1
|
Satao KS, Doshi GM. Anxiety and the brain: Neuropeptides as emerging factors. Pharmacol Biochem Behav 2024; 245:173878. [PMID: 39284499 DOI: 10.1016/j.pbb.2024.173878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/23/2024] [Accepted: 09/09/2024] [Indexed: 09/21/2024]
Abstract
Anxiety disorders are characterized by intense feelings of worry and fear, which can significantly interfere with daily functioning. Current treatment options primarily include selective serotonin reuptake inhibitors, benzodiazepines, non-benzodiazepine anxiolytics, gabapentinoids, and beta-blockers. Neuropeptides have shown an important role in the regulation of complex behaviours, such as psychopathology and anxiety-related reactions. Neuropeptides have a great deal of promise to advance our understanding of and ability to help people with anxiety disorders. This review focuses on the expanding role of neuropeptides in anxiety management, particularly examining the impact of substance P, neuropeptide Y, corticotropin-releasing hormone, arginine-vasopressin, pituitary adenylate cyclase-activating polypeptide, and cholecystokinin. Furthermore, the paper discusses the neuropeptides that are becoming more and more recognized for their impact on anxiety-related reactions and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Kiran S Satao
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V. M. Road, Vile Parle (W), Mumbai 400 056, Maharashtra, India
| | - Gaurav M Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V. M. Road, Vile Parle (W), Mumbai 400 056, Maharashtra, India.
| |
Collapse
|
2
|
Caniceiro AB, Bueschbell B, Schiedel AC, Moreira IS. Class A and C GPCR Dimers in Neurodegenerative Diseases. Curr Neuropharmacol 2022; 20:2081-2141. [PMID: 35339177 PMCID: PMC9886835 DOI: 10.2174/1570159x20666220327221830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/21/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative diseases affect over 30 million people worldwide with an ascending trend. Most individuals suffering from these irreversible brain damages belong to the elderly population, with onset between 50 and 60 years. Although the pathophysiology of such diseases is partially known, it remains unclear upon which point a disease turns degenerative. Moreover, current therapeutics can treat some of the symptoms but often have severe side effects and become less effective in long-term treatment. For many neurodegenerative diseases, the involvement of G proteincoupled receptors (GPCRs), which are key players of neuronal transmission and plasticity, has become clearer and holds great promise in elucidating their biological mechanism. With this review, we introduce and summarize class A and class C GPCRs, known to form heterodimers or oligomers to increase their signalling repertoire. Additionally, the examples discussed here were shown to display relevant alterations in brain signalling and had already been associated with the pathophysiology of certain neurodegenerative diseases. Lastly, we classified the heterodimers into two categories of crosstalk, positive or negative, for which there is known evidence.
Collapse
Affiliation(s)
- Ana B. Caniceiro
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Beatriz Bueschbell
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Anke C. Schiedel
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany;
| | - Irina S. Moreira
- University of Coimbra, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; ,Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal,Address correspondence to this author at the Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal; E-mail:
| |
Collapse
|
3
|
Khan D, Moffett RC, Flatt PR, Tarasov AI. Classical and non-classical islet peptides in the control of β-cell function. Peptides 2022; 150:170715. [PMID: 34958851 DOI: 10.1016/j.peptides.2021.170715] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/25/2021] [Accepted: 12/17/2021] [Indexed: 12/25/2022]
Abstract
The dual role of the pancreas as both an endocrine and exocrine gland is vital for food digestion and control of nutrient metabolism. The exocrine pancreas secretes enzymes into the small intestine aiding digestion of sugars and fats, whereas the endocrine pancreas secretes a cocktail of hormones into the blood, which is responsible for blood glucose control and regulation of carbohydrate, protein and fat metabolism. Classical islet hormones, insulin, glucagon, pancreatic polypeptide and somatostatin, interact in an autocrine and paracrine manner, to fine-tube the islet function and insulin secretion to the needs of the body. Recently pancreatic islets have been reported to express a number of non-classical peptide hormones involved in metabolic signalling, whose major production site was believed to reside outside pancreas, e.g. in the small intestine. We highlight the key non-classical islet peptides, and consider their involvement, together with established islet hormones, in regulation of stimulus-secretion coupling as well as proliferation, survival and transdifferentiation of β-cells. We furthermore focus on the paracrine interaction between classical and non-classical islet hormones in the maintenance of β-cell function. Understanding the functional relationships between these islet peptides might help to develop novel, more efficient treatments for diabetes and related metabolic disorders.
