1
|
Zamora-Dorta M, Laine-Menéndez S, Abia D, González-García P, López LC, Fernández-Montes P, Calvo E, Vázquez J, Enríquez JA, Balsa E. Time-resolved mitochondrial screen identifies regulatory components of oxidative metabolism. EMBO Rep 2025:10.1038/s44319-025-00459-9. [PMID: 40301572 DOI: 10.1038/s44319-025-00459-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/26/2025] [Accepted: 04/07/2025] [Indexed: 05/01/2025] Open
Abstract
Defects in mitochondrial oxidative metabolism underlie many genetic disorders with limited treatment options. The incomplete annotation of mitochondrial proteins highlights the need for a comprehensive gene inventory, particularly for Oxidative Phosphorylation (OXPHOS). To address this, we developed a CRISPR/Cas9 loss-of-function library targeting nuclear-encoded mitochondrial genes and conducted galactose-based screenings to identify novel regulators of mitochondrial function. Our study generates a gene catalog essential for mitochondrial metabolism and maps a dynamic network of mitochondrial pathways, focusing on OXPHOS complexes. Computational analysis identifies RTN4IP1 and ECHS1 as key OXPHOS genes linked to mitochondrial diseases in humans. RTN4IP1 is found to be crucial for mitochondrial respiration, with complexome profiling revealing its role as an assembly factor required for the complete assembly of complex I. Furthermore, we discovered that ECHS1 controls oxidative metabolism independently of its canonical function in fatty acid oxidation. Its deletion impairs branched-chain amino acids (BCAA) catabolism, disrupting lipoic acid-dependent enzymes such as pyruvate dehydrogenase (PDH). This deleterious phenotype can be rescued by restricting valine intake or catabolism in ECHS1-deficient cells.
Collapse
Affiliation(s)
- Marcos Zamora-Dorta
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Madrid, Spain
| | - Sara Laine-Menéndez
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Madrid, Spain
| | - David Abia
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Madrid, Spain
| | - Pilar González-García
- Instituto de Investigación Biosanitaria Ibs, 18016, Granada, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016, Granada, Spain
- Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, 18016, Granada, Spain
| | - Luis C López
- Instituto de Investigación Biosanitaria Ibs, 18016, Granada, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016, Granada, Spain
- Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, 18016, Granada, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), 18016, Granada, Spain
| | - Paula Fernández-Montes
- Laboratory of Functional Genetics of the Oxidative Phosphorylation System, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029, Madrid, Spain
| | - Enrique Calvo
- Laboratory of Functional Genetics of the Oxidative Phosphorylation System, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029, Madrid, Spain
| | - Jesús Vázquez
- Laboratory of Functional Genetics of the Oxidative Phosphorylation System, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029, Madrid, Spain
| | - José Antonio Enríquez
- Laboratory of Functional Genetics of the Oxidative Phosphorylation System, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029, Madrid, Spain
- CIBER de Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Eduardo Balsa
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Madrid, Spain.
- Instituto Universitario de Biología Molecular - IUBM (Universidad Autónoma de Madrid), Madrid, Spain.
| |
Collapse
|
2
|
Brischigliaro M, Ahn A, Hong S, Fontanesi F, Barrientos A. Emerging mechanisms of human mitochondrial translation regulation. Trends Biochem Sci 2025:S0968-0004(25)00056-8. [PMID: 40221217 DOI: 10.1016/j.tibs.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/03/2025] [Accepted: 03/14/2025] [Indexed: 04/14/2025]
Abstract
Mitochondrial translation regulation enables precise control over the synthesis of hydrophobic proteins encoded by the organellar genome, orchestrating their membrane insertion, accumulation, and assembly into oxidative phosphorylation (OXPHOS) complexes. Recent research highlights regulation across all translation stages (initiation, elongation, termination, and recycling) through a complex interplay of mRNA structures, specialized translation factors, and unique regulatory mechanisms that adjust protein levels for stoichiometric assembly. Key discoveries include mRNA-programmed ribosomal pausing, frameshifting, and termination-dependent re-initiation, which fine-tune protein synthesis and promote translation of overlapping open reading frames (ORFs) in bicistronic transcripts. In this review, we examine these advances, which are significantly enhancing our understanding of mitochondrial gene expression.
Collapse
Affiliation(s)
- Michele Brischigliaro
- Department of Neurology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB # 7094A, Miami, FL 33136, USA
| | - Ahram Ahn
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB #7094B, Miami, FL 33136, USA
| | - Seungwoo Hong
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB #7094B, Miami, FL 33136, USA
| | - Flavia Fontanesi
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB #7094B, Miami, FL 33136, USA.
| | - Antoni Barrientos
- Department of Neurology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB # 7094A, Miami, FL 33136, USA; Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB #7094B, Miami, FL 33136, USA; The Miami Veterans Affairs (VA) Medical System, 1201 NW 16th Street, Miami, FL 33125, USA.
| |
Collapse
|
3
|
Duan T, Sun L, Ding K, Zhao Q, Xu L, Liu C, Sun L. Mitochondrial RNA metabolism, a potential therapeutic target for mitochondria-related diseases. Chin Med J (Engl) 2025; 138:808-818. [PMID: 40008813 PMCID: PMC11970820 DOI: 10.1097/cm9.0000000000003516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Indexed: 02/27/2025] Open
Abstract
ABSTRACT In recent years, the roles of mitochondrial RNA and its associated human diseases have been reported to increase significantly. Treatments based on mtRNA metabolic processes and nuclear gene mutations are thus discussed. The mitochondrial oxidative phosphorylation process is affected by mtRNA metabolism, including mtRNA production, maturation, stabilization, and degradation, which leads to a variety of inherited human mitochondrial diseases. Moreover, mitochondrial diseases are caused by mitochondrial messenger RNA, mitochondrial transfer RNA, and mitochondrial ribosomal RNA gene mutations. This review presents the molecular mechanisms of human mtRNA metabolism and pathological mutations in mtRNA metabolism-related nuclear-encoded/nonencoded genes and mitochondrial DNA mutations to highlight the importance of mitochondrial RNA-related diseases and treatments.
Collapse
Affiliation(s)
- Tongyue Duan
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, China
| | - Liya Sun
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, China
| | - Kaiyue Ding
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, China
| | - Qing Zhao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, China
| | - Lujun Xu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, China
| | - Chongbin Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, China
| |
Collapse
|
4
|
Niinuma T, Kitajima H, Sato T, Ogawa T, Ishiguro K, Kai M, Yamamoto E, Hatanaka Y, Nojima I, Toyota M, Yorozu A, Sekiguchi S, Tohse N, Furuhashi M, Ohguro H, Miyazaki A, Suzuki H. LINC02154 promotes cell cycle and mitochondrial function in oral squamous cell carcinoma. Cancer Sci 2025; 116:393-405. [PMID: 39576738 PMCID: PMC11786299 DOI: 10.1111/cas.16379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/06/2024] [Accepted: 10/10/2024] [Indexed: 11/24/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) play pivotal roles in the development of human malignancies, though their involvement in oral squamous cell carcinoma (OSCC) remains incompletely understood. Using The Cancer Genome Atlas (TCGA) dataset, we analyzed expression of 7840 lncRNAs in primary head and neck squamous cell carcinoma (HNSCC) and found that upregulation of LINC02154 is associated with a poorer prognosis. LINC02154 knockdown in OSCC cell lines induced cell cycle arrest and apoptosis, and significantly attenuated tumor growth in vitro and in vivo. Notably, depletion of LINC02154 downregulated FOXM1, a master regulator of cell cycle-related genes. RNA pulldown and mass spectrometry analyses identified a series of proteins that could potentially interact with LINC02154, including HNRNPK and LRPPRC. HNRNPK stabilizes FOXM1 expression by interacting with the 3'-UTR of FOXM1 mRNA, which suggests LINC02154 and HNRNPK promote cell cycling by regulating FOXM1 expression. Additionally, LINC02154 positively regulates HNRNPK expression by inhibiting microRNAs targeting HNRPNK. Moreover, LINC02154 affects mitochondrial function by interacting with LRPPRC. Depletion of LINC02154 suppressed expression of mitochondrial genes, including MTCO1 and MTCO2, and inhibited mitochondrial respiratory function in OSCC cells. These results suggest that LINC02154 exerts its oncogenic effects by modulating the cell cycle and oxidative phosphorylation in OSCC, highlighting LINC02154 as a potential therapeutic target.
Collapse
Affiliation(s)
- Takeshi Niinuma
- Department of Molecular BiologySapporo Medical University School of MedicineSapporoJapan
| | - Hiroshi Kitajima
- Department of Molecular BiologySapporo Medical University School of MedicineSapporoJapan
| | - Tatsuya Sato
- Department of Cellular Physiology and Signal TransductionSapporo Medical University School of MedicineSapporoJapan
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Toshifumi Ogawa
- Department of Cellular Physiology and Signal TransductionSapporo Medical University School of MedicineSapporoJapan
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Kazuya Ishiguro
- Department of Molecular BiologySapporo Medical University School of MedicineSapporoJapan
| | - Masahiro Kai
- Department of Molecular BiologySapporo Medical University School of MedicineSapporoJapan
| | - Eiichiro Yamamoto
- Department of Molecular BiologySapporo Medical University School of MedicineSapporoJapan
| | - Yui Hatanaka
- Department of Oral SurgerySapporo Medical University School of MedicineSapporoJapan
| | - Iyori Nojima
- Division of Cell Bank, Biomedical Research, Education and Instrumentation CenterSapporo Medical University School of MedicineSapporoJapan
| | - Mutsumi Toyota
- Department of Molecular BiologySapporo Medical University School of MedicineSapporoJapan
| | - Akira Yorozu
- Department of Otolaryngology – Head and Neck SurgerySapporo Medical University School of MedicineSapporoJapan
| | - Shohei Sekiguchi
- Department of Oral SurgerySapporo Medical University School of MedicineSapporoJapan
| | - Noritsugu Tohse
- Department of Cellular Physiology and Signal TransductionSapporo Medical University School of MedicineSapporoJapan
| | - Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Hiroshi Ohguro
- Department of OphthalmologySapporo Medical University School of MedicineSapporoJapan
| | - Akihiro Miyazaki
- Department of Oral SurgerySapporo Medical University School of MedicineSapporoJapan
| | - Hiromu Suzuki
- Department of Molecular BiologySapporo Medical University School of MedicineSapporoJapan
| |
Collapse
|
5
|
Singh V, Moran JC, Itoh Y, Soto IC, Fontanesi F, Couvillion M, Huynen MA, Churchman LS, Barrientos A, Amunts A. Structural basis of LRPPRC-SLIRP-dependent translation by the mitoribosome. Nat Struct Mol Biol 2024; 31:1838-1847. [PMID: 39134711 PMCID: PMC11637978 DOI: 10.1038/s41594-024-01365-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 06/28/2024] [Indexed: 09/21/2024]
Abstract
In mammalian mitochondria, mRNAs are cotranscriptionally stabilized by the protein factor LRPPRC (leucine-rich pentatricopeptide repeat-containing protein). Here, we characterize LRPPRC as an mRNA delivery factor and report its cryo-electron microscopy structure in complex with SLIRP (SRA stem-loop-interacting RNA-binding protein), mRNA and the mitoribosome. The structure shows that LRPPRC associates with the mitoribosomal proteins mS39 and the N terminus of mS31 through recognition of the LRPPRC helical repeats. Together, the proteins form a corridor for handoff of the mRNA. The mRNA is directly bound to SLIRP, which also has a stabilizing function for LRPPRC. To delineate the effect of LRPPRC on individual mitochondrial transcripts, we used RNA sequencing, metabolic labeling and mitoribosome profiling, which showed a transcript-specific influence on mRNA translation efficiency, with cytochrome c oxidase subunit 1 and 2 translation being the most affected. Our data suggest that LRPPRC-SLIRP acts in recruitment of mitochondrial mRNAs to modulate their translation. Collectively, the data define LRPPRC-SLIRP as a regulator of the mitochondrial gene expression system.
Collapse
Affiliation(s)
- Vivek Singh
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - J Conor Moran
- Medical Scientist Training Program, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Yuzuru Itoh
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden.
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan.
| | - Iliana C Soto
- Blavatnik Institute, Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Flavia Fontanesi
- Medical Scientist Training Program, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mary Couvillion
- Blavatnik Institute, Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Martijn A Huynen
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - L Stirling Churchman
- Blavatnik Institute, Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | - Antoni Barrientos
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Alexey Amunts
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden.
- Westlake University, Hangzhou, China.
| |
Collapse
|
6
|
Arrías PN, Osmanli Z, Peralta E, Chinestrad PM, Monzon AM, Tosatto SCE. Diversity and structural-functional insights of alpha-solenoid proteins. Protein Sci 2024; 33:e5189. [PMID: 39465903 PMCID: PMC11514114 DOI: 10.1002/pro.5189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/29/2024]
Abstract
Alpha-solenoids are a significant and diverse subset of structured tandem repeat proteins (STRPs) that are important in various domains of life. This review examines their structural and functional diversity and highlights their role in critical cellular processes such as signaling, apoptosis, and transcriptional regulation. Alpha-solenoids can be classified into three geometric folds: low curvature, high curvature, and corkscrew, as well as eight subfolds: ankyrin repeats; Huntingtin, elongation factor 3, protein phosphatase 2A, and target of rapamycin; armadillo repeats; tetratricopeptide repeats; pentatricopeptide repeats; Pumilio repeats; transcription activator-like; and Sel-1 and Sel-1-like repeats. These subfolds represent distinct protein families with unique structural properties and functions, highlighting the versatility of alpha-solenoids. The review also discusses their association with disease, highlighting their potential as therapeutic targets and their role in protein design. Advances in state-of-the-art structure prediction methods provide new opportunities and challenges in the functional characterization and classification of this kind of fold, emphasizing the need for continued development of methods for their identification and proper data curation and deposition in the main databases.
