both chaperones helped to prevent protein aggregation. However, only DnaK provided enhanced refolding of denatured proteins. We also tested chaperone folding assistance during translation in the context of cell-free protein synthesis reactions for several protein targets and show that both DnaK and BiP can provide folding assistance under these conditions. Our results support previous reports suggesting that DnaK provides both post-translational and co-translational folding assistance while BiP predominantly provides folding assistance that is contemporaneous with translation.
Collapse
Affiliation(s)
- Jeanne Bonomo
- Department of Chemical Engineering, Stanford University, 381 North-South Mall, Stanford, CA 94305-5025, USA.
| | | | | | | |
Collapse
|
11
|
Chang L, Thompson AD, Ung P, Carlson HA, Gestwicki JE. Mutagenesis reveals the complex relationships between ATPase rate and the chaperone activities of Escherichia coli heat shock protein 70 (Hsp70/DnaK). J Biol Chem 2010; 285:21282-91. [PMID: 20439464 DOI: 10.1074/jbc.m110.124149] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli 70-kDa heat shock protein, DnaK, is a molecular chaperone that engages in a variety of cellular activities, including the folding of proteins. During this process, DnaK binds its substrates in coordination with a catalytic ATPase cycle. Both the ATPase and protein folding activities of DnaK are stimulated by its co-chaperones, DnaJ and GrpE. However, it is not yet clear how changes in the stimulated ATPase rate of DnaK impact the folding process. In this study, we performed mutagenesis throughout the nucleotide-binding domain of DnaK to generate a collection of mutants in which the stimulated ATPase rates varied from 0.7 to 13.6 pmol/microg/min(-1). We found that this range was largely established by differences in the ability of the mutants to be stimulated by one or both of the co-chaperones. Next, we explored how changes in ATPase rate might impact refolding of denatured luciferase in vitro and found that the two activities were poorly correlated. Unexpectedly, we found several mutants that refold luciferase normally in the absence of significant ATP turnover, presumably by increasing the flexibility of DnaK. Finally, we tested whether DnaK mutants could complement growth of DeltadnaK E. coli cells under heat shock and found that the ability to refold luciferase was more predictive of in vivo activity than ATPase rate. This study provides insights into how flexibility and co-chaperone interactions affect DnaK-mediated ATP turnover and protein folding.
Collapse
Affiliation(s)
- Lyra Chang
- University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
12
|
Abstract
Apoptosis signal-regulating kinase 1 (ASK1) is a mitogenactivated protein kinase (MAPK) kinase kinase that activates JNK and p38 kinases. ASK1 is activated by various stresses, such as reactive oxygen species (ROS), endoplasmic reticulum (ER) stress, lipopolysaccharide (LPS) and calcium influx which are thought to be responsible for the pathogenesis or exacerbations of various human diseases. Recent studies revealed the involvement of ASK1 in ROS- or ER stressrelated diseases, suggesting that ASK1 may be a potential therapeutic target of various human diseases. In this review, we focus on the current findings for the relationship between pathogenesis and ASK1-MAPK pathways.
Collapse
Affiliation(s)
- Hiroaki Nagai
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | | | | | | |
Collapse
|
13
|
Cho EK, Bae SJ. ATP-independent thermoprotective activity of Nicotiana tabacum heat shock protein 70 in Escherichia coli. JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2007; 40:107-12. [PMID: 17244490 DOI: 10.5483/bmbrep.2007.40.1.107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To study the functioning of HSP70 in Escherichia coli, we selected NtHSP70-2 (AY372070) from among three genomic clones isolated in Nicotiana tabacum. Recombinant NtHSP70-2, containing a hexahistidine tag at the amino-terminus, was constructed, expressed in E. coli, and purified by Ni(2+) affinity chromatography and Q Sepharose Fast Flow anion exchange chromatography. The expressed fusion protein, H(6)NtHSP70-2 (hexahistidine-tagged Nicotiana tabacum heat shock protein 70-2), maintained the stability of E. coli proteins up to 90 degrees C. Measuring the light scattering of luciferase (luc) revealed that NtHSP70-2 prevents the aggregation of luc without ATP during high-temperature stress. In a functional bioassay (1 h at 50 degrees C) for recombinant H(6)NtHSP70-2, E. coli cells overexpressing H(6)NtHSP70-2 survived about seven times longer than those lacking H(6)NtHSP70-2. After 2 h at 50 degrees C, only the E. coli overexpressing H(6)NtHSP70-2 survived under such conditions. Our NtHSP70-2 bioassays, as well as in vitro studies, strongly suggest that HSP70 confers thermo-tolerance to E. coli.