Collapse
Affiliation(s)
- Dawood Khan
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK.
| | - R Charlotte Moffett
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Peter R Flatt
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Andrei I Tarasov
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| |
Collapse
|
4
|
Rehfeld JF. Cholecystokinin and Panic Disorder: Reflections on the History and Some Unsolved Questions. Molecules 2021; 26:5657. [PMID: 34577128 PMCID: PMC8469898 DOI: 10.3390/molecules26185657] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
The classic gut hormone cholecystokinin (CCK) and its CCK2-receptor are expressed in almost all regions of the brain. This widespread expression makes CCK by far the most abundant peptidergic transmitter system in the brain. This CNS-ubiquity has, however, complicated the delineation of the roles of CCK peptides in normal brain functions and neuropsychiatric diseases. Nevertheless, the common panic disorder disease is apparently associated with CCK in the brain. Thus, the C-terminal tetrapeptide fragment of CCK (CCK-4) induces, by intravenous administration in a dose-related manner, panic attacks that are similar to the endogenous attacks in panic disorder patients. This review describes the history behind the discovery of the panicogenic effect of CCK-4. Subsequently, the review discusses three unsettled questions about the involvement of cerebral CCK in the pathogenesis of anxiety and panic disorder, including therapeutic attempts with CCK2-receptor antagonists.
Collapse
Affiliation(s)
- Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
5
|
Momoi Y, Tsusaki T, Yamashita H, Takahashi H. The effectiveness of an SNP marker in the cholecystokinin type A receptor gene for improving growth traits in Amakusa Daioh cross chickens. J APPL POULTRY RES 2021. [DOI: 10.1016/j.japr.2021.100166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
6
|
Cawthon CR, de La Serre CB. The critical role of CCK in the regulation of food intake and diet-induced obesity. Peptides 2021; 138:170492. [PMID: 33422646 DOI: 10.1016/j.peptides.2020.170492] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022]
Abstract
In 1973, Gibbs, Young, and Smith showed that exogenous cholecystokinin (CCK) administration reduces food intake in rats. This initial report has led to thousands of studies investigating the physiological role of CCK in regulating feeding behavior. CCK is released from enteroendocrine I cells present along the gastrointestinal (GI) tract. CCK binding to its receptor CCK1R leads to vagal afferent activation providing post-ingestive feedback to the hindbrain. Vagal afferent neurons' (VAN) sensitivity to CCK is modulated by energy status while CCK signaling regulates gene expression of other feeding related signals and receptors expressed by VAN. In addition to its satiation effects, CCK acts all along the GI tract to optimize digestion and nutrient absorption. Diet-induced obesity (DIO) is characterized by reduced sensitivity to CCK and every part of the CCK system is negatively affected by chronic intake of energy-dense foods. EEC have recently been shown to adapt to diet, CCK1R is affected by dietary fats consumption, and the VAN phenotypic flexibility is lost in DIO. Altered endocannabinoid tone, changes in gut microbiota composition, and chronic inflammation are currently being explored as potential mechanisms for diet driven loss in CCK signaling. This review discusses our current understanding of how CCK controls food intake in conditions of leanness and how control is lost in chronic energy excess and obesity, potentially perpetuating excessive intake.