Collapse
Affiliation(s)
- Paula Nazarena Arrías
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
- Department of Protein ScienceKTH Royal Institute of TechnologyStockholmSweden
| | - Zarifa Osmanli
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| | - Estefanía Peralta
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento de Ciencias Biológicas, Facultad de Ciencias ExactasUniversidad Nacional de La PlataLa PlataBuenos AiresArgentina
| | | | | | - Silvio C. E. Tosatto
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
- Institute of Biomembranes, Bioenergetics and Molecular BiotechnologiesNational Research Council (CNR‐IBIOM)BariItaly
| |
Collapse
|
7
|
Winnard PT, Vesuna F, Bol GM, Gabrielson KL, Chenevix-Trench G, Ter Hoeve ND, van Diest PJ, Raman V. Targeting RNA helicase DDX3X with a small molecule inhibitor for breast cancer bone metastasis treatment. Cancer Lett 2024; 604:217260. [PMID: 39306228 DOI: 10.1016/j.canlet.2024.217260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 10/03/2024]
Abstract
Patients who present with breast cancer bone metastasis only have limited palliative treatment strategies and efficacious drug treatments are needed. In breast cancer patient data, high levels of the RNA helicase DDX3 are associated with poor overall survival and bone metastasis. Consequently, our objective was to target DDX3 in a mouse breast cancer bone metastasis model using a small molecule inhibitor of DDX3, RK-33. Histologically confirmed live imaging indicated no bone metastases in the RK-33 treated cohort, as opposed to placebo-treated mice. We generated a cell line from a bone metastatic lesion in mouse and found that it along with a patient-derived bone metastasis cell line gained resistance to conventional chemotherapeutics but not to RK-33. Finally, differential levels of DDX3 were observed in breast cancer patient metastatic bone samples. Overall, this study indicates that DDX3 is a relevant clinical target in breast cancer bone metastasis and that RK-33 can be a safe and effective treatment for these patients.
Collapse
Affiliation(s)
- Paul T Winnard
- Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Farhad Vesuna
- Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Guus M Bol
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Medical Oncology, University Medical Center Utrecht Cancer Center, GA, Utrecht, the Netherlands
| | - Kathleen L Gabrielson
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Georgia Chenevix-Trench
- QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Locked Bag 2000, Brisbane, QLD, 4029, Australia
| | - Natalie D Ter Hoeve
- Department of Pathology, University Medical Center Utrecht Cancer Center, 3508 GA, Utrecht, the Netherlands
| | - Paul J van Diest
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Pathology, University Medical Center Utrecht Cancer Center, 3508 GA, Utrecht, the Netherlands
| | - Venu Raman
- Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Pathology, University Medical Center Utrecht Cancer Center, 3508 GA, Utrecht, the Netherlands; Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
8
|
Rubalcava-Gracia D, Bubb K, Levander F, Burr S, August A, Chinnery P, Koolmeister C, Larsson NG. LRPPRC and SLIRP synergize to maintain sufficient and orderly mammalian mitochondrial translation. Nucleic Acids Res 2024; 52:11266-11282. [PMID: 39087558 PMCID: PMC11472161 DOI: 10.1093/nar/gkae662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
In mammals, the leucine-rich pentatricopeptide repeat protein (LRPPRC) and the stem-loop interacting RNA-binding protein (SLIRP) form a complex in the mitochondrial matrix that is required throughout the life cycle of most mitochondrial mRNAs. Although pathogenic mutations in the LRPPRC and SLIRP genes cause devastating human mitochondrial diseases, the in vivo function of the corresponding proteins is incompletely understood. We show here that loss of SLIRP in mice causes a decrease of complex I levels whereas other OXPHOS complexes are unaffected. We generated knock-in mice to study the in vivo interdependency of SLIRP and LRPPRC by mutating specific amino acids necessary for protein complex formation. When protein complex formation is disrupted, LRPPRC is partially degraded and SLIRP disappears. Livers from Lrpprc knock-in mice had impaired mitochondrial translation except for a marked increase in the synthesis of ATP8. Furthermore, the introduction of a heteroplasmic pathogenic mtDNA mutation (m.C5024T of the tRNAAla gene) into Slirp knockout mice causes an additive effect on mitochondrial translation leading to embryonic lethality and reduced growth of mouse embryonic fibroblasts. To summarize, we report that the LRPPRC/SLIRP protein complex is critical for maintaining normal complex I levels and that it also coordinates mitochondrial translation in a tissue-specific manner.
Collapse
Affiliation(s)
- Diana Rubalcava-Gracia
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Kristina Bubb
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Levander
- Department en Immunotechnology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Stephen P Burr
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Medical Research Council Mitochondrial Biology Unit,University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Amelie V August
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Patrick F Chinnery
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Medical Research Council Mitochondrial Biology Unit,University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Camilla Koolmeister
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Nils-Göran Larsson
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Brischigliaro M, Krüger A, Moran JC, Antonicka H, Ahn A, Shoubridge E, Rorbach J, Barrientos A. The human mitochondrial translation factor TACO1 alleviates mitoribosome stalling at polyproline stretches. Nucleic Acids Res 2024; 52:9710-9726. [PMID: 39036954 PMCID: PMC11381339 DOI: 10.1093/nar/gkae645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024] Open
Abstract
The prokaryotic translation elongation factor P (EF-P) and the eukaryotic/archaeal counterparts eIF5A/aIF5A are proteins that serve a crucial role in mitigating ribosomal stalling during the translation of specific sequences, notably those containing consecutive proline residues (1,2). Although mitochondrial DNA-encoded proteins synthesized by mitochondrial ribosomes also contain polyproline stretches, an EF-P/eIF5A mitochondrial counterpart remains unidentified. Here, we show that the missing factor is TACO1, a protein causative of a juvenile form of neurodegenerative Leigh's syndrome associated with cytochrome c oxidase deficiency, until now believed to be a translational activator of COX1 mRNA. By using a combination of metabolic labeling, puromycin release and mitoribosome profiling experiments, we show that TACO1 is required for the rapid synthesis of the polyproline-rich COX1 and COX3 cytochrome c oxidase subunits, while its requirement is negligible for other mitochondrial DNA-encoded proteins. In agreement with a role in translation efficiency regulation, we show that TACO1 cooperates with the N-terminal extension of the large ribosomal subunit bL27m to provide stability to the peptidyl-transferase center during elongation. This study illuminates the translation elongation dynamics within human mitochondria, a TACO1-mediated biological mechanism in place to mitigate mitoribosome stalling at polyproline stretches during protein synthesis, and the pathological implications of its malfunction.
Collapse
Affiliation(s)
- Michele Brischigliaro
- Department of Neurology, University of Miami Miller School of Medicine, 1600 NW 10 Ave., Miami, FL 33136, USA
| | - Annika Krüger
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - J Conor Moran
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL 33136, USA
- The University of Miami Medical Scientist Training Program (MSTP), 1600 NW 10th Ave.,Miami, FL33136, USA
| | - Hana Antonicka
- The Neuro and Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Ahram Ahn
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL 33136, USA
| | - Eric A Shoubridge
- The Neuro and Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Joanna Rorbach
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Antoni Barrientos
- Department of Neurology, University of Miami Miller School of Medicine, 1600 NW 10 Ave., Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL 33136, USA
- The Miami Veterans Affairs (VA) Medical System. 1201 NW 16th St, Miami, FL-33125, USA
| |
Collapse
|
10
|
Weiss A, D'Amata C, Pearson BJ, Hayes MN. A syngeneic spontaneous zebrafish model of tp53-deficient, EGFR vIII, and PI3KCA H1047R-driven glioblastoma reveals inhibitory roles for inflammation during tumor initiation and relapse in vivo. eLife 2024; 13:RP93077. [PMID: 39052000 PMCID: PMC11272161 DOI: 10.7554/elife.93077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
High-throughput vertebrate animal model systems for the study of patient-specific biology and new therapeutic approaches for aggressive brain tumors are currently lacking, and new approaches are urgently needed. Therefore, to build a patient-relevant in vivo model of human glioblastoma, we expressed common oncogenic variants including activated human EGFRvIII and PI3KCAH1047R under the control of the radial glial-specific promoter her4.1 in syngeneic tp53 loss-of-function mutant zebrafish. Robust tumor formation was observed prior to 45 days of life, and tumors had a gene expression signature similar to human glioblastoma of the mesenchymal subtype, with a strong inflammatory component. Within early stage tumor lesions, and in an in vivo and endogenous tumor microenvironment, we visualized infiltration of phagocytic cells, as well as internalization of tumor cells by mpeg1.1:EGFP+ microglia/macrophages, suggesting negative regulatory pressure by pro-inflammatory cell types on tumor growth at early stages of glioblastoma initiation. Furthermore, CRISPR/Cas9-mediated gene targeting of master inflammatory transcription factors irf7 or irf8 led to increased tumor formation in the primary context, while suppression of phagocyte activity led to enhanced tumor cell engraftment following transplantation into otherwise immune-competent zebrafish hosts. Altogether, we developed a genetically relevant model of aggressive human glioblastoma and harnessed the unique advantages of zebrafish including live imaging, high-throughput genetic and chemical manipulations to highlight important tumor-suppressive roles for the innate immune system on glioblastoma initiation, with important future opportunities for therapeutic discovery and optimizations.
Collapse
Affiliation(s)
- Alex Weiss
- Developmental and Stem Cell Biology Program, The Hospital for Sick ChildrenTorontoCanada
| | - Cassandra D'Amata
- Developmental and Stem Cell Biology Program, The Hospital for Sick ChildrenTorontoCanada
| | - Bret J Pearson
- Department of Molecular Genetics, University of TorontoTorontoCanada
- Knight Cancer Institute, Oregon Health & Science UniversityPortlandUnited States
- Department of Pediatrics, Papé Research Institute, Oregon Health & Science UniversityPortlandUnited States
| | - Madeline N Hayes
- Developmental and Stem Cell Biology Program, The Hospital for Sick ChildrenTorontoCanada
- Department of Molecular Genetics, University of TorontoTorontoCanada
| |
Collapse
|
11
|
Moran JC, Brivanlou A, Brischigliaro M, Fontanesi F, Rouskin S, Barrientos A. The human mitochondrial mRNA structurome reveals mechanisms of gene expression. Science 2024; 385:eadm9238. [PMID: 39024447 PMCID: PMC11510358 DOI: 10.1126/science.adm9238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/24/2024] [Indexed: 07/20/2024]
Abstract
The human mitochondrial genome encodes crucial oxidative phosphorylation system proteins, pivotal for aerobic energy transduction. They are translated from nine monocistronic and two bicistronic transcripts whose native structures remain unexplored, posing a gap in understanding mitochondrial gene expression. In this work, we devised the mitochondrial dimethyl sulfate mutational profiling with sequencing (mitoDMS-MaPseq) method and applied detection of RNA folding ensembles using expectation-maximization (DREEM) clustering to unravel the native mitochondrial messenger RNA (mt-mRNA) structurome in wild-type (WT) and leucine-rich pentatricopeptide repeat-containing protein (LRPPRC)-deficient cells. Our findings elucidate LRPPRC's role as a holdase contributing to maintaining mt-mRNA folding and efficient translation. mt-mRNA structural insights in WT mitochondria, coupled with metabolic labeling, unveil potential mRNA-programmed translational pausing and a distinct programmed ribosomal frameshifting mechanism. Our data define a critical layer of mitochondrial gene expression regulation. These mt-mRNA folding maps provide a reference for studying mt-mRNA structures in diverse physiological and pathological contexts.
Collapse
Affiliation(s)
- J. Conor Moran
- Department of Biochemistry and Molecular Biology. University of Miami Miller School of Medicine. 1600 NW 10 Ave. Miami, FL-33136 (USA)
| | - Amir Brivanlou
- Department of Microbiology. Harvard Medical School. 77 Ave. Louis Pasteur. Boston, MA-02115 (USA)
| | - Michele Brischigliaro
- Department of Neurology. University of Miami Miller School of Medicine. 1600 NW 10 Ave. Miami, FL-33136 (USA)
| | - Flavia Fontanesi
- Department of Biochemistry and Molecular Biology. University of Miami Miller School of Medicine. 1600 NW 10 Ave. Miami, FL-33136 (USA)
| | - Silvi Rouskin
- Department of Microbiology. Harvard Medical School. 77 Ave. Louis Pasteur. Boston, MA-02115 (USA)
| | - Antoni Barrientos
- Department of Biochemistry and Molecular Biology. University of Miami Miller School of Medicine. 1600 NW 10 Ave. Miami, FL-33136 (USA)
- Department of Neurology. University of Miami Miller School of Medicine. 1600 NW 10 Ave. Miami, FL-33136 (USA)
- The Miami Veterans Affairs (VA) Medical System. 1201 NW 16 St, Miami, FL-33125 (USA)
| |
Collapse
|
12
|
Hughes LA, Rackham O, Filipovska A. Illuminating mitochondrial translation through mouse models. Hum Mol Genet 2024; 33:R61-R79. [PMID: 38779771 PMCID: PMC11112386 DOI: 10.1093/hmg/ddae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 05/25/2024] Open
Abstract
Mitochondria are hubs of metabolic activity with a major role in ATP conversion by oxidative phosphorylation (OXPHOS). The mammalian mitochondrial genome encodes 11 mRNAs encoding 13 OXPHOS proteins along with 2 rRNAs and 22 tRNAs, that facilitate their translation on mitoribosomes. Maintaining the internal production of core OXPHOS subunits requires modulation of the mitochondrial capacity to match the cellular requirements and correct insertion of particularly hydrophobic proteins into the inner mitochondrial membrane. The mitochondrial translation system is essential for energy production and defects result in severe, phenotypically diverse diseases, including mitochondrial diseases that typically affect postmitotic tissues with high metabolic demands. Understanding the complex mechanisms that underlie the pathologies of diseases involving impaired mitochondrial translation is key to tailoring specific treatments and effectively targeting the affected organs. Disease mutations have provided a fundamental, yet limited, understanding of mitochondrial protein synthesis, since effective modification of the mitochondrial genome has proven challenging. However, advances in next generation sequencing, cryoelectron microscopy, and multi-omic technologies have revealed unexpected and unusual features of the mitochondrial protein synthesis machinery in the last decade. Genome editing tools have generated unique models that have accelerated our mechanistic understanding of mitochondrial translation and its physiological importance. Here we review the most recent mouse models of disease pathogenesis caused by defects in mitochondrial protein synthesis and discuss their value for preclinical research and therapeutic development.