Collapse
Affiliation(s)
- Eun Kyung Cho
- Department of Bio-Food Materials, College of Medical Life Science, Silla University, Busan 617-736, Korea.
| | | |
Collapse
|
14
|
Siegenthaler RK, Christen P. Tuning of DnaK chaperone action by nonnative protein sensor DnaJ and thermosensor GrpE. J Biol Chem 2006; 281:34448-56. [PMID: 16940296 DOI: 10.1074/jbc.m606382200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
DnaK, an Hsp70 molecular chaperone, processes its substrates in an ATP-driven cycle, which is controlled by the co-chaperones DnaJ and GrpE. The kinetic analysis of substrate binding and release has as yet been limited to fluorescence-labeled peptides. Here, we report a comprehensive kinetic analysis of the chaperone action with protein substrates. The kinetic partitioning of the (ATP x DnaK) x substrate complexes between dissociation and conversion into stable (ADP x DnaK) x substrate complexes is determined by DnaJ. In the case of substrates that allow the formation of ternary (ATP x DnaK) x substrate x DnaJ complexes, the cis-effect of DnaJ markedly accelerates ATP hydrolysis. This triage mechanism efficiently selects from the (ATP x DnaK) x substrate complexes those to be processed in the chaperone cycle; at 45 degrees C, the fraction of protein complexes fed into the cycle is 20 times higher than that of peptide complexes. The thermosensor effect of the ADP/ATP exchange factor GrpE retards the release of substrate from the cycle at higher temperatures; the fraction of total DnaK in stable (ADP x DnaK) x substrate complexes is 2 times higher at 45 degrees C than at 25 degrees C. Monitoring the cellular situation by DnaJ as nonnative protein sensor and GrpE as thermosensor thus directly adapts the operational mode of the DnaK system to heat shock conditions.
Collapse
|
15
|
Tanaka N, Nakao S, Chatellier J, Tani Y, Tada T, Kunugi S. Effect of the polypeptide binding on the thermodynamic stability of the substrate binding domain of the DnaK chaperone. BIOCHIMICA ET BIOPHYSICA ACTA 2005; 1748:1-8. [PMID: 15752686 DOI: 10.1016/j.bbapap.2004.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Revised: 11/08/2004] [Accepted: 11/11/2004] [Indexed: 10/25/2022]
Abstract
The effect of polypeptide binding on the stability of the substrate binding domain of the molecular chaperone DnaK has been studied by thermodynamic analysis. The calorimetric scan of the fragment of the substrate binding domain DnaK384-638, consisting of a beta-domain and an alpha-helical lid, showed two transitions centered at 56.2 and 76.0 degrees C. On the other hand, the thermal unfolding of the shorter fragment DnaK386-561, which lacks half of the alpha-helical lid, exhibited a single transition at 57.0 degrees C. Therefore, the transition of DnaK384-638 at 56.2 degrees C is mainly attributed to the unfolding of the beta-domain. The calorimetric scan of DnaK384-638D526N showed that the unfolding of the beta-domain was composed of two transitions. The polypeptide bound DnaK384-638 exhibited a symmetrical DSC peak at 58.6 degrees C, indicating that the substrate binding shifts the beta-domain toward a single cooperative unit. A low concentration of GdnHCl (<1.0 M) induced a conformational change in the beta-domain of DnaK384-638 without changes in the secondary structure. While the thermal unfolding of the beta-domain of DnaK384-638 was composed of two transitions in the presence of GdnHCl, the beta-domain of the substrate bound DnaK384-638 exhibited a single symmetrical DSC peak in the same condition. All together, our results indicate that complex between DnaK384-638 and substrate forms a rigid conformation in the beta-domain.
Collapse
Affiliation(s)
- Naoki Tanaka
- Department of Polymer Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585, Japan.
| | | | | | | | | | | |
Collapse
|
16
|
Dedmon MM, Christodoulou J, Wilson MR, Dobson CM. Heat Shock Protein 70 Inhibits α-Synuclein Fibril Formation via Preferential Binding to Prefibrillar Species. J Biol Chem 2005; 280:14733-40. [PMID: 15671022 DOI: 10.1074/jbc.m413024200] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder affecting an estimated 4 million people worldwide. Intracellular proteinaceous inclusions called Lewy bodies are the histological hallmarks of PD and are primarily composed of aggregated alpha-synuclein (alphaSyn). Although the detailed mechanisms remain unclear, mounting evidence suggests that the misfolding of alphaSyn into prefibrillar and fibrillar species is the driving force responsible for cellular toxicity. We show here that the molecular chaperone heat shock protein (Hsp) 70 strongly inhibits alphaSyn fibril formation via preferential binding to prefibrillar species. Moreover, our studies reveal that Hsp70 alters the characteristics of toxic alphaSyn aggregates and indicate that cellular toxicity arises from the prefibrillar forms of alphaSyn. This work therefore elucidates a specific role of Hsp70 in the pathogenesis of PD and supports the general concept that chaperone action is a crucial aspect in protecting against the otherwise damaging consequences of protein misfolding.