Collapse
Affiliation(s)
- Carolina R Cawthon
- Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
7
|
Ballaz S, Espinosa N, Bourin M. Does endogenous cholecystokinin modulate alcohol intake? Neuropharmacology 2021; 193:108539. [PMID: 33794246 DOI: 10.1016/j.neuropharm.2021.108539] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/06/2021] [Accepted: 03/22/2021] [Indexed: 02/08/2023]
Abstract
Alcohol use disorder or alcoholism is characterized by uncontrollable alcohol use and intoxication, as well as a heightened state of anxiety after alcohol withdrawal. Ethanol-associated stimuli also drive the urge to drink by means of classical conditioning. Alcoholism has been considered a dopamine (DA) dysregulation syndrome that involves the activity of the central amygdala circuitry of anxiety. Cholecystokinin (CCK) is the most abundant neuropeptide in the mammal brain, where it activates two receptors, CCK1 and CCK2. Genetic evidence relates CCK1 receptors to alcoholism in humans. CCK2 activity has been associated with the onset of human anxiety. CCK modulates DA release in the nucleus accumbens (NAc) and it is expressed in the γ-aminobutyric acid (GABA)-expressing basket interneurons in the cerebral cortex. CCK interacts with serotonin (5-HT) neurotransmission through 5-HT3 receptors to regulate mesocorticolimbic pathways and with GABA to attenuate anxiety in the amygdala. Finally, CCK stimulates the release of orexins and oxytocin in the hypothalamus, two relevant hypothalamic neuropeptides involved in signaling satiety for ethanol and well-being respectively. Given the "dimmer-switch" function of endogenous CCK in the neurotransmission by 5-HT, DA, GABA, and glutamate in normal and pathological behaviors (Ballaz and Bourin, 2020), we hypothesize that CCK adjusts functioning of the reward and anxiety circuitries altered by ethanol. This review gathers data supporting this hypothesis, and suggests mechanisms underlying a role for endogenous CCK in alcoholism.
Collapse
Affiliation(s)
- Santiago Ballaz
- School of Biological Sciences & Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí, Ecuador; School of Medicine, Universidad Espíritu Santo, Samborondón, Ecuador.
| | - Nicole Espinosa
- School of Biological Sciences & Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí, Ecuador.
| | - Michel Bourin
- Neurobiology of Anxiety and Mood Disorders, University of Nantes, 98, Rue Joseph Blanchart, 44100 Nantes, France.
| |
Collapse
|
8
|
Ballaz SJ, Bourin M. Cholecystokinin-Mediated Neuromodulation of Anxiety and Schizophrenia: A "Dimmer-Switch" Hypothesis. Curr Neuropharmacol 2021; 19:925-938. [PMID: 33185164 PMCID: PMC8686311 DOI: 10.2174/1570159x18666201113145143] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/08/2020] [Accepted: 11/10/2020] [Indexed: 11/22/2022] Open
Abstract
Cholecystokinin (CCK), the most abundant brain neuropeptide, is involved in relevant behavioral functions like memory, cognition, and reward through its interactions with the opioid and dopaminergic systems in the limbic system. CCK excites neurons by binding two receptors, CCK1 and CCK2, expressed at low and high levels in the brain, respectively. Historically, CCK2 receptors have been related to the induction of panic attacks in humans. Disturbances in brain CCK expression also underlie the physiopathology of schizophrenia, which is attributed to the modulation by CCK1 receptors of the dopamine flux in the basal striatum. Despite this evidence, neither CCK2 receptor antagonists ameliorate human anxiety nor CCK agonists have consistently shown neuroleptic effects in clinical trials. A neglected aspect of the function of brain CCK is its neuromodulatory role in mental disorders. Interestingly, CCK is expressed in pivotal inhibitory interneurons that sculpt cortical dynamics and the flux of nerve impulses across corticolimbic areas and the excitatory projections to mesolimbic pathways. At the basal striatum, CCK modulates the excitability of glutamate, the release of inhibitory GABA, and the discharge of dopamine. Here we focus on how CCK may reduce rather than trigger anxiety by regulating its cognitive component. Adequate levels of CCK release in the basal striatum may control the interplay between cognition and reward circuitry, which is critical in schizophrenia. Hence, it is proposed that disturbances in the excitatory/ inhibitory interplay modulated by CCK may contribute to the imbalanced interaction between corticolimbic and mesolimbic neural activity found in anxiety and schizophrenia.