Collapse
Affiliation(s)
- Laetitia A Hughes
- Telethon Kids Institute, Northern Entrance, Perth Children’s Hospital, 15 Hospital Avenue, Nedlands, WA 6009, Australia
- Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, 35 Stirling Highway, Crawley, WA 6009, The University of Western Australia, Crawley, WA 6009, Australia
| | - Oliver Rackham
- Telethon Kids Institute, Northern Entrance, Perth Children’s Hospital, 15 Hospital Avenue, Nedlands, WA 6009, Australia
- Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, 35 Stirling Highway, Crawley, WA 6009, The University of Western Australia, Crawley, WA 6009, Australia
- Curtin Medical School, Curtin University, Kent Street, Bentley, WA 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Kent Street, Bentley, WA 6102, Australia
| | - Aleksandra Filipovska
- Telethon Kids Institute, Northern Entrance, Perth Children’s Hospital, 15 Hospital Avenue, Nedlands, WA 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, 35 Stirling Highway, Crawley, WA 6009, The University of Western Australia, Crawley, WA 6009, Australia
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, 19 Innovation Walk, Clayton, Clayton, VIC 3168, Australia
| |
Collapse
|
13
|
Gélinas R, Lévesque C, Thompson Legault J, Rivard ME, Villeneuve L, Laprise C, Rioux JD. Human induced pluripotent stem cells (hiPSCs) derived cells reflect tissue specificity found in patients with Leigh syndrome French Canadian variant (LSFC). Front Genet 2024; 15:1375467. [PMID: 38706791 PMCID: PMC11066297 DOI: 10.3389/fgene.2024.1375467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/02/2024] [Indexed: 05/07/2024] Open
Abstract
Leigh syndrome French Canadian type (LSFC) is a recessive neurodegenerative disease characterized by tissue-specific deficiency in cytochrome c oxidase (COX), the fourth complex in the oxidative phosphorylation system. LSFC is caused by mutations in the leucine rich pentatricopeptide repeat containing gene (LRPPRC). Most LSFC patients in Quebec are homozygous for an A354V substitution that causes a decrease in the expression of the LRPPRC protein. While LRPPRC is ubiquitously expressed and is involved in multiple cellular functions, tissue-specific expression of LRPPRC and COX activity is correlated with clinical features. In this proof-of-principle study, we developed human induced pluripotent stem cell (hiPSC)-based models from fibroblasts taken from a patient with LSFC, homozygous for the LRPPRC*354V allele, and from a control, homozygous for the LRPPRC*A354 allele. Specifically, for both of these fibroblast lines we generated hiPSC, hiPSC-derived cardiomyocytes (hiPSC-CMs) and hepatocyte-like cell (hiPSC-HLCs) lines, as well as the three germ layers. We observed that LRPPRC protein expression is reduced in all cell lines/layers derived from LSFC patient compared to control cells, with a reduction ranging from ∼70% in hiPSC-CMs to undetectable levels in hiPSC-HLC, reflecting tissue heterogeneity observed in patient tissues. We next performed exploratory analyses of these cell lines and observed that COX protein expression was reduced in all cell lines derived from LSFC patient compared to control cells. We also observed that mutant LRPPRC was associated with altered expression of key markers of endoplasmic reticulum stress response in hiPSC-HLCs but not in other cell types that were tested. While this demonstrates feasibility of the approach to experimentally study genotype-based differences that have tissue-specific impacts, this study will need to be extended to a larger number of patients and controls to not only validate the current observations but also to delve more deeply in the pathogenic mechanisms of LSFC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - John D. Rioux
- Montreal Heart Institute, Montreal, QC, Canada
- Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
14
|
Moreno-Aguilera M, Neher AM, Mendoza MB, Dodel M, Mardakheh FK, Ortiz R, Gallego C. KIS counteracts PTBP2 and regulates alternative exon usage in neurons. eLife 2024; 13:e96048. [PMID: 38597390 PMCID: PMC11045219 DOI: 10.7554/elife.96048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/09/2024] [Indexed: 04/11/2024] Open
Abstract
Alternative RNA splicing is an essential and dynamic process in neuronal differentiation and synapse maturation, and dysregulation of this process has been associated with neurodegenerative diseases. Recent studies have revealed the importance of RNA-binding proteins in the regulation of neuronal splicing programs. However, the molecular mechanisms involved in the control of these splicing regulators are still unclear. Here, we show that KIS, a kinase upregulated in the developmental brain, imposes a genome-wide alteration in exon usage during neuronal differentiation in mice. KIS contains a protein-recognition domain common to spliceosomal components and phosphorylates PTBP2, counteracting the role of this splicing factor in exon exclusion. At the molecular level, phosphorylation of unstructured domains within PTBP2 causes its dissociation from two co-regulators, Matrin3 and hnRNPM, and hinders the RNA-binding capability of the complex. Furthermore, KIS and PTBP2 display strong and opposing functional interactions in synaptic spine emergence and maturation. Taken together, our data uncover a post-translational control of splicing regulators that link transcriptional and alternative exon usage programs in neuronal development.
Collapse
Affiliation(s)
| | - Alba M Neher
- Molecular Biology Institute of Barcelona (IBMB), CSICBarcelonaSpain
| | - Mónica B Mendoza
- Molecular Biology Institute of Barcelona (IBMB), CSICBarcelonaSpain
| | - Martin Dodel
- Barts Cancer Institute, Queen Mary University of LondonLondonUnited Kingdom
| | - Faraz K Mardakheh
- Barts Cancer Institute, Queen Mary University of LondonLondonUnited Kingdom
| | - Raúl Ortiz
- Molecular Biology Institute of Barcelona (IBMB), CSICBarcelonaSpain
| | - Carme Gallego
- Molecular Biology Institute of Barcelona (IBMB), CSICBarcelonaSpain
| |
Collapse
|
15
|
Caron-Godon CA, Collington E, Wolf JL, Coletta G, Glerum DM. More than Just Bread and Wine: Using Yeast to Understand Inherited Cytochrome Oxidase Deficiencies in Humans. Int J Mol Sci 2024; 25:3814. [PMID: 38612624 PMCID: PMC11011759 DOI: 10.3390/ijms25073814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Inherited defects in cytochrome c oxidase (COX) are associated with a substantial subset of diseases adversely affecting the structure and function of the mitochondrial respiratory chain. This multi-subunit enzyme consists of 14 subunits and numerous cofactors, and it requires the function of some 30 proteins to assemble. COX assembly was first shown to be the primary defect in the majority of COX deficiencies 36 years ago. Over the last three decades, most COX assembly genes have been identified in the yeast Saccharomyces cerevisiae, and studies in yeast have proven instrumental in testing the impact of mutations identified in patients with a specific COX deficiency. The advent of accessible genome-wide sequencing capabilities has led to more patient mutations being identified, with the subsequent identification of several new COX assembly factors. However, the lack of genotype-phenotype correlations and the large number of genes involved in generating a functional COX mean that functional studies must be undertaken to assign a genetic variant as being causal. In this review, we provide a brief overview of the use of yeast as a model system and briefly compare the COX assembly process in yeast and humans. We focus primarily on the studies in yeast that have allowed us to both identify new COX assembly factors and to demonstrate the pathogenicity of a subset of the mutations that have been identified in patients with inherited defects in COX. We conclude with an overview of the areas in which studies in yeast are likely to continue to contribute to progress in understanding disease arising from inherited COX deficiencies.
Collapse
Affiliation(s)
- Chenelle A. Caron-Godon
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (C.A.C.-G.); (E.C.); (J.L.W.); (G.C.)
| | - Emma Collington
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (C.A.C.-G.); (E.C.); (J.L.W.); (G.C.)
| | - Jessica L. Wolf
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (C.A.C.-G.); (E.C.); (J.L.W.); (G.C.)
| | - Genna Coletta
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (C.A.C.-G.); (E.C.); (J.L.W.); (G.C.)
| | - D. Moira Glerum
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (C.A.C.-G.); (E.C.); (J.L.W.); (G.C.)
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
16
|
Sun Q, Wang M, Lu T, Duan S, Liu Y, Chen J, Wang Z, Sun Y, Li X, Wang S, Lu L, Hu L, Yun L, Yang J, Yan J, Nie S, Zhu Y, Chen G, Wang CC, Liu C, He G, Tang R. Differentiated adaptative genetic architecture and language-related demographical history in South China inferred from 619 genomes from 56 populations. BMC Biol 2024; 22:55. [PMID: 38448908 PMCID: PMC10918984 DOI: 10.1186/s12915-024-01854-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 02/26/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND The underrepresentation of human genomic resources from Southern Chinese populations limited their health equality in the precision medicine era and complete understanding of their genetic formation, admixture, and adaptive features. Besides, linguistical and genetic evidence supported the controversial hypothesis of their origin processes. One hotspot case was from the Chinese Guangxi Pinghua Han people (GPH), whose language was significantly similar to Southern Chinese dialects but whose uniparental gene pool was phylogenetically associated with the indigenous Tai-Kadai (TK) people. Here, we analyzed genome-wide SNP data in 619 people from four language families and 56 geographically different populations, in which 261 people from 21 geographically distinct populations were first reported here. RESULTS We identified significant population stratification among ethnolinguistically diverse Guangxi populations, suggesting their differentiated genetic origin and admixture processes. GPH shared more alleles related to Zhuang than Southern Han Chinese but received more northern ancestry relative to Zhuang. Admixture models and estimates of genetic distances showed that GPH had a close genetic relationship with geographically close TK compared to Northern Han Chinese, supporting their admixture origin hypothesis. Further admixture time and demographic history reconstruction supported GPH was formed via admixture between Northern Han Chinese and Southern TK people. We identified robust signatures associated with lipid metabolisms, such as fatty acid desaturases (FADS) and medically relevant loci associated with Mendelian disorder (GJB2) and complex diseases. We also explored the shared and unique selection signatures of ethnically different but linguistically related Guangxi lineages and found some shared signals related to immune and malaria resistance. CONCLUSIONS Our genetic analysis illuminated the language-related fine-scale genetic structure and provided robust genetic evidence to support the admixture hypothesis that can explain the pattern of observed genetic diversity and formation of GPH. This work presented one comprehensive analysis focused on the population history and demographical adaptative process, which provided genetic evidence for personal health management and disease risk prediction models from Guangxi people. Further large-scale whole-genome sequencing projects would provide the entire landscape of southern Chinese genomic diversity and their contributions to human health and disease traits.
Collapse
Affiliation(s)
- Qiuxia Sun
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
| | - Mengge Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China.
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China.
| | - Tao Lu
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Shuhan Duan
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, 637100, China
| | - Yan Liu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, 637100, China
| | - Jing Chen
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030001, China
| | - Zhiyong Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Yuntao Sun
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xiangping Li
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Shaomei Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Department of Public Health, Chengdu Medical College, Chengdu, 610500, China
| | - Liuyi Lu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- School of Clinical Medical Sciences, North Sichuan Medical College, Nanchong, 637100, China
| | - Liping Hu
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Libing Yun
- West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Junbao Yang
- School of Clinical Medical Sciences, North Sichuan Medical College, Nanchong, 637100, China
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030001, China
| | - Shengjie Nie
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Yanfeng Zhu
- Department of Public Health, Chengdu Medical College, Chengdu, 610500, China
| | - Gang Chen
- Hunan Key Lab of Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, 410075, China
| | - Chuan-Chao Wang
- State Key Laboratory of Cellular Stress Biology, National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Xiamen, 361005, Fujian, China
| | - Chao Liu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510275, China
- Guangzhou Forensic Science Institute, Guangzhou, 510055, China
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, 510230, China
| | - Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China.
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China.
| | - Renkuan Tang
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China.
| |
Collapse
|
17
|
Wang P, Chen L, Wang N, Miao L, Zhao Y. Mitochondrial defects triggered by amg-1 mutation elicit UPRmt and phagocytic clearance during spermatogenesis in C. elegans. Development 2024; 151:dev202165. [PMID: 38224006 DOI: 10.1242/dev.202165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Mitochondria are the powerhouses of many biological processes. During spermatogenesis, post-transcriptional regulation of mitochondrial gene expression is mediated by nuclear-encoded mitochondrial RNA-binding proteins (mtRBPs). We identified AMG-1 as an mtRBP required for reproductive success in Caenorhabditis elegans. amg-1 mutation led to defects in mitochondrial structure and sperm budding, resulting in mitochondria being discarded into residual bodies, which ultimately delayed spermatogenesis in the proximal gonad. In addition, mitochondrial defects triggered the gonadal mitochondrial unfolded protein response and phagocytic clearance to ensure spermatogenesis but ultimately failed to rescue hermaphroditic fertility. These findings reveal a previously undiscovered role for AMG-1 in regulating C. elegans spermatogenesis, in which mitochondrial-damaged sperm prevented the transmission of defective mitochondria to mature sperm by budding and phagocytic clearance, a process which may also exist in the reproductive systems of higher organisms.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lianwan Chen
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ning Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Miao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Biological Imaging , Core Facilities for Protein Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- MOE Key Laboratory of Cell Proliferation and Regulation Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yanmei Zhao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
18
|
Key J, Gispert S, Koepf G, Steinhoff-Wagner J, Reichlmeir M, Auburger G. Translation Fidelity and Respiration Deficits in CLPP-Deficient Tissues: Mechanistic Insights from Mitochondrial Complexome Profiling. Int J Mol Sci 2023; 24:17503. [PMID: 38139332 PMCID: PMC10743472 DOI: 10.3390/ijms242417503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The mitochondrial matrix peptidase CLPP is crucial during cell stress. Its loss causes Perrault syndrome type 3 (PRLTS3) with infertility, neurodegeneration, and a growth deficit. Its target proteins are disaggregated by CLPX, which also regulates heme biosynthesis via unfolding ALAS enzymes, providing access for pyridoxal-5'-phosphate (PLP). Despite efforts in diverse organisms with multiple techniques, CLPXP substrates remain controversial. Here, avoiding recombinant overexpression, we employed complexomics in mitochondria from three mouse tissues to identify endogenous targets. A CLPP absence caused the accumulation and dispersion of CLPX-VWA8 as AAA+ unfoldases, and of PLPBP. Similar changes and CLPX-VWA8 co-migration were evident for mitoribosomal central protuberance clusters, translation factors like GFM1-HARS2, the RNA granule components LRPPRC-SLIRP, and enzymes OAT-ALDH18A1. Mitochondrially translated proteins in testes showed reductions to <30% for MTCO1-3, the mis-assembly of the complex IV supercomplex, and accumulated metal-binding assembly factors COX15-SFXN4. Indeed, heavy metal levels were increased for iron, molybdenum, cobalt, and manganese. RT-qPCR showed compensatory downregulation only for Clpx mRNA; most accumulated proteins appeared transcriptionally upregulated. Immunoblots validated VWA8, MRPL38, MRPL18, GFM1, and OAT accumulation. Co-immunoprecipitation confirmed CLPX binding to MRPL38, GFM1, and OAT, so excess CLPX and PLP may affect their activity. Our data mechanistically elucidate the mitochondrial translation fidelity deficits which underlie progressive hearing impairment in PRLTS3.