Collapse
Affiliation(s)
- Matthew M Dedmon
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom
| | | | | | | |
Collapse
|
17
|
Tanaka N, Tani Y, Hattori H, Tada T, Kunugi S. Interaction of the N-terminal domain of Escherichia coli heat-shock protein ClpB and protein aggregates during chaperone activity. Protein Sci 2004; 13:3214-21. [PMID: 15537752 PMCID: PMC2287305 DOI: 10.1110/ps.04780704] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2004] [Revised: 07/22/2004] [Accepted: 08/05/2004] [Indexed: 10/26/2022]
Abstract
The Escherichia coli heat-shock protein ClpB reactivates protein aggregates in cooperation with the DnaK chaperone system. The ClpB N-terminal domain plays an important role in the chaperone activity, but its mechanism remains unknown. In this study, we investigated the effect of the ClpB N-terminal domain on malate dehydrogenase (MDH) refolding. ClpB reduced the yield of MDH refolding by a strong interaction with the intermediate. However, the refolding kinetics was not affected by deletion of the ClpB N-terminal domain (ClpBDeltaN), indicating that MDH refolding was affected by interaction with the N-terminal domain. In addition, the MDH refolding yield increased 50% in the presence of the ClpB N-terminal fragment (ClpBN). Fluorescence polarization analysis showed that this chaperone-like activity is explained best by a weak interaction between ClpBN and the reversible aggregate of MDH. The dissociation constant of ClpBN and the reversible aggregate was estimated as 45 muM from the calculation of the refolding kinetics. Amino acid substitutions at Leu 97 and Leu 110 on the ClpBN surface reduced the chaperone-like activity and the affinity to the substrate. In addition, these residues are involved in stimulation of ATPase activity in ClpB. Thus, Leu 97 and Leu 110 are responsible for the substrate recognition and the regulation of ATP-induced ClpB conformational change.
Collapse
Affiliation(s)
- Naoki Tanaka
- Department of Polymer Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585, Japan.
| | | | | | | | | |
Collapse
|
18
|
Smith CJ, Dafforn TR, Kent H, Sims CA, Khubchandani-Aswani K, Zhang L, Saibil HR, Pearse BMF. Location of auxilin within a clathrin cage. J Mol Biol 2004; 336:461-71. [PMID: 14757058 DOI: 10.1016/j.jmb.2003.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Dna J homologue, auxilin, acts as a co-chaperone for Hsc70 in the uncoating of clathrin-coated vesicles during endocytosis. Biochemical studies have aided understanding of the uncoating mechanism but until now there was no structural information on how auxilin interacts with the clathrin cage. Here we have determined the three-dimensional structure of a complex of auxilin with clathrin cages by cryo-electron microscopy and single particle analysis. We show that auxilin forms a discrete shell of density on the inside of the clathrin cage. Peptide competition assays confirm that a candidate clathrin box motif in auxilin, LLGLE, can bind to a clathrin construct containing the beta-propeller domain and also displace the well-characterised LLNLD clathrin box motif derived from the beta-adaptin hinge region. The means by which auxilin could both aid clathrin coat assembly and displace clathrin from AP2 during uncoating is discussed.
Collapse
Affiliation(s)
- Corinne J Smith
- Department of Crystallography, Birkbeck College, Malet Street, WC1E 7HX, England, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Cabrita LD, Bottomley SP. Protein expression and refolding--a practical guide to getting the most out of inclusion bodies. BIOTECHNOLOGY ANNUAL REVIEW 2004; 10:31-50. [PMID: 15504702 DOI: 10.1016/s1387-2656(04)10002-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The release of sequence data, particularly from a number of medically and biotechnologically important genomes, is increasing in an exponential fashion. In light of this, elucidating the structure and function of proteins, particularly in a "high throughput" manner, is an important quest. The production of recombinant proteins however is not always straightforward, with a number of proteins falling prey to low expression problems, a high susceptibility to proteolysis and the often despised production of inclusion bodies. Whilst expression as inclusion bodies can often be advantageous, their solubilization and renaturation is often a time consuming and empirical process. In this review, we aim to outline some of the more common approaches that have been applied to a variety of proteins and address issues associated with their handling.
Collapse
Affiliation(s)
- Lisa D Cabrita
- Monash University, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, P.O. Box 13D, Melbourne, Victoria 3800, Australia
| | | |
Collapse
|