Collapse
Affiliation(s)
- Santiago J. Ballaz
- Address correspondence to this author at the School of Biological Sciences & Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí, Ecuador; Tel: 593 (06) 299 9100, ext. 2626; E-mail:
| | | |
Collapse
|
9
|
Practical Application of Miyazaki Jitokko Chickens Selected for a Superior Allele at a Single Nucleotide Polymorphism Site in the Cholecystokinin Type A Receptor Gene. J Poult Sci 2021; 58:12-20. [PMID: 33519282 PMCID: PMC7837808 DOI: 10.2141/jpsa.0190127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study aimed to examine 1) whether selection for a superior allele at a single nucleotide polymorphism site (SNP; AB604331, g.420 C>A) of the chicken cholecystokinin type A receptor (CCKAR) gene in Miyazaki Jitokko chickens is detectable in commercial poultry farms, and 2) whether the reproductive traits of the Kyushu Rhode hens, as a maternal stock line of the Miyazaki Jitokko chickens, are affected by SNP selection. Conventional and A-allele fixed (improved) Miyazaki Jitokko chicks were hatched on the same day and raised in a battery cage until 7 days of age. The chicks were then deposited at two commercial poultry farms and reared until slaughter at 126 and 163 days for cockerels and pullets, respectively. Body weight on the day of hatching (day 0), at 5 days of age, and at slaughter were measured. The differences in the body weights of the farm and test groups at slaughter were analyzed using the generalized linear model. A-allele fixation increased the body weight at slaughter by approximately +123.5 g and +131.9 g in cockerels and pullets, respectively. No significant differences between the conventional and improved hens were detected in terms of egg-laying rate, fertilization rate, and hatchability in the Kyushu Rhode hens. The data suggest that fattening chicks can be supplied as usual, even if Kyushu Rhode hens are switched from the conventional to improved type. In conclusion, genetic improvements using the CCKAR SNP site as a marker were effectively established in terms of the growth of the Miyazaki Jitokko chickens in commercial farms and the reproductive traits of the Kyushu Rhode hens.
Collapse
|
10
|
Kaihani S, Sadeghzadeh N. Study of the 99m Tc-labeling conditions of 6-hydrazinonicotinamide-conjugated peptides from a new perspective: Introduction to the term radio-stoichiometry. J Labelled Comp Radiopharm 2020; 63:582-596. [PMID: 32997359 DOI: 10.1002/jlcr.3883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/27/2020] [Accepted: 09/20/2020] [Indexed: 11/07/2022]
Abstract
Specific tumor uptake of peptide radiopharmaceuticals depends on tumor binding affinity and their radiochemical purity. Several important parameters that influence the 99m Tc-labeling and consequently the radiochemical purity of 6-hydrazinonicotinamide (HYNIC)-conjugated peptide are radionuclide activity, the amount of peptide, the amount of coligands, and the amount of reducing agents (stannous ion). In this review article, we have attempted studying these parameters in the HYNIC-conjugated peptides (somatostatin, cholecystokinin/gastrin, bombesin, and RGD analogs) from a new perspective to obtain most used and optimized radio-stoichiometric relationships. One of the most important results in this review is that for 99m Tc-labeling of HYNIC-conjugated peptides, it is better to consider the most calculated mole ratio between technetium-99m and the peptide (mole ratio of technetium-99m to the peptide 1:200-400). The statistical results also show that among these 99m Tc-labeled peptides, the most used and favorable coligand is tricine/EDDA with two to one (2:1) mole ratio. These optimized radio-stoichiometric relationships, favorable coligand mole ratio, and applicable radiolabeling points can greatly improve the labeling process of the HYNIC-conjugated peptides, by reducing trial and error, increasing specific activity, and saving materials.