Collapse
Affiliation(s)
- Jana Key
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| | - Suzana Gispert
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| | - Gabriele Koepf
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| | - Julia Steinhoff-Wagner
- TUM School of Life Sciences, Animal Nutrition and Metabolism, Technical University of Munich, Liesel-Beckmann-Str. 2, 85354 Freising-Weihenstephan, Germany;
| | - Marina Reichlmeir
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| | - Georg Auburger
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| |
Collapse
|
19
|
MacColl Garfinkel A, Mnatsakanyan N, Patel JH, Wills AE, Shteyman A, Smith PJS, Alavian KN, Jonas EA, Khokha MK. Mitochondrial leak metabolism induces the Spemann-Mangold Organizer via Hif-1α in Xenopus. Dev Cell 2023; 58:2597-2613.e4. [PMID: 37673063 PMCID: PMC10840693 DOI: 10.1016/j.devcel.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 06/30/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023]
Abstract
An instructive role for metabolism in embryonic patterning is emerging, although a role for mitochondria is poorly defined. We demonstrate that mitochondrial oxidative metabolism establishes the embryonic patterning center, the Spemann-Mangold Organizer, via hypoxia-inducible factor 1α (Hif-1α) in Xenopus. Hypoxia or decoupling ATP production from oxygen consumption expands the Organizer by activating Hif-1α. In addition, oxygen consumption is 20% higher in the Organizer than in the ventral mesoderm, indicating an elevation in mitochondrial respiration. To reconcile increased mitochondrial respiration with activation of Hif-1α, we discovered that the "free" c-subunit ring of the F1Fo ATP synthase creates an inner mitochondrial membrane leak, which decouples ATP production from respiration at the Organizer, driving Hif-1α activation there. Overexpression of either the c-subunit or Hif-1α is sufficient to induce Organizer cell fates even when β-catenin is inhibited. We propose that mitochondrial leak metabolism could be a general mechanism for activating Hif-1α and Wnt signaling.
Collapse
Affiliation(s)
- Alexandra MacColl Garfinkel
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT 06510, USA
| | - Nelli Mnatsakanyan
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Jeet H Patel
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA; Program in Molecular and Cellular Biology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Andrea E Wills
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Amy Shteyman
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT 06510, USA
| | - Peter J S Smith
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | | | - Elizabeth Ann Jonas
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT 06510, USA.
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
20
|
Muthaffar OY, Abdulkareem AA, Ashi A, Naseer MI. A novel homozygous splice donor variant in the LRPPRC gene causing Leigh syndrome with epilepsy, a French-Canadian disorder in a Saudi family: case report. Front Pediatr 2023; 11:1288542. [PMID: 38046674 PMCID: PMC10690952 DOI: 10.3389/fped.2023.1288542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/24/2023] [Indexed: 12/05/2023] Open
Abstract
Background The mitochondria are a cellular power house. Tissues are involved in frequent energy consumption, and any failure or irregularity in the continuous energy production could lead to abnormalities. The leucine-rich pentatricopeptide repeat (LRPPRC) gene is one of the mitochondrial-related functions genes; variations in these genes are responsible for complex phenotypes that affect many organs such as the brain, liver, and muscles. Materials and methods This study enrolled a family with Leigh syndrome-like phenotype. The molecular diagnosis was conducted by first performing whole exome sequencing (WES), followed by Sanger sequencing. Results A novel splice-site variant (c.469 + 2T > A) at the exon-intron boundary in the LRPPRC gene was identified using the WES data analysis. Sanger validation confirmed the autosomal recessive inheritance of the identified variant. Based on the ACMG criteria for variant classification, PVS1 and PM2 suggest that the identified variant in the LRPPRC gene is likely to be pathogenic. Conclusion To the best of our knowledge, there have been no previous reports of this variant in the LRPPRC gene. Our research not only identifies a novel variant in the LRPPRC gene, but also confirms the unresolved molecular diagnosis of the family. WES can be used as a first-line diagnostic tool in familial cases, particularly in those cases when detailed clinical phenotyping is not possible. Once the molecular diagnosis is confirmed in a family, it is necessary to conduct a thorough re-evaluation of the patients' specific clinical phenotypes in order to establish a clear genotype-phenotype correlation.
Collapse
Affiliation(s)
- Osama Y. Muthaffar
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Angham Abdulrhman Abdulkareem
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abrar Ashi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Imran Naseer
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
21
|
Conor Moran J, Brivanlou A, Brischigliaro M, Fontanesi F, Rouskin S, Barrientos A. The human mitochondrial mRNA structurome reveals mechanisms of gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.564750. [PMID: 37961485 PMCID: PMC10635011 DOI: 10.1101/2023.10.31.564750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The mammalian mitochondrial genome encodes thirteen oxidative phosphorylation system proteins, crucial in aerobic energy transduction. These proteins are translated from 9 monocistronic and 2 bicistronic transcripts, whose native structures remain unexplored, leaving fundamental molecular determinants of mitochondrial gene expression unknown. To address this gap, we developed a mitoDMS-MaPseq approach and used DREEM clustering to resolve the native human mitochondrial mt-mRNA structurome. We gained insights into mt-mRNA biology and translation regulatory mechanisms, including a unique programmed ribosomal frameshifting for the ATP8/ATP6 transcript. Furthermore, absence of the mt-mRNA maintenance factor LRPPRC led to a mitochondrial transcriptome structured differently, with specific mRNA regions exhibiting increased or decreased structuredness. This highlights the role of LRPPRC in maintaining mRNA folding to promote mt-mRNA stabilization and efficient translation. In conclusion, our mt-mRNA folding maps reveal novel mitochondrial gene expression mechanisms, serving as a detailed reference and tool for studying them in different physiological and pathological contexts.
Collapse
|
22
|
Ding Y, Gui X, Chu X, Sun Y, Zhang S, Tong H, Ju W, Li Y, Sun Z, Xu M, Li Z, Andrews RK, Gardiner EE, Zeng L, Xu K, Qiao J. MTH1 protects platelet mitochondria from oxidative damage and regulates platelet function and thrombosis. Nat Commun 2023; 14:4829. [PMID: 37563135 PMCID: PMC10415391 DOI: 10.1038/s41467-023-40600-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Human MutT Homolog 1 (MTH1) is a nucleotide pool sanitization enzyme that hydrolyzes oxidized nucleotides to prevent their mis-incorporation into DNA under oxidative stress. Expression and functional roles of MTH1 in platelets are not known. Here, we show MTH1 expression in platelets and its deficiency impairs hemostasis and arterial/venous thrombosis in vivo. MTH1 deficiency reduced platelet aggregation, phosphatidylserine exposure and calcium mobilization induced by thrombin but not by collagen-related peptide (CRP) along with decreased mitochondrial ATP production. Thrombin but not CRP induced Ca2+-dependent mitochondria reactive oxygen species generation. Mechanistically, MTH1 deficiency caused mitochondrial DNA oxidative damage and reduced the expression of cytochrome c oxidase 1. Furthermore, MTH1 exerts a similar role in human platelet function. Our study suggests that MTH1 exerts a protective function against oxidative stress in platelets and indicates that MTH1 could be a potential therapeutic target for the prevention of thrombotic diseases.
Collapse
Affiliation(s)
- Yangyang Ding
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu Province, China
| | - Xiang Gui
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu Province, China
| | - Xiang Chu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu Province, China
| | - Yueyue Sun
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu Province, China
| | - Sixuan Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu Province, China
| | - Huan Tong
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu Province, China
| | - Wen Ju
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu Province, China
| | - Yue Li
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Zengtian Sun
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu Province, China
| | - Mengdi Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu Province, China
| | - Zhenyu Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu Province, China
| | - Robert K Andrews
- Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Elizabeth E Gardiner
- Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Lingyu Zeng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu Province, China.
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China.
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu Province, China.
| | - Jianlin Qiao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu Province, China.
| |
Collapse
|
23
|
Wang P, Wang Q, Chen L, Cao Z, Zhao H, Su R, Wang N, Ma X, Shan J, Chen X, Zhang Q, Du B, Yuan Z, Zhao Y, Zhang X, Guo X, Xue Y, Miao L. RNA-binding protein complex AMG-1/SLRP-1 mediates germline development and spermatogenesis by maintaining mitochondrial homeostasis in Caenorhabditis elegans. Sci Bull (Beijing) 2023; 68:1399-1412. [PMID: 37355389 DOI: 10.1016/j.scib.2023.05.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 06/26/2023]
Abstract
The mechanisms of RNA-binding proteins (RBPs)-mediated post-transcriptional regulation of pre-existing mRNAs, which is essential for spermatogenesis, remain poorly understood. In this study, we identify that a germline-specific mitochondrial RBP AMG-1(abnormal mitochondria in germline 1), a homolog of mammalian leucine-rich PPR motif-containing protein (LRPPRC), is required for spermatogenesis in Caenorhabditis elegans. The amg-1 mutation hinders germline development without affecting somatic development and leads to the aberrant mitochondrial morphology and structure associated with mitochondrial dysfunctions specifically in the germline. We demonstrate that AMG-1 is most frequently bound to mtDNA-encoded 12S and 16S ribosomal RNA, the essential components of mitochondrial ribosomes, and that 12S rRNA expression mediated by AMG-1 is crucial for germline mitochondrial protein homeostasis. Furthermore, steroid receptor RNA activator (SRA) stem loop interacting RNA binding protein (SLRP-1), a homolog of mammalian SRA stem loop interacting RNA binding protein (SLIRP) in C. elegans, interacts with AMG-1 genetically to regulate germline development and reproductive success in C. elegans. Overall, these findings reveal the novel function of mtRBP, specifically in regulating germline development.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100059, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Qiushi Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100059, China
| | - Lianwan Chen
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zheng Cao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hailian Zhao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100059, China
| | - Ruibao Su
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100059, China
| | - Ning Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100059, China
| | - Xiaojing Ma
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100059, China
| | - Jin Shan
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100059, China
| | - Xinyan Chen
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100059, China
| | - Qi Zhang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100059, China; Department of Automation, Tsinghua University, Beijing 100084, China
| | - Baochen Du
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100059, China
| | - Zhiheng Yuan
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100059, China
| | - Yanmei Zhao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xiaorong Zhang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China.
| | - Yuanchao Xue
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100059, China.
| | - Long Miao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100059, China; Center for Biological Imaging, Core Facilities for Protein Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
24
|
Chella Krishnan K, El Hachem EJ, Keller MP, Patel SG, Carroll L, Vegas AD, Gerdes Gyuricza I, Light C, Cao Y, Pan C, Kaczor-Urbanowicz KE, Shravah V, Anum D, Pellegrini M, Lee CF, Seldin MM, Rosenthal NA, Churchill GA, Attie AD, Parker B, James DE, Lusis AJ. Genetic architecture of heart mitochondrial proteome influencing cardiac hypertrophy. eLife 2023; 12:e82619. [PMID: 37276142 PMCID: PMC10241513 DOI: 10.7554/elife.82619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 05/18/2023] [Indexed: 06/07/2023] Open
Abstract
Mitochondria play an important role in both normal heart function and disease etiology. We report analysis of common genetic variations contributing to mitochondrial and heart functions using an integrative proteomics approach in a panel of inbred mouse strains called the Hybrid Mouse Diversity Panel (HMDP). We performed a whole heart proteome study in the HMDP (72 strains, n=2-3 mice) and retrieved 848 mitochondrial proteins (quantified in ≥50 strains). High-resolution association mapping on their relative abundance levels revealed three trans-acting genetic loci on chromosomes (chr) 7, 13 and 17 that regulate distinct classes of mitochondrial proteins as well as cardiac hypertrophy. DAVID enrichment analyses of genes regulated by each of the loci revealed that the chr13 locus was highly enriched for complex-I proteins (24 proteins, P=2.2E-61), the chr17 locus for mitochondrial ribonucleoprotein complex (17 proteins, P=3.1E-25) and the chr7 locus for ubiquinone biosynthesis (3 proteins, P=6.9E-05). Follow-up high resolution regional mapping identified NDUFS4, LRPPRC and COQ7 as the candidate genes for chr13, chr17 and chr7 loci, respectively, and both experimental and statistical analyses supported their causal roles. Furthermore, a large cohort of Diversity Outbred mice was used to corroborate Lrpprc gene as a driver of mitochondrial DNA (mtDNA)-encoded gene regulation, and to show that the chr17 locus is specific to heart. Variations in all three loci were associated with heart mass in at least one of two independent heart stress models, namely, isoproterenol-induced heart failure and diet-induced obesity. These findings suggest that common variations in certain mitochondrial proteins can act in trans to influence tissue-specific mitochondrial functions and contribute to heart hypertrophy, elucidating mechanisms that may underlie genetic susceptibility to heart failure in human populations.
Collapse
Affiliation(s)
- Karthickeyan Chella Krishnan
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Elie-Julien El Hachem
- Department of Integrative Biology and Physiology, Field Systems Biology, Sciences Sorbonne UniversitéParisFrance
| | - Mark P Keller
- Biochemistry Department, University of Wisconsin-MadisonMadisonUnited States
| | - Sanjeet G Patel
- Department of Surgery/Division of Cardiac Surgery, University of Southern California Keck School of MedicineLos AngelesUnited States
| | - Luke Carroll
- Metabolic Systems Biology Laboratory, Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Alexis Diaz Vegas
- Metabolic Systems Biology Laboratory, Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | | | - Christine Light
- Cardiovascular Biology Research Program, Oklahoma Medical Research FoundationOklahoma CityUnited States
| | - Yang Cao
- Department of Medicine/Division of Cardiology, University of California, Los AngelesLos AngelesUnited States
| | - Calvin Pan
- Department of Medicine/Division of Cardiology, University of California, Los AngelesLos AngelesUnited States
| | - Karolina Elżbieta Kaczor-Urbanowicz
- Division of Oral Biology and Medicine, UCLA School of DentistryLos AngelesUnited States
- UCLA Institute for Quantitative and Computational BiosciencesLos AngelesUnited States
| | - Varun Shravah
- Department of Chemistry, University of CaliforniaLos AngelesUnited States
| | - Diana Anum
- Department of Integrative Biology and Physiology, University of CaliforniaLos AngelesUnited States
| | - Matteo Pellegrini
- UCLA Institute for Quantitative and Computational BiosciencesLos AngelesUnited States
| | - Chi Fung Lee
- Cardiovascular Biology Research Program, Oklahoma Medical Research FoundationOklahoma CityUnited States
- Department of Physiology, University of Oklahoma Health Sciences CenterOklahoma CityUnited States
| | - Marcus M Seldin
- Center for Epigenetics and MetabolismIrvineUnited States
- Department of Biological Chemistry, University of CaliforniaIrvineUnited States
| | | | | | - Alan D Attie
- Biochemistry Department, University of Wisconsin-MadisonMadisonUnited States
| | - Benjamin Parker
- Department of Anatomy and Physiology, University of MelbourneMelbourneAustralia
| | - David E James
- Metabolic Systems Biology Laboratory, Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Aldons J Lusis
- Department of Medicine/Division of Cardiology, University of California, Los AngelesLos AngelesUnited States
- Department of Human Genetics, University of CaliforniaLos AngelesUnited States
- Department of Microbiology, Immunology and Molecular Genetics, University of CaliforniaLos AngelesUnited States
| |
Collapse
|
25
|
Cheramangalam RN, Anand T, Pandey P, Balasubramanian D, Varghese R, Singhal N, Jaiswal SN, Jaiswal M. Bendless is essential for PINK1-Park mediated Mitofusin degradation under mitochondrial stress caused by loss of LRPPRC. PLoS Genet 2023; 19:e1010493. [PMID: 37098042 PMCID: PMC10162545 DOI: 10.1371/journal.pgen.1010493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/05/2023] [Accepted: 04/03/2023] [Indexed: 04/26/2023] Open
Abstract
Cells under mitochondrial stress often co-opt mechanisms to maintain energy homeostasis, mitochondrial quality control and cell survival. A mechanistic understanding of such responses is crucial for further insight into mitochondrial biology and diseases. Through an unbiased genetic screen in Drosophila, we identify that mutations in lrpprc2, a homolog of the human LRPPRC gene that is linked to the French-Canadian Leigh syndrome, result in PINK1-Park activation. While the PINK1-Park pathway is well known to induce mitophagy, we show that PINK1-Park regulates mitochondrial dynamics by inducing the degradation of the mitochondrial fusion protein Mitofusin/Marf in lrpprc2 mutants. In our genetic screen, we also discover that Bendless, a K63-linked E2 conjugase, is a regulator of Marf, as loss of bendless results in increased Marf levels. We show that Bendless is required for PINK1 stability, and subsequently for PINK1-Park mediated Marf degradation under physiological conditions, and in response to mitochondrial stress as seen in lrpprc2. Additionally, we show that loss of bendless in lrpprc2 mutant eyes results in photoreceptor degeneration, indicating a neuroprotective role for Bendless-PINK1-Park mediated Marf degradation. Based on our observations, we propose that certain forms of mitochondrial stress activate Bendless-PINK1-Park to limit mitochondrial fusion, which is a cell-protective response.