Collapse
Affiliation(s)
- Sajad Kaihani
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nourollah Sadeghzadeh
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
11
|
Matsuda K, Yoshida D, Watanabe K, Yokobori E, Konno N, Nakamachi T. Effect of intracerebroventricular administration of two molecular forms of sulfated CCK octapeptide on anxiety-like behavior in the zebrafish danio rerio. Peptides 2020; 130:170330. [PMID: 32445877 DOI: 10.1016/j.peptides.2020.170330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/26/2022]
Abstract
Cholecystokinin octapeptide with sulfate (CCK-8s) regulates feeding behavior and psychomotor activity. In rodents and goldfish, intracerebroventricular (ICV) injection of CCK-8s decreases food intake and also induces anxiety-like behavior. The zebrafish has several merits for investigating the psychophysiological roles of neuropeptides. However, little is known about the brain localization of CCK and the behavioral action of CCK-8s in this species. Here we investigated the brain localization of CCK-like immunoreactivity and found that it was distributed throughout the brain. As CCK-like immunoreactivity was particularly evident in the ventral habenular nucleus, the interpeduncular nucleus and superior raphe, we subsequently examined the effect of zebrafish (zf) CCK-8s on psychomotor control. Since the zebrafish possesses two molecular forms of zfCCK-8s (zfCCKA-8s and zfCCKB-8s), two synthetic peptides were administered intracerebroventricularly at 1, 5 and 10 pmol g-1 body weight (BW). As the zebrafish shows a greater preference for the lower area of a tank than for to the upper area, we used this preference for assessment of anxiety-like behavior. ICV administration of zfCCKA-8 s or zfCCKB-8s at 10 pmol g-1 BW significantly shortened the time spent in the upper area. The actions of these peptides mimicked that of the central-type benzodiazepine receptor inverse agonist FG-7142 (an anxiogenic agent) at 10 pmol g-1 BW. The anxiogenic-like action of the two peptides was attenuated by treatment with the CCK receptor antagonist proglumide at 200 pmol g-1 BW. These results indicate that zfCCKA-8s and zfCCKB-8s potently induce anxiety-like behavior via the CCK receptor-signaling pathway in the zebrafish brain.
Collapse
Affiliation(s)
- Kouhei Matsuda
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan; Laboratory of Regulatory Biology, Faculty of Science, Academic Assembly, University of Toyama, Toyama 930-8555, Japan; Laboratory of Regulatory Biology, Graduate School of Innovative Life Sciences, University of Toyama, Toyama 930-8555, Japan.
| | - Daisuke Yoshida
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Keisuke Watanabe
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Eri Yokobori
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Norifumi Konno
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan; Laboratory of Regulatory Biology, Faculty of Science, Academic Assembly, University of Toyama, Toyama 930-8555, Japan
| | - Tomoya Nakamachi
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan; Laboratory of Regulatory Biology, Faculty of Science, Academic Assembly, University of Toyama, Toyama 930-8555, Japan
| |
Collapse
|
12
|
Ishikawa S, Asano M, Sakai K, Takahashi H. Verification of the Effectiveness of an SNP Marker in the Cholecystokinin Type A Receptor Gene for Improving Growth Traits in Okumino-kojidori Chickens. J Poult Sci 2020; 57:107-113. [PMID: 32461725 PMCID: PMC7248005 DOI: 10.2141/jpsa.0190078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/10/2019] [Indexed: 11/21/2022] Open
Abstract
A significant association was reported between a single nucleotide polymorphism (SNP; AB604331, g.420 C>A) in the cholecystokinin type A receptor gene and growth traits in some Japanese slow-growing chickens. Demonstration tests of the genetic improvement effect by comparing the superior allele-A fixed chickens with conventional ones were carried out considering the effect of different seasons on growth traits in other slow-growing chickens. Meat-type Okumino-kojidori chickens from Gifu Prefecture are a three-way cross of Gifu-jidori improved, White Plymouth Rock, and Rhode Island Red breeds. We used a total of 468 meat-type Okumino-kojidori: 264 individuals from a private hatchery as conventional chickens and 204 A-allele fixed individuals from the Gifu Prefectural Livestock Research Institute as improved chickens. We performed fattening experiments over two seasons: summer and winter. In each season, experimental birds of both sexes were hatched on the same day, raised in the same chicken house, and fed the same diet ad libitum for 12 weeks. Body weight was recorded at 3, 6, 9, and 12 weeks of age. SNP genotypes were determined using the mismatch amplification mutation assay. Association between the SNP and growth traits was analyzed using generalized linear models built on sex-based, seasonal, additive, and dominance genetic effects. The observed AA, AC, and CC genotype frequencies in the conventional chickens were 0.158, 0.479, and 0.363, respectively; body weight at 12 weeks and average daily gain from 3 to 12 weeks was superior for the A allele compared to the C allele. The improved chickens were heavier than the conventional ones at 12 weeks. Body weight at 12 weeks in allele-A fixed chickens increased by 3.2% compared to the conventional chickens. We concluded that g.420 C>A is a good selective marker that increases slaughter weight in the meat-type Okumino-kojidori chickens.
Collapse
Affiliation(s)
- Sumiyo Ishikawa
- Seki Experiment Station, Department of Swine and Poultry Science, Gifu Prefectural Livestock Research Institute, Seki 501-3924, Japan
| | - Miho Asano
- Seki Experiment Station, Department of Swine and Poultry Science, Gifu Prefectural Livestock Research Institute, Seki 501-3924, Japan
| | - Kiyoshi Sakai
- Seki Experiment Station, Department of Swine and Poultry Science, Gifu Prefectural Livestock Research Institute, Seki 501-3924, Japan
| | - Hideaki Takahashi
- Institute of Livestock and Grassland Science, NARO, Tsukuba 305-0901, Japan
| |
Collapse
|
13
|
Blockade of the cholecystokinin CCK-2 receptor prevents the normalization of anxiety levels in the rat. Prog Neuropsychopharmacol Biol Psychiatry 2020; 96:109761. [PMID: 31526831 PMCID: PMC6935156 DOI: 10.1016/j.pnpbp.2019.109761] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/28/2019] [Accepted: 09/13/2019] [Indexed: 01/06/2023]
Abstract
Cholecystokinin (CCK), through the CCK-2 receptor, exerts complex effects on anxiety. While CCK agonists are panicogenic, CCK-2 antagonists fail to alleviate human anxiety. Preclinical studies with CCK-2 antagonists are also inconsistent because their anxiolytic effects largely depend on the behavioral paradigm and antecedent stress. The controversy might be accounted by the neuromodulatory role for CCK in anxiety which is ill-defined. If this is its actual role, blocking CCK-2 will have carry-over effects on the anxiety baseline over time. To test this hypothesis, the consequences of acute administration of the CCK-2 antagonist Ly225.910 (0.1 mg Kg-1) was evaluated in the temporal expression of aversion toward exploration-conflicting tasks. Ly225.910 effects were evaluated in rats exposed to the elevated plus-maze (EPM) twice, an approach-avoidance anxiety-like test. While LY225.910-treated rats had less anxiety than vehicle-treated rats, the difference was reversed during the EPM retest 24 h later without drug. Moreover, Ly225.910 effects in stress-induced cognitive impairment was measured giving the novel-object discrimination (NOD) test to rats not habituated to the exploration apparatus to elicit neophobia. After a first encounter with objects ("old"), Ly225.910-treated rats did not recognize the "novel" object introduced 6 h later. Ly225.910-exposed rats did not discriminate the new location of the "novel object" when it was repositioned in the arena 24 h later. Ly225.910-treated rats also failed to explore objects. In line with its neuromodulatory role, aversive carry-over effects of Ly225.910 suggest that CCK-2 activation by endogenous CCK, rather than triggering anxiety, may return the anxiety state to its normal level.
Collapse
|
14
|
Is a Single Nucleotide Polymorphism Marker in the Cholecystokinin A Receptor Gene Practically Suitable for Improving the Growth Traits of Hinai-jidori Chickens? J Poult Sci 2020; 57:99-106. [PMID: 32461724 PMCID: PMC7248008 DOI: 10.2141/jpsa.0190041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We have previously reported a significant association between the single-nucleotide polymorphism (SNP; g.420 C>A) in the cholecystokinin type A receptor gene (CCKAR) and the growth traits of Hinai-dori, a breed of chicken that is indigenous to Japan. Moreover, we have demonstrated that the minor allele of this SNP improved the growth rate in a low-growth line of the Hinai-dori breed. Hence, in the present study, we verified the association between this SNP and the growth traits of the Hinai-jidori chicken: a cross between a Hinai-dori sire and Rhode Island Red dam. In addition, we verified whether the growth rate was improved in Hinai-jidori chickens produced from the parent stocks in which the SNP A/A genotype was fixed by selection (improved Hinai-jidori chickens). The Hinai-jidori female chicks at 4 weeks of age, were subdivided into three genotypic groups (A/A, A/C, and C/C), with 20 chicks in each group, and reared in an open-sided poultry shed until 23 weeks of age. The results showed that the body weight at 23 weeks of age and the average daily gain after 14 weeks of age were significantly higher in group A/A than in group C/C. Subsequently, the improved and the conventional Hinai-jidori chickens were reared until they reached 22 weeks of age to verify the effects on their growth traits. The body weight of the improved Hinai-jidori chickens at 22 weeks was significantly greater than the conventional Hinai-jidori chickens. Moreover, the association between the SNP and body weights of Hinai-jidori chickens at market age (24 weeks) on the production farms showed that the A allele was significantly superior to the C allele. In conclusion, the CCKAR g.420 C>A SNP improves the growth rate of commercial Hinai-jidori chickens and could be a candidate marker for improving the growth performance in selective breeding of Hinai-jidori chickens.