Collapse
Affiliation(s)
| | - Tarana Anand
- Tata Institute of Fundamental Research, Hyderabad, India
| | - Priyanka Pandey
- CSIR–Centre For Cellular and Molecular Biology, Hyderabad, India
| | | | - Reshmi Varghese
- CSIR–Centre For Cellular and Molecular Biology, Hyderabad, India
| | - Neha Singhal
- Tata Institute of Fundamental Research, Hyderabad, India
| | | | - Manish Jaiswal
- Tata Institute of Fundamental Research, Hyderabad, India
| |
Collapse
|
26
|
Zandl-Lang M, Plecko B, Köfeler H. Lipidomics-Paving the Road towards Better Insight and Precision Medicine in Rare Metabolic Diseases. Int J Mol Sci 2023; 24:ijms24021709. [PMID: 36675224 PMCID: PMC9866746 DOI: 10.3390/ijms24021709] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Even though the application of Next-Generation Sequencing (NGS) has significantly facilitated the identification of disease-associated mutations, the diagnostic rate of rare diseases is still below 50%. This causes a diagnostic odyssey and prevents specific treatment, as well as genetic counseling for further family planning. Increasing the diagnostic rate and reducing the time to diagnosis in children with unclear disease are crucial for a better patient outcome and improvement of quality of life. In many cases, NGS reveals variants of unknown significance (VUS) that need further investigations. The delineation of novel (lipid) biomarkers is not only crucial to prove the pathogenicity of VUS, but provides surrogate parameters for the monitoring of disease progression and therapeutic interventions. Lipids are essential organic compounds in living organisms, serving as building blocks for cellular membranes, energy storage and signaling molecules. Among other disorders, an imbalance in lipid homeostasis can lead to chronic inflammation, vascular dysfunction and neurodegenerative diseases. Therefore, analyzing lipids in biological samples provides great insight into the underlying functional role of lipids in healthy and disease statuses. The method of choice for lipid analysis and/or huge assemblies of lipids (=lipidome) is mass spectrometry due to its high sensitivity and specificity. Due to the inherent chemical complexity of the lipidome and the consequent challenges associated with analyzing it, progress in the field of lipidomics has lagged behind other omics disciplines. However, compared to the previous decade, the output of publications on lipidomics has increased more than 17-fold within the last decade and has, therefore, become one of the fastest-growing research fields. Combining multiple omics approaches will provide a unique and efficient tool for determining pathogenicity of VUS at the functional level, and thereby identifying rare, as well as novel, genetic disorders by molecular techniques and biochemical analyses.
Collapse
Affiliation(s)
- Martina Zandl-Lang
- Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Barbara Plecko
- Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Harald Köfeler
- Core Facility Mass Spectrometry, ZMF, Medical University of Graz, 8036 Graz, Austria
- Correspondence:
| |
Collapse
|
27
|
Protein Transduction Domain-Mediated Delivery of Recombinant Proteins and In Vitro Transcribed mRNAs for Protein Replacement Therapy of Human Severe Genetic Mitochondrial Disorders: The Case of Sco2 Deficiency. Pharmaceutics 2023; 15:pharmaceutics15010286. [PMID: 36678915 PMCID: PMC9861957 DOI: 10.3390/pharmaceutics15010286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/31/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Mitochondrial disorders represent a heterogeneous group of genetic disorders with variations in severity and clinical outcomes, mostly characterized by respiratory chain dysfunction and abnormal mitochondrial function. More specifically, mutations in the human SCO2 gene, encoding the mitochondrial inner membrane Sco2 cytochrome c oxidase (COX) assembly protein, have been implicated in the mitochondrial disorder fatal infantile cardioencephalomyopathy with COX deficiency. Since an effective treatment is still missing, a protein replacement therapy (PRT) was explored using protein transduction domain (PTD) technology. Therefore, the human recombinant full-length mitochondrial protein Sco2, fused to TAT peptide (a common PTD), was produced (fusion Sco2 protein) and successfully transduced into fibroblasts derived from a SCO2/COX-deficient patient. This PRT contributed to effective COX assembly and partial recovery of COX activity. In mice, radiolabeled fusion Sco2 protein was biodistributed in the peripheral tissues of mice and successfully delivered into their mitochondria. Complementary to that, an mRNA-based therapeutic approach has been more recently considered as an innovative treatment option. In particular, a patented, novel PTD-mediated IVT-mRNA delivery platform was developed and applied in recent research efforts. PTD-IVT-mRNA of full-length SCO2 was successfully transduced into the fibroblasts derived from a SCO2/COX-deficient patient, translated in host ribosomes into a nascent chain of human Sco2, imported into mitochondria, and processed to the mature protein. Consequently, the recovery of reduced COX activity was achieved, thus suggesting the potential of this mRNA-based technology for clinical translation as a PRT for metabolic/genetic disorders. In this review, such research efforts will be comprehensibly presented and discussed to elaborate their potential in clinical application and therapeutic usefulness.
Collapse
|
28
|
Hubble KA, Henry MF. DPC29 promotes post-initiation mitochondrial translation in Saccharomyces cerevisiae. Nucleic Acids Res 2023; 51:1260-1276. [PMID: 36620885 PMCID: PMC9943650 DOI: 10.1093/nar/gkac1229] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 01/10/2023] Open
Abstract
Mitochondrial ribosomes synthesize essential components of the oxidative phosphorylation (OXPHOS) system in a tightly regulated process. In the yeast Saccharomyces cerevisiae, mitochondrial mRNAs require specific translational activators, which orchestrate protein synthesis by recognition of their target gene's 5'-untranslated region (UTR). Most of these yeast genes lack orthologues in mammals, and only one such gene-specific translational activator has been proposed in humans-TACO1. The mechanism by which TACO1 acts is unclear because mammalian mitochondrial mRNAs do not have significant 5'-UTRs, and therefore must promote translation by alternative mechanisms. In this study, we examined the role of the TACO1 orthologue in yeast. We found this 29 kDa protein to be a general mitochondrial translation factor, Dpc29, rather than a COX1-specific translational activator. Its activity was necessary for the optimal expression of OXPHOS mtDNA reporters, and mutations within the mitoribosomal large subunit protein gene MRP7 produced a global reduction of mitochondrial translation in dpc29Δ cells, indicative of a general mitochondrial translation factor. Northern-based mitoribosome profiling of dpc29Δ cells showed higher footprint frequencies at the 3' ends of mRNAs, suggesting a role in translation post-initiation. Additionally, human TACO1 expressed at native levels rescued defects in dpc29Δ yeast strains, suggesting that the two proteins perform highly conserved functions.
Collapse
Affiliation(s)
- Kyle A Hubble
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA,Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084, USA
| | - Michael F Henry
- To whom correspondence should be addressed. Tel: +1 856 566 6970; Fax: +1 856 566 6291; E-mail:
| |
Collapse
|
29
|
Heyne HO, Karjalainen J, Karczewski KJ, Lemmelä SM, Zhou W, Havulinna AS, Kurki M, Rehm HL, Palotie A, Daly MJ. Mono- and biallelic variant effects on disease at biobank scale. Nature 2023; 613:519-525. [PMID: 36653560 PMCID: PMC9849130 DOI: 10.1038/s41586-022-05420-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/06/2022] [Indexed: 01/20/2023]
Abstract
Identifying causal factors for Mendelian and common diseases is an ongoing challenge in medical genetics1. Population bottleneck events, such as those that occurred in the history of the Finnish population, enrich some homozygous variants to higher frequencies, which facilitates the identification of variants that cause diseases with recessive inheritance2,3. Here we examine the homozygous and heterozygous effects of 44,370 coding variants on 2,444 disease phenotypes using data from the nationwide electronic health records of 176,899 Finnish individuals. We find associations for homozygous genotypes across a broad spectrum of phenotypes, including known associations with retinal dystrophy and novel associations with adult-onset cataract and female infertility. Of the recessive disease associations that we identify, 13 out of 20 would have been missed by the additive model that is typically used in genome-wide association studies. We use these results to find many known Mendelian variants whose inheritance cannot be adequately described by a conventional definition of dominant or recessive. In particular, we find variants that are known to cause diseases with recessive inheritance with significant heterozygous phenotypic effects. Similarly, we find presumed benign variants with disease effects. Our results show how biobanks, particularly in founder populations, can broaden our understanding of complex dosage effects of Mendelian variants on disease.
Collapse
Affiliation(s)
- H O Heyne
- Finnish Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland.
- Digital Health Center, Hasso Plattner Institute for Digital Engineering, University of Potsdam, Potsdam, Germany.
- Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Program for Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - J Karjalainen
- Finnish Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland
- Program for Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - K J Karczewski
- Finnish Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland
- Program for Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - S M Lemmelä
- Finnish Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - W Zhou
- Finnish Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland
- Program for Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - A S Havulinna
- Finnish Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - M Kurki
- Finnish Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland
- Program for Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - H L Rehm
- Program for Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - A Palotie
- Finnish Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland
- Program for Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - M J Daly
- Finnish Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland.
- Program for Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA.
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
30
|
Weaver JD, Stack EC, Buggé JA, Hu C, McGrath L, Mueller A, Wong M, Klebanov B, Rahman T, Kaufman R, Fregeau C, Spaulding V, Priess M, Legendre K, Jaffe S, Upadhyay D, Singh A, Xu CA, Krukenberg K, Zhang Y, Ezzyat Y, Saddier Axe D, Kuhne MR, Meehl MA, Shaffer DR, Weist BM, Wiederschain D, Depis F, Gostissa M. Differential expression of CCR8 in tumors versus normal tissue allows specific depletion of tumor-infiltrating T regulatory cells by GS-1811, a novel Fc-optimized anti-CCR8 antibody. Oncoimmunology 2022; 11:2141007. [PMID: 36352891 PMCID: PMC9639568 DOI: 10.1080/2162402x.2022.2141007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The presence of T regulatory (Treg) cells in the tumor microenvironment is associated with poor prognosis and resistance to therapies aimed at reactivating anti-tumor immune responses. Therefore, depletion of tumor-infiltrating Tregs is a potential approach to overcome resistance to immunotherapy. However, identifying Treg-specific targets to drive such selective depletion is challenging. CCR8 has recently emerged as one of these potential targets. Here, we describe GS-1811, a novel therapeutic monoclonal antibody that specifically binds to human CCR8 and is designed to selectively deplete tumor-infiltrating Tregs. We validate previous findings showing restricted expression of CCR8 on tumor Tregs, and precisely quantify CCR8 receptor densities on tumor and normal tissue T cell subsets, demonstrating a window for selective depletion of Tregs in the tumor. Importantly, we show that GS-1811 depleting activity is limited to cells expressing CCR8 at levels comparable to tumor-infiltrating Tregs. Targeting CCR8 in mouse tumor models results in robust anti-tumor efficacy, which is dependent on Treg depleting activity, and synergizes with PD-1 inhibition to promote anti-tumor responses in PD-1 resistant models. Our data support clinical development of GS-1811 to target CCR8 in cancer and drive tumor Treg depletion in order to promote anti-tumor immunity.
Collapse
Affiliation(s)
- Jessica D. Weaver
- Jounce Therapeutics, Inc., 780 Memorial Drive, Cambridge, MA 02139, USA
| | - Edward C. Stack
- Jounce Therapeutics, Inc., 780 Memorial Drive, Cambridge, MA 02139, USA
| | - Joshua A. Buggé
- Jounce Therapeutics, Inc., 780 Memorial Drive, Cambridge, MA 02139, USA
| | - Changyun Hu
- Jounce Therapeutics, Inc., 780 Memorial Drive, Cambridge, MA 02139, USA
| | - Lara McGrath
- Jounce Therapeutics, Inc., 780 Memorial Drive, Cambridge, MA 02139, USA
| | - Amy Mueller
- Jounce Therapeutics, Inc., 780 Memorial Drive, Cambridge, MA 02139, USA
| | - Masie Wong
- Jounce Therapeutics, Inc., 780 Memorial Drive, Cambridge, MA 02139, USA
| | - Boris Klebanov
- Jounce Therapeutics, Inc., 780 Memorial Drive, Cambridge, MA 02139, USA
| | - Tanzila Rahman
- Jounce Therapeutics, Inc., 780 Memorial Drive, Cambridge, MA 02139, USA
| | - Rosemary Kaufman
- Jounce Therapeutics, Inc., 780 Memorial Drive, Cambridge, MA 02139, USA
| | - Christine Fregeau
- Jounce Therapeutics, Inc., 780 Memorial Drive, Cambridge, MA 02139, USA
| | - Vikki Spaulding
- Jounce Therapeutics, Inc., 780 Memorial Drive, Cambridge, MA 02139, USA
| | - Michelle Priess
- Jounce Therapeutics, Inc., 780 Memorial Drive, Cambridge, MA 02139, USA
| | - Kristen Legendre
- Jounce Therapeutics, Inc., 780 Memorial Drive, Cambridge, MA 02139, USA
| | - Sarah Jaffe
- Jounce Therapeutics, Inc., 780 Memorial Drive, Cambridge, MA 02139, USA
| | | | - Anirudh Singh
- Jounce Therapeutics, Inc., 780 Memorial Drive, Cambridge, MA 02139, USA
| | - Chang-Ai Xu
- Jounce Therapeutics, Inc., 780 Memorial Drive, Cambridge, MA 02139, USA
| | | | - Yan Zhang
- Jounce Therapeutics, Inc., 780 Memorial Drive, Cambridge, MA 02139, USA
| | - Yassine Ezzyat
- Jounce Therapeutics, Inc., 780 Memorial Drive, Cambridge, MA 02139, USA
| | | | - Michelle R. Kuhne
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA 94404, USA
| | - Michael A. Meehl
- Jounce Therapeutics, Inc., 780 Memorial Drive, Cambridge, MA 02139, USA
| | - Donald R. Shaffer
- Jounce Therapeutics, Inc., 780 Memorial Drive, Cambridge, MA 02139, USA
| | - Brian M. Weist
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA 94404, USA
| | | | - Fabien Depis
- Jounce Therapeutics, Inc., 780 Memorial Drive, Cambridge, MA 02139, USA
| | - Monica Gostissa
- Jounce Therapeutics, Inc., 780 Memorial Drive, Cambridge, MA 02139, USA
| |
Collapse
|
31
|
Sabharwal A, Wishman MD, Cervera RL, Serres MR, Anderson JL, Holmberg SR, Kar B, Treichel AJ, Ichino N, Liu W, Yang J, Ding Y, Deng Y, Lacey JM, Laxen WJ, Loken PR, Oglesbee D, Farber SA, Clark KJ, Xu X, Ekker SC. Genetic therapy in a mitochondrial disease model suggests a critical role for liver dysfunction in mortality. eLife 2022; 11:e65488. [PMID: 36408801 PMCID: PMC9859037 DOI: 10.7554/elife.65488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
The clinical and largely unpredictable heterogeneity of phenotypes in patients with mitochondrial disorders demonstrates the ongoing challenges in the understanding of this semi-autonomous organelle in biology and disease. Previously, we used the gene-breaking transposon to create 1200 transgenic zebrafish strains tagging protein-coding genes (Ichino et al., 2020), including the lrpprc locus. Here, we present and characterize a new genetic revertible animal model that recapitulates components of Leigh Syndrome French Canadian Type (LSFC), a mitochondrial disorder that includes diagnostic liver dysfunction. LSFC is caused by allelic variations in the LRPPRC gene, involved in mitochondrial mRNA polyadenylation and translation. lrpprc zebrafish homozygous mutants displayed biochemical and mitochondrial phenotypes similar to clinical manifestations observed in patients, including dysfunction in lipid homeostasis. We were able to rescue these phenotypes in the disease model using a liver-specific genetic model therapy, functionally demonstrating a previously under-recognized critical role for the liver in the pathophysiology of this disease.
Collapse
Affiliation(s)
- Ankit Sabharwal
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of MedicineRochesterUnited States
| | - Mark D Wishman
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of MedicineRochesterUnited States
| | - Roberto Lopez Cervera
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of MedicineRochesterUnited States
| | - MaKayla R Serres
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of MedicineRochesterUnited States
| | - Jennifer L Anderson
- Department of Embryology, Carnegie Institution for ScienceBaltimoreUnited States
| | - Shannon R Holmberg
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of MedicineRochesterUnited States
| | - Bibekananda Kar
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of MedicineRochesterUnited States
| | - Anthony J Treichel
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of MedicineRochesterUnited States
| | - Noriko Ichino
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of MedicineRochesterUnited States
| | - Weibin Liu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of MedicineRochesterUnited States
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic College of MedicineRochesterUnited States
| | - Jingchun Yang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of MedicineRochesterUnited States
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic College of MedicineRochesterUnited States
| | - Yonghe Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of MedicineRochesterUnited States
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic College of MedicineRochesterUnited States
| | - Yun Deng
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of MedicineRochesterUnited States
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic College of MedicineRochesterUnited States
| | - Jean M Lacey
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic College of MedicineRochesterUnited States
| | - William J Laxen
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic College of MedicineRochesterUnited States
| | - Perry R Loken
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic College of MedicineRochesterUnited States
| | - Devin Oglesbee
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic College of MedicineRochesterUnited States
| | - Steven A Farber
- Department of Embryology, Carnegie Institution for ScienceBaltimoreUnited States
| | - Karl J Clark
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of MedicineRochesterUnited States
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of MedicineRochesterUnited States
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic College of MedicineRochesterUnited States
| | - Stephen C Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of MedicineRochesterUnited States
| |
Collapse
|
32
|
Yang Y, Yuan H, Zhao L, Guo S, Hu S, Tian M, Nie Y, Yu J, Zhou C, Niu J, Wang G, Song Y. Targeting the miR-34a/LRPPRC/MDR1 axis collapse the chemoresistance in P53 inactive colorectal cancer. Cell Death Differ 2022; 29:2177-2189. [PMID: 35484333 PMCID: PMC9613927 DOI: 10.1038/s41418-022-01007-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 11/09/2022] Open
Abstract
P53 mutation is an important cause of chemoresistance in colorectal cancer (CRC). The investigation and identification of the downstream targets and underlying molecular mechanism of chemoresistance induced by P53 abnormalities are therefore of great clinical significance. In this study, we demonstrated and reported for the first time that leucine-rich pentatricopeptide repeat-containing protein (LRPPRC) is a key functional downstream factor and therapeutic target for P53 mutation-induced chemoresistance. Due to its RNA binding function, LRPPRC specifically bound to the mRNA of multidrug resistance 1 (MDR1), increasing MDR1 mRNA stability and protein expression. In normal cells, P53 induced by chemotherapy inhibited the expression of LRPPRC via miR-34a and in turn reduced the expression of MDR1. However, chemotherapy-induced P53/miR-34a/LRPPRC/MDR1 signalling pathway activation was lost when P53 was mutated. Additionally, the accumulated LRPPRC and MDR1 promoted drug resistance. Most importantly, gossypol-acetic acid (GAA) was recently reported by our team as the first specific inhibitor of LRPPRC. In CRC cells with P53 mutation, GAA effectively induced degradation of the LRPPRC protein and reduced chemoresistance. Both in vivo and in vitro experiments revealed that combination chemotherapy with GAA and 5-fluorouracil (5FU) yielded improved treatment outcomes. In this study, we reported a novel mechanism and target related to P53-induced drug resistance and provided corresponding interventional strategies for the precision treatment of CRC.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - Hongyu Yuan
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lianmei Zhao
- Research center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Shichao Guo
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Sijun Hu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710000, China
| | - Miaomiao Tian
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710000, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710000, China
| | - Jiarui Yu
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chaoxi Zhou
- The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - Jian Niu
- The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - Guiying Wang
- The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China.
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050051, China.
| | - Yongmei Song
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
33
|
Dong N, Zhu J, Wang R, Wang S, Chen Y, Wang C, Goh EL, Chen T. Maternal Methamphetamine Exposure Influences Behavioral Sensitization and Nucleus Accumbens DNA Methylation in Subsequent Generation. Front Pharmacol 2022; 13:940798. [PMID: 35928279 PMCID: PMC9343784 DOI: 10.3389/fphar.2022.940798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
The deleterious effects of methamphetamine (METH) exposure extend beyond abusers, and may potentially impact the vulnerability of their offspring in developing addictive behaviors. Epigenetic signatures have been implicated in addiction, yet the characteristics to identify prenatal METH abuse to offspring addiction risk remains elusive. Here, we used escalating doses of METH-exposed mouse model in F0 female mice before and during pregnancy to simulate the human pattern of drug abuse and generated METH-induced behavioral sensitization to investigate the addictive behavior in offspring mice. We then utilized whole genome-bisulfite sequencing (WGBS) to investigate the methylation signature of nucleus accumbens (NAc) in male METH-sensitized mice. Interestingly, male but not female offspring exhibited an enhanced response to METH-induced behavioral sensitization. Additionally, the METH-exposed group of male mice underwent a more comprehensive wave of epigenome remodeling over all genomic elements compared with unexposed groups due to drug exposure history. 104,219 DMCs (METH-SAL vs. SAL-SAL) induced by prenatal METH-exposure were positively correlated with that of postnatal METH-exposure (38,570, SAL-METH vs. SAL-SAL). Moreover, 4,983 DMCs induced by pre- and postnatal METH exposure (METH-METH vs. SAL-METH) were negatively correlated with that of postnatal METH exposure, and 371 commonly changed DMCs between the two comparison groups also showed a significantly negative correlation and 86 annotated genes functionally enriched in the pathways of neurodevelopment and addiction. Key annotated genes included Kirrel3, Lrpprc, and Peg3, implicated in neurodevelopmental processes, were down-regulated in METH-METH group mice compared with the SAL-METH group. Taken together, we render novel insights into the epigenetic correlation of drug exposure and provide evidence for epigenetic characteristics that link maternal METH exposure to the intensity of the same drug-induced behavioral sensitization in adult offspring.
Collapse
Affiliation(s)
- Nan Dong
- College of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
- The Key Laboratory of Health Ministry for Forensic Science, Xi’an Jiaotong University, Xi’an, China
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Jie Zhu
- College of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
- The Key Laboratory of Health Ministry for Forensic Science, Xi’an Jiaotong University, Xi’an, China
| | - Rui Wang
- College of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
- The Key Laboratory of Health Ministry for Forensic Science, Xi’an Jiaotong University, Xi’an, China
| | - Shuai Wang
- College of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
- The Key Laboratory of Health Ministry for Forensic Science, Xi’an Jiaotong University, Xi’an, China
| | - Yanjiong Chen
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Changhe Wang
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Eyleen L.K Goh
- Neuroscience and Mental Health Faculty, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Singhealth Duke-NUS Neuroscience Academic Clinical Programme, Singapore, Singapore
| | - Teng Chen
- College of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
- The Key Laboratory of Health Ministry for Forensic Science, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Teng Chen,
| |
Collapse
|
34
|
Calabrese G, Molzahn C, Mayor T. Protein interaction networks in neurodegenerative diseases: from physiological function to aggregation. J Biol Chem 2022; 298:102062. [PMID: 35623389 PMCID: PMC9234719 DOI: 10.1016/j.jbc.2022.102062] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/26/2022] [Accepted: 05/18/2022] [Indexed: 11/25/2022] Open
Abstract
The accumulation of protein inclusions is linked to many neurodegenerative diseases that typically develop in older individuals, due to a combination of genetic and environmental factors. In rare familial neurodegenerative disorders, genes encoding for aggregation-prone proteins are often mutated. While the underlying mechanism leading to these diseases still remains to be fully elucidated, efforts in the past 20 years revealed a vast network of protein–protein interactions that play a major role in regulating the aggregation of key proteins associated with neurodegeneration. Misfolded proteins that can oligomerize and form insoluble aggregates associate with molecular chaperones and other elements of the proteolytic machineries that are the frontline workers attempting to protect the cells by promoting clearance and preventing aggregation. Proteins that are normally bound to aggregation-prone proteins can become sequestered and mislocalized in protein inclusions, leading to their loss of function. In contrast, mutations, posttranslational modifications, or misfolding of aggregation-prone proteins can lead to gain of function by inducing novel or altered protein interactions, which in turn can impact numerous essential cellular processes and organelles, such as vesicle trafficking and the mitochondria. This review examines our current knowledge of protein–protein interactions involving several key aggregation-prone proteins that are associated with Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, or amyotrophic lateral sclerosis. We aim to provide an overview of the protein interaction networks that play a central role in driving or mitigating inclusion formation, while highlighting some of the key proteomic studies that helped to uncover the extent of these networks.
Collapse
Affiliation(s)
- Gaetano Calabrese
- Michael Smith Laboratories, University of British Columbia, V6T 1Z4 Vancouver BC, Canada.
| | - Cristen Molzahn
- Michael Smith Laboratories, University of British Columbia, V6T 1Z4 Vancouver BC, Canada
| | - Thibault Mayor
- Michael Smith Laboratories, University of British Columbia, V6T 1Z4 Vancouver BC, Canada.
| |
Collapse
|
35
|
Lu Z, Liu Z, Fang B. Propofol protects cardiomyocytes from doxorubicin-induced toxic injury by activating the nuclear factor erythroid 2-related factor 2/glutathione peroxidase 4 signaling pathways. Bioengineered 2022; 13:9145-9155. [PMID: 35363601 PMCID: PMC9161918 DOI: 10.1080/21655979.2022.2036895] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Propofol offers important protective effects in ischemia/reperfusion-induced cardiomyocyte injury, but its specific mechanisms in doxorubicin (DOX)-induced cardiotoxicity have not been investigated. In this paper, we attempted to explore the effects of propofol on DOX-induced human cardiomyocyte injury and its related mechanisms. H9c2 cell viability was assessed by cell counting kit-8 and lactate dehydrogenase assay kit. Nuclear factor erythroid 2-related factor 2 (NRF2)/glutathione peroxidase 4 (GPx4) signaling pathway-related protein levels were measured by Western blot. Ferroptosis was evaluated by corresponding kits and Western blot and apoptosis was detected by CCK-8, terminal deoxynucleotidyl transferase dUTP nick-end labeling and Western blot. Oxidative stress was assessed by reactive oxygen species kit and the commercial kits, and inflammation response was analyzed by enzyme-linked immunosorbent assay and Western blot. The results showed that propofol attenuated DOX-induced cytotoxicity and activated Nrf2/GPx4 signaling pathways in H9c2 cells. In addition, propofol also alleviated DOX-induced ferroptosis, increased cell viability and inhibited apoptosis, oxidative stress and inflammatory responses in H9c2 cells through activation of Nrf2/GPx4 signaling pathways. In summary, propofol provides the protection against DOX-induced cardiomyocyte injury by activating Nrf2/GPx4 signaling, providing a new approach and theoretical basis for the repair of cardiomyocytes.
Collapse
Affiliation(s)
- Ziyun Lu
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhiyi Liu
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bei Fang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
36
|
Xia W, Qiu J, Peng Y, Snyder MM, Gu L, Huang K, Luo N, Yue F, Kuang S. Chchd10 is dispensable for myogenesis but critical for adipose browning. CELL REGENERATION (LONDON, ENGLAND) 2022; 11:14. [PMID: 35362877 PMCID: PMC8975916 DOI: 10.1186/s13619-022-00111-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/27/2022] [Indexed: 12/20/2022]
Abstract
The Chchd10 gene encodes a coiled-coil-helix-coiled-coil-helix-domain containing protein predicted to function in the mitochondrion and nucleus. Mutations of Chchd10 are associated with ALS, dementia and myopathy in humans and animal models, but how knockout of Chchd10 (Chchd10KO) affects various tissues especially skeletal muscle and adipose tissues remains unclear. Here we show that Chchd10 expression increases as myoblasts and preadipocytes differentiate. During myogenesis, CHCHD10 interacts with TAR DNA binding protein 43 (TDP-43) in regenerating myofibers in vivo and in newly differentiated myotubes ex vivo. Surprisingly, Chchd10KO mice had normal skeletal muscle development, growth and regeneration, with moderate defects in grip strength and motor performance. Chchd10KO similarly had no effects on development of brown and white adipose tissues (WAT). However, Chchd10KO mice had blunted response to acute cold and attenuated cold-induced browning of WAT, with markedly reduced UCP1 levels. Together, these results demonstrate that Chchd10 is dispensable for normal myogenesis and adipogenesis but is required for normal motility and cold-induced, mitochondrion-dependent browning of adipocytes. The data also suggest that human CHCHD10 mutations cause myopathy through a gain-of-function mechanism.
Collapse
Affiliation(s)
- Wei Xia
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, China. .,Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA. .,College of Animal and Veterinary Science, Southwest Minzu University, Chengdu, 610041, China.
| | - Jiamin Qiu
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Ying Peng
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Madigan M Snyder
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Lijie Gu
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA.,College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Kuilong Huang
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Nanjian Luo
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Feng Yue
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
37
|
Miranda M, Bonekamp NA, Kühl I. Starting the engine of the powerhouse: mitochondrial transcription and beyond. Biol Chem 2022; 403:779-805. [PMID: 35355496 DOI: 10.1515/hsz-2021-0416] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/09/2022] [Indexed: 12/25/2022]
Abstract
Mitochondria are central hubs for cellular metabolism, coordinating a variety of metabolic reactions crucial for human health. Mitochondria provide most of the cellular energy via their oxidative phosphorylation (OXPHOS) system, which requires the coordinated expression of genes encoded by both the nuclear (nDNA) and mitochondrial genomes (mtDNA). Transcription of mtDNA is not only essential for the biogenesis of the OXPHOS system, but also generates RNA primers necessary to initiate mtDNA replication. Like the prokaryotic system, mitochondria have no membrane-based compartmentalization to separate the different steps of mtDNA maintenance and expression and depend entirely on nDNA-encoded factors imported into the organelle. Our understanding of mitochondrial transcription in mammalian cells has largely progressed, but the mechanisms regulating mtDNA gene expression are still poorly understood despite their profound importance for human disease. Here, we review mechanisms of mitochondrial gene expression with a focus on the recent findings in the field of mammalian mtDNA transcription and disease phenotypes caused by defects in proteins involved in this process.
Collapse
Affiliation(s)
- Maria Miranda
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, D-50931, Germany
| | - Nina A Bonekamp
- Department of Neuroanatomy, Mannheim Center for Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University, Mannheim, D-68167, Germany
| | - Inge Kühl
- Department of Cell Biology, Institute of Integrative Biology of the Cell (I2BC), UMR9198, CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, F-91190, France
| |
Collapse
|
38
|
Bchetnia M, Tardif J, Morin C, Laprise C. Expression signature of the Leigh syndrome French-Canadian type. Mol Genet Metab Rep 2022; 30:100847. [PMID: 35242578 PMCID: PMC8856909 DOI: 10.1016/j.ymgmr.2022.100847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 10/28/2022] Open
|
39
|
Wang L, Luo J, Li Y, Lu Y, Zhang Y, Tian B, Zhao Z, Hu QY. Mitochondrial-Associated Protein LRPPRC is Related With Poor Prognosis Potentially and Exerts as an Oncogene Via Maintaining Mitochondrial Function in Pancreatic Cancer. Front Genet 2022; 12:817672. [PMID: 35237297 PMCID: PMC8885106 DOI: 10.3389/fgene.2021.817672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
Background: The mitochondrial-associated protein leucine-rich pentatricopeptide repeat-containing (LRPPRC) exerts multiple functions involved in physiological processes, including mitochondrial gene translation, cell cycle progression, and tumorigenesis. Previously, LRPPRC was reported to regulate mitophagy by interacting with Bcl-2 and Beclin-1 and thus modifying the activation of PI3KCIII and autophagy. Considering that LRPPRC was found to be negatively associated with survival rate, we hypothesize that LRPPRC may be involved in pancreatic cancer progression via its regulation of autophagy. Methods: Real-time quantitative polymerase chain reaction was performed to detect the expression of LRPPRC in 90 paired pancreatic cancer and adjacent tissues and five pancreatic cancer cell lines. Mitochondrial reactive oxidative species level and function were measured. Mitophagy was measured by performing to detect LC3 levels. Results: By performing a real-time quantitative polymerase chain reaction, the association of LRPPRC with the prognosis of pancreatic cancer was established, and pancreatic cancer tissues had significantly higher LRPPRC expression than adjacent tissues. LRPPRC was negatively associated with the overall survival rate. LRPPRC was also upregulated in pancreatic cancer cell lines. Knockdown of LRPPRC promoted reactive oxidative species accumulation, decreased mitochondrial membrane potential, promoted autophagy/mitophagy, and induced mitochondrial dysfunction. Subsequently, knockdown of LRPPRC inhibited malignant behaviors in PANC-1 cells, including proliferation, migration, invasion, tumor formation, and chemoresistance to gemcitabine. Finally, by inhibiting autophagy/mitophagy using 3-MA, the inhibitory effect of LRPPRC knockdown on proliferation was reversed. Conclusion: Taken together, our results indicate that LRPPRC may act as an oncogene via maintaining mitochondrial homeostasis and could be used as a predictive marker for patient prognosis in pancreatic cancer.
Collapse
Affiliation(s)
- Li Wang
- Department of Pancreatic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Jun Luo
- School of Medicine, Chengdu Women’s and Children’s Central Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuchen Li
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital of Sichuan University, Chengdu, China
| | - Yi Zhang
- Department of Pancreatic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Bole Tian
- Department of Pancreatic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Ziyi Zhao
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiong-ying Hu
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
40
|
Mitochondrial Neurodegeneration. Cells 2022; 11:cells11040637. [PMID: 35203288 PMCID: PMC8870525 DOI: 10.3390/cells11040637] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/28/2022] [Accepted: 02/06/2022] [Indexed: 01/27/2023] Open
Abstract
Mitochondria are cytoplasmic organelles, which generate energy as heat and ATP, the universal energy currency of the cell. This process is carried out by coupling electron stripping through oxidation of nutrient substrates with the formation of a proton-based electrochemical gradient across the inner mitochondrial membrane. Controlled dissipation of the gradient can lead to production of heat as well as ATP, via ADP phosphorylation. This process is known as oxidative phosphorylation, and is carried out by four multiheteromeric complexes (from I to IV) of the mitochondrial respiratory chain, carrying out the electron flow whose energy is stored as a proton-based electrochemical gradient. This gradient sustains a second reaction, operated by the mitochondrial ATP synthase, or complex V, which condensates ADP and Pi into ATP. Four complexes (CI, CIII, CIV, and CV) are composed of proteins encoded by genes present in two separate compartments: the nuclear genome and a small circular DNA found in mitochondria themselves, and are termed mitochondrial DNA (mtDNA). Mutations striking either genome can lead to mitochondrial impairment, determining infantile, childhood or adult neurodegeneration. Mitochondrial disorders are complex neurological syndromes, and are often part of a multisystem disorder. In this paper, we divide the diseases into those caused by mtDNA defects and those that are due to mutations involving nuclear genes; from a clinical point of view, we discuss pediatric disorders in comparison to juvenile or adult-onset conditions. The complementary genetic contributions controlling organellar function and the complexity of the biochemical pathways present in the mitochondria justify the extreme genetic and phenotypic heterogeneity of this new area of inborn errors of metabolism known as ‘mitochondrial medicine’.
Collapse
|
41
|
Wang H, Yi X, Guo S, Wang S, Ma J, Zhao T, Shi Q, Tian Y, Wang H, Jia L, Gao T, Li C, Guo W. The XBP1‒MARCH5‒MFN2 Axis Confers Endoplasmic Reticulum Stress Resistance by Coordinating Mitochondrial Fission and Mitophagy in Melanoma. J Invest Dermatol 2021; 141:2932-2943.e12. [PMID: 34048729 DOI: 10.1016/j.jid.2021.03.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/04/2021] [Accepted: 03/16/2021] [Indexed: 12/25/2022]
Abstract
Melanoma cells are relatively resistant to endoplasmic reticulum (ER) stress, which contributes to tumor progression under stressful conditions and renders tolerance to ER stress‒inducing therapeutic agents. Mitochondria are tightly interconnected with ER. However, whether mitochondria play a role in regulating ER stress resistance in melanoma remains elusive. In this study, we reported that the XBP1‒MARCH5‒MFN2 axis conferred ER stress resistance by coordinating mitochondrial fission and mitophagy in melanoma. Our integrative bioinformatics first revealed that the downregulation of mitochondrial genes was highly correlated with unfolded protein response activation in melanoma. Then we proved that mitochondrial fission and mitophagy were prominently induced to contribute to ER stress resistance both in vitro and in vivo by maintaining mitochondrial function. Mechanistically, the activation of IRE1α/ATF6-XBP1 branches of unfolded protein response promoted the transcription of E3 ligase MARCH5 to facilitate the ubiquitination and degradation of MFN2, which thereby triggered mitochondrial fission and mitophagy under ER stress. Together, our findings show a regulatory axis that links mitochondrial fission and mitophagy to the resistance to ER stress. Targeting mitochondrial quality control machinery can be exploited as an approach to reinforce the efficacy of ER stress‒inducing agents against cancer.
Collapse
Affiliation(s)
- Huina Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China; Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Xiuli Yi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Sen Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Sijia Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China; Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinyuan Ma
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Tao Zhao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Qiong Shi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yangzi Tian
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hao Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lintao Jia
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Tianwen Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
42
|
Xavier VJ, Martinou JC. RNA Granules in the Mitochondria and Their Organization under Mitochondrial Stresses. Int J Mol Sci 2021; 22:9502. [PMID: 34502411 PMCID: PMC8431320 DOI: 10.3390/ijms22179502] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/25/2022] Open
Abstract
The human mitochondrial genome (mtDNA) regulates its transcription products in specialised and distinct ways as compared to nuclear transcription. Thanks to its mtDNA mitochondria possess their own set of tRNAs, rRNAs and mRNAs that encode a subset of the protein subunits of the electron transport chain complexes. The RNA regulation within mitochondria is organised within specialised, membraneless, compartments of RNA-protein complexes, called the Mitochondrial RNA Granules (MRGs). MRGs were first identified to contain nascent mRNA, complexed with many proteins involved in RNA processing and maturation and ribosome assembly. Most recently, double-stranded RNA (dsRNA) species, a hybrid of the two complementary mRNA strands, were found to form granules in the matrix of mitochondria. These RNA granules are therefore components of the mitochondrial post-transcriptional pathway and as such play an essential role in mitochondrial gene expression. Mitochondrial dysfunctions in the form of, for example, RNA processing or RNA quality control defects, or inhibition of mitochondrial fission, can cause the loss or the aberrant accumulation of these RNA granules. These findings underline the important link between mitochondrial maintenance and the efficient expression of its genome.
Collapse
Affiliation(s)
| | - Jean-Claude Martinou
- Department of Cell Biology, Faculty of Sciences, University of Geneva, 1205 Geneva, Switzerland;
| |
Collapse
|
43
|
Guo L, Engelen BPH, Hemel IMGM, de Coo IFM, Vreeburg M, Sallevelt SCEH, Hellebrekers DMEI, Jacobs EH, Sadeghi-Niaraki F, van Tienen FHJ, Smeets HJM, Gerards M. Pathogenic SLIRP variants as a novel cause of autosomal recessive mitochondrial encephalomyopathy with complex I and IV deficiency. Eur J Hum Genet 2021; 29:1789-1795. [PMID: 34426662 DOI: 10.1038/s41431-021-00947-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 06/09/2021] [Accepted: 08/10/2021] [Indexed: 12/26/2022] Open
Abstract
In a Dutch non-consanguineous patient having mitochondrial encephalomyopathy with complex I and complex IV deficiency, whole exome sequencing revealed two compound heterozygous variants in SLIRP. SLIRP gene encodes a stem-loop RNA-binding protein that regulates mitochondrial RNA expression and oxidative phosphorylation (OXPHOS). A frameshift and a deep-intronic splicing variant reduced the amount of functional wild-type SLIRP RNA to 5%. Consequently, in patient fibroblasts, MT-ND1, MT-ND6, and MT-CO1 expression was reduced. Lentiviral transduction of wild-type SLIRP cDNA in patient fibroblasts increased MT-ND1, MT-ND6, and MT-CO1 expression (2.5-7.2-fold), whereas mutant cDNAs did not. A fourfold decrease of citrate synthase versus total protein ratio in patient fibroblasts indicated that the resulting reduced mitochondrial mass caused the OXPHOS deficiency. Transduction with wild-type SLIRP cDNA led to a 2.4-fold increase of this ratio and partly restored OXPHOS activity. This confirmed causality of the SLIRP variants. In conclusion, we report SLIRP variants as a novel cause of mitochondrial encephalomyopathy with OXPHOS deficiency.
Collapse
Affiliation(s)
- Le Guo
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands.,Department of Toxicogenomics, Clinical Genomics Unit, Maastricht University, Maastricht, the Netherlands
| | - Bob P H Engelen
- Maastricht Center for Systems Biology (MacsBio), Maastricht University, Maastricht, the Netherlands
| | - Irene M G M Hemel
- Maastricht Center for Systems Biology (MacsBio), Maastricht University, Maastricht, the Netherlands
| | - Irenaeus F M de Coo
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands.,Department of Toxicogenomics, Clinical Genomics Unit, Maastricht University, Maastricht, the Netherlands
| | - Maaike Vreeburg
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Suzanne C E H Sallevelt
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Debby M E I Hellebrekers
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Ed H Jacobs
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Farah Sadeghi-Niaraki
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Florence H J van Tienen
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands.,Department of Toxicogenomics, Clinical Genomics Unit, Maastricht University, Maastricht, the Netherlands
| | - Hubert J M Smeets
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands. .,Department of Toxicogenomics, Clinical Genomics Unit, Maastricht University, Maastricht, the Netherlands. .,School for Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, the Netherlands.
| | - Mike Gerards
- Maastricht Center for Systems Biology (MacsBio), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
44
|
Adaptive optimization of the OXPHOS assembly line partially compensates lrpprc-dependent mitochondrial translation defects in mice. Commun Biol 2021; 4:989. [PMID: 34413467 PMCID: PMC8376967 DOI: 10.1038/s42003-021-02492-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 07/20/2021] [Indexed: 11/20/2022] Open
Abstract
Mouse models of genetic mitochondrial disorders are generally used to understand specific molecular defects and their biochemical consequences, but rarely to map compensatory changes allowing survival. Here we took advantage of the extraordinary mitochondrial resilience of hepatic Lrpprc knockout mice to explore this question using native proteomics profiling and lipidomics. In these mice, low levels of the mtRNA binding protein LRPPRC induce a global mitochondrial translation defect and a severe reduction (>80%) in the assembly and activity of the electron transport chain (ETC) complex IV (CIV). Yet, animals show no signs of overt liver failure and capacity of the ETC is preserved. Beyond stimulation of mitochondrial biogenesis, results show that the abundance of mitoribosomes per unit of mitochondria is increased and proteostatic mechanisms are induced in presence of low LRPPRC levels to preserve a balance in the availability of mitochondrial- vs nuclear-encoded ETC subunits. At the level of individual organelles, a stabilization of residual CIV in supercomplexes (SCs) is observed, pointing to a role of these supramolecular arrangements in preserving ETC function. While the SC assembly factor COX7A2L could not contribute to the stabilization of CIV, important changes in membrane glycerophospholipid (GPL), most notably an increase in SC-stabilizing cardiolipins species (CLs), were observed along with an increased abundance of other supramolecular assemblies known to be stabilized by, and/or participate in CL metabolism. Together these data reveal a complex in vivo network of molecular adjustments involved in preserving mitochondrial integrity in energy consuming organs facing OXPHOS defects, which could be therapeutically exploited. Cuillerier et al. investigate compensatory mechanisms underlying survival of mice with a liver-specific knockout of the mitochondrial mRNA-binding protein Lrpprc. They propose various mechanisms operating along the OXPHOS assembly line, including mitochondrial biogenesis, mitochondrial ribosome upregulation and preferential supercomplex assembly, that could compensate lack of LRPPRC and allow survival of these mice.
Collapse
|
45
|
Cruz Marino T, Tardif J, Leblanc J, Lavoie J, Morin P, Harvey M, Thomas MJ, Pratte A, Braverman N. First glance at the molecular etiology of hearing loss in French-Canadian families from Saguenay-Lac-Saint-Jean's founder population. Hum Genet 2021; 141:607-622. [PMID: 34387732 DOI: 10.1007/s00439-021-02332-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/04/2021] [Indexed: 11/24/2022]
Abstract
The French-Canadian population of Saguenay-Lac-Saint-Jean is known for its homogenous genetic background. The hereditary causes of hearing loss were previously unexplored in this population. Individuals with hearing loss were referred from the otorhinolaryngology, pediatrics and family physicians' clinics to the medical genetics service at the Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-Saint-Jean between June 2015 and March 2021. A regional clinical evaluation strategy was developed. Samples from 63 individuals belonging to 41 families were sent independently to different molecular clinical laboratories and index cases were analyzed through comprehensive multigene panels, with a diagnostic rate of 54%. Sixteen hearing loss causal variants were identified in 12 genes, with eight of these variants not been previously reported in the literature. Recurrent variants were present in four genes, suggesting a possible founder effect, while GJB2 gene variants were scarce. A comprehensive multigene panel approach as part of the proposed clinical evaluation strategy offers a high diagnostic yield for this population.
Collapse
Affiliation(s)
- Tania Cruz Marino
- Department of Laboratory Medicine, CIUSSS Saguenay-Lac-St-Jean, Saguenay-Lac-Saint-Jean, Canada.
| | - Jessica Tardif
- Department of Laboratory Medicine, CIUSSS Saguenay-Lac-St-Jean, Saguenay-Lac-Saint-Jean, Canada
| | - Josianne Leblanc
- Department of Laboratory Medicine, CIUSSS Saguenay-Lac-St-Jean, Saguenay-Lac-Saint-Jean, Canada
| | - Janie Lavoie
- Department of Otolaryngology-Head and Neck Surgery, CIUSSS Saguenay-Lac-St-Jean, Saguenay-Lac-Saint-Jean, Canada
| | - Pascal Morin
- Department of Otolaryngology-Head and Neck Surgery, CIUSSS Saguenay-Lac-St-Jean, Saguenay-Lac-Saint-Jean, Canada
| | - Michel Harvey
- Department of Otolaryngology-Head and Neck Surgery, CIUSSS Saguenay-Lac-St-Jean, Saguenay-Lac-Saint-Jean, Canada
| | - Marie-Jacqueline Thomas
- Department of Laboratory Medicine, CIUSSS Saguenay-Lac-St-Jean, Saguenay-Lac-Saint-Jean, Canada
| | - Annabelle Pratte
- Department of Laboratory Medicine, CIUSSS Saguenay-Lac-St-Jean, Saguenay-Lac-Saint-Jean, Canada
| | - Nancy Braverman
- Division of Medical Genetics, Department of Pediatrics and Human Genetics, McGill University, Montreal, Canada
| |
Collapse
|
46
|
Bakare AB, Lesnefsky EJ, Iyer S. Leigh Syndrome: A Tale of Two Genomes. Front Physiol 2021; 12:693734. [PMID: 34456746 PMCID: PMC8385445 DOI: 10.3389/fphys.2021.693734] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/22/2021] [Indexed: 12/21/2022] Open
Abstract
Leigh syndrome is a rare, complex, and incurable early onset (typically infant or early childhood) mitochondrial disorder with both phenotypic and genetic heterogeneity. The heterogeneous nature of this disorder, based in part on the complexity of mitochondrial genetics, and the significant interactions between the nuclear and mitochondrial genomes has made it particularly challenging to research and develop therapies. This review article discusses some of the advances that have been made in the field to date. While the prognosis is poor with no current substantial treatment options, multiple studies are underway to understand the etiology, pathogenesis, and pathophysiology of Leigh syndrome. With advances in available research tools leading to a better understanding of the mitochondria in health and disease, there is hope for novel treatment options in the future.
Collapse
Affiliation(s)
- Ajibola B. Bakare
- Department of Biological Sciences, J. William Fulbright College of Arts and Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Edward J. Lesnefsky
- Division of Cardiology, Pauley Heart Center, Department of Internal Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
- Department of Physiology/Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
- Department of Biochemistry and Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Shilpa Iyer
- Department of Biological Sciences, J. William Fulbright College of Arts and Sciences, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
47
|
Simulated Microgravity Effects on Human Adenocarcinoma Alveolar Epithelial Cells: Characterization of Morphological, Functional, and Epigenetic Parameters. Int J Mol Sci 2021; 22:ijms22136951. [PMID: 34203322 PMCID: PMC8269359 DOI: 10.3390/ijms22136951] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/30/2022] Open
Abstract
Background: In space, the reduction or loss of the gravity vector greatly affects the interaction between cells. Since the beginning of the space age, microgravity has been identified as an informative tool in biomedicine, including cancer research. The A549 cell line is a hypotriploid human alveolar basal epithelial cell line widely used as a model for lung adenocarcinoma. Microgravity has been reported to interfere with mitochondrial activity, energy metabolism, cell vitality and proliferation, chemosensitivity, invasion and morphology of cells and organelles in various biological systems. Concerning lung cancer, several studies have reported the ability of microgravity to modulate the carcinogenic and metastatic process. To investigate these processes, A549 cells were exposed to simulated microgravity (µG) for different time points. Methods: We performed cell cycle and proliferation assays, ultrastructural analysis of mitochondria architecture, as well as a global analysis of miRNA modulated under µG conditions. Results: The exposure of A549 cells to microgravity is accompanied by the generation of polynucleated cells, cell cycle imbalance, growth inhibition, and gross morphological abnormalities, the most evident are highly damaged mitochondria. Global miRNA analysis defined a pool of miRNAs associated with µG solicitation mainly involved in cell cycle regulation, apoptosis, and stress response. To our knowledge, this is the first global miRNA analysis of A549 exposed to microgravity reported. Despite these results, it is not possible to draw any conclusion concerning the ability of µG to interfere with the cancerogenic or the metastatic processes in A549 cells. Conclusions: Our results provide evidence that mitochondria are strongly sensitive to µG. We suggest that mitochondria damage might in turn trigger miRNA modulation related to cell cycle imbalance.
Collapse
|
48
|
Luo Y, Wang Y, Huang Y. Schizosaccharomyces pombe Ppr10 and Mpa1 together mediate mitochondrial translational initiation. J Biol Chem 2021; 297:100869. [PMID: 34119521 PMCID: PMC8258696 DOI: 10.1016/j.jbc.2021.100869] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 12/26/2022] Open
Abstract
Pentatricopeptide repeat (PPR) proteins are a large family of proteins that act primarily at different posttranscriptional steps of organellar gene expression. We have previously found that the Schizosaccharomyces pombe PPR protein mpal10 interacts with mitochondrial translational activator Mpa1, and both are essential for mitochondrial protein synthesis. However, it is unclear how these two proteins function in mitochondrial protein synthesis in S. pombe. In this study, we further investigated the role of Ppr10 and Mpa1 in mitochondrial protein synthesis. Mitochondrial translational initiation requires two initiation factors, Mti2 and Mti3, which bind to the small subunit of the mitochondrial ribosome (mt-SSU) during the formation of the mitochondrial translational initiation complex. Using sucrose gradient sedimentation analysis, we found that disruption of ppr10, mpa1, or the PPR motifs in Ppr10 impairs the association of Mti2 and Mti3 with the mt-SSU, suggesting that both Ppr10 and Mpa1 may be required for the interaction of Mti2 and Mti3 with the mt-SSU during the assembly of mitochondrial translational initiation complex. Loss of Ppr10 perturbs the association of mitochondrially encoded cytochrome b (cob1) and cytochrome c oxidase subunit 1 (cox1) mRNAs with assembled mitochondrial ribosomes. Proteomic analysis revealed that a fraction of Ppr10 and Mpa1 copurified with a subset of mitoribosomal proteins. The PPR motifs of Ppr10 are necessary for its interaction with Mpa1 and that disruption of these PPR motifs impairs mitochondrial protein synthesis. Our results suggest that Ppr10 and Mpa1 function together to mediate mitochondrial translational initiation.
Collapse
Affiliation(s)
- Ying Luo
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yirong Wang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
49
|
Bchetnia M, Bouchard L, Mathieu J, Campeau PM, Morin C, Brisson D, Laberge AM, Vézina H, Gaudet D, Laprise C. Genetic burden linked to founder effects in Saguenay-Lac-Saint-Jean illustrates the importance of genetic screening test availability. J Med Genet 2021; 58:653-665. [PMID: 33910931 PMCID: PMC8479736 DOI: 10.1136/jmedgenet-2021-107809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/27/2021] [Accepted: 04/14/2021] [Indexed: 01/02/2023]
Abstract
The Saguenay–Lac-Saint-Jean (SLSJ) region located in the province of Quebec was settled in the 19th century by pioneers issued from successive migration waves starting in France in the 17th century and continuing within Quebec until the beginning of the 20th century. The genetic structure of the SLSJ population is considered to be the product of a triple founder effect and is characterised by a higher prevalence of some rare genetic diseases. Several studies were performed to elucidate the historical, demographic and genetic background of current SLSJ inhabitants to assess the origins of these rare disorders and their distribution in the population. Thanks to the development of new sequencing technologies, the genes and the variants responsible for the most prevalent conditions were identified. Combined with other resources such as the BALSAC population database, identifying the causal genes and the pathogenic variants allowed to assess the impacts of some of these founder mutations on the population health and to design precision medicine public health strategies based on carrier testing. Furthermore, it stimulated the establishment of many public programmes. We report here a review and an update of a subset of inherited disorders and founder mutations in the SLSJ region. Data were collected from published scientific sources. This work expands the knowledge about the current frequencies of these rare disorders, the frequencies of other rare genetic diseases in this population, the relevance of the carrier tests offered to the population, as well as the current available treatments and research about future therapeutic avenues for these inherited disorders.
Collapse
Affiliation(s)
- Mbarka Bchetnia
- Département des sciences fondamentales, Université du Québec à Chicoutimi, Chicoutimi, Québec, Canada.,Centre intersectoriel en santé durable (CISD), Université du Québec à Chicoutimi, Chicoutimi, Québec, Canada
| | - Luigi Bouchard
- Département de biochimie et de génomique fonctionnelle, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-Saint-Jean, Hôpital de Chicoutimi, Chicoutimi, Québec, Canada
| | - Jean Mathieu
- Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-Saint-Jean, Hôpital de Chicoutimi, Chicoutimi, Québec, Canada.,Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-Saint-Jean, Clinique de maladies neuromusculaires, Jonquière, Québec, Canada
| | - Philippe M Campeau
- Centre Hospitalier universitaire Sainte-Justine, Université de Montréal, Montreal, Québec, Canada
| | - Charles Morin
- Centre intersectoriel en santé durable (CISD), Université du Québec à Chicoutimi, Chicoutimi, Québec, Canada.,Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-Saint-Jean, Hôpital de Chicoutimi, Chicoutimi, Québec, Canada
| | - Diane Brisson
- ECOGENE-21 et le département de médecine, Université de Montréal, Montreal, Québec, Canada
| | - Anne-Marie Laberge
- Centre Hospitalier universitaire Sainte-Justine, Université de Montréal, Montreal, Québec, Canada
| | - Hélène Vézina
- Centre intersectoriel en santé durable (CISD), Université du Québec à Chicoutimi, Chicoutimi, Québec, Canada.,Département des sciences humaines et sociales, Université du Québec à Chicoutimi, Chicoutimi, Québec, Canada
| | - Daniel Gaudet
- ECOGENE-21 et le département de médecine, Université de Montréal, Montreal, Québec, Canada
| | - Catherine Laprise
- Département des sciences fondamentales, Université du Québec à Chicoutimi, Chicoutimi, Québec, Canada .,Centre intersectoriel en santé durable (CISD), Université du Québec à Chicoutimi, Chicoutimi, Québec, Canada
| |
Collapse
|
50
|
Mitochondrial genome stability in human: understanding the role of DNA repair pathways. Biochem J 2021; 478:1179-1197. [DOI: 10.1042/bcj20200920] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 11/17/2022]
Abstract
Mitochondria are semiautonomous organelles in eukaryotic cells and possess their own genome that replicates independently. Mitochondria play a major role in oxidative phosphorylation due to which its genome is frequently exposed to oxidative stress. Factors including ionizing radiation, radiomimetic drugs and replication fork stalling can also result in different types of mutations in mitochondrial DNA (mtDNA) leading to genome fragility. Mitochondria from myopathies, dystonia, cancer patient samples show frequent mtDNA mutations such as point mutations, insertions and large-scale deletions that could account for mitochondria-associated disease pathogenesis. The mechanism by which such mutations arise following exposure to various DNA-damaging agents is not well understood. One of the well-studied repair pathways in mitochondria is base excision repair. Other repair pathways such as mismatch repair, homologous recombination and microhomology-mediated end joining have also been reported. Interestingly, nucleotide excision repair and classical nonhomologous DNA end joining are not detected in mitochondria. In this review, we summarize the potential causes of mitochondrial genome fragility, their implications as well as various DNA repair pathways that operate in mitochondria.
Collapse
|