Collapse
|
15
|
Zeng Q, Ou L, Wang W, Guo DY. Gastrin, Cholecystokinin, Signaling, and Biological Activities in Cellular Processes. Front Endocrinol (Lausanne) 2020; 11:112. [PMID: 32210918 PMCID: PMC7067705 DOI: 10.3389/fendo.2020.00112] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 02/20/2020] [Indexed: 12/24/2022] Open
Abstract
The structurally-related peptides, gastrin and cholecystokinin (CCK), were originally discovered as humoral stimulants of gastric acid secretion and pancreatic enzyme release, respectively. With the aid of methodological advances in biochemistry, immunochemistry, and molecular biology in the past several decades, our concept of gastrin and CCK as simple gastrointestinal hormones has changed considerably. Extensive in vitro and in vivo studies have shown that gastrin and CCK play important roles in several cellular processes including maintenance of gastric mucosa and pancreatic islet integrity, neurogenesis, and neoplastic transformation. Indeed, gastrin and CCK, as well as their receptors, are expressed in a variety of tumor cell lines, animal models, and human samples, and might contribute to certain carcinogenesis. In this review, we will briefly introduce the gastrin and CCK system and highlight the effects of gastrin and CCK in the regulation of cell proliferation and apoptosis in both normal and abnormal conditions. The potential imaging and therapeutic use of these peptides and their derivatives are also summarized.
Collapse
Affiliation(s)
- Qiang Zeng
- Health Management Institute, People's Liberation Army General Hospital, Beijing, China
| | - Lei Ou
- Health Management Institute, People's Liberation Army General Hospital, Beijing, China
| | - Wei Wang
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen, China
- *Correspondence: Wei Wang
| | - Dong-Yu Guo
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen, China
- Dong-Yu Guo
| |
Collapse
|
16
|
English A, Irwin N. Nonclassical Islet Peptides: Pancreatic and Extrapancreatic Actions. CLINICAL MEDICINE INSIGHTS-ENDOCRINOLOGY AND DIABETES 2019; 12:1179551419888871. [PMID: 32425629 PMCID: PMC7216561 DOI: 10.1177/1179551419888871] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 10/21/2019] [Indexed: 02/06/2023]
Abstract
The pancreas has physiologically important endocrine and exocrine functions; secreting enzymes into the small intestine to aid digestion and releasing multiple peptide hormones via the islets of Langerhans to regulate glucose metabolism, respectively. Insulin and glucagon, in combination with ghrelin, pancreatic polypeptide and somatostatin, are the main classical islet peptides critical for the maintenance of blood glucose. However, pancreatic islets also synthesis numerous ‘nonclassical’ peptides that have recently been demonstrated to exert fundamental effects on overall islet function and metabolism. As such, insights into the physiological relevance of these nonclassical peptides have shown impact on glucose metabolism, insulin action, cell survival, weight loss, and energy expenditure. This review will focus on the role of individual nonclassical islet peptides to stimulate pancreatic islet secretions as well as regulate metabolism. In addition, the more recognised actions of these peptides on satiety and energy regulation will also be considered. Furthermore, recent advances in the field of peptide therapeutics and obesity-diabetes have focused on the benefits of simultaneously targeting several hormone receptor signalling cascades. The potential for nonclassical islet hormones within such combinational approaches will also be discussed.
Collapse
Affiliation(s)
- Andrew English
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Nigel Irwin
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| |
Collapse
|
17
|
Horinouchi S, Nakayama H, Takahashi H. Effect of a Single Nucleotide Polymorphism in the Cholecystokinin Type A Receptor Gene on Growth Traits of the Miyazaki Jitokko Chicken. J Poult Sci 2019; 56:96-100. [PMID: 32055203 PMCID: PMC7005405 DOI: 10.2141/jpsa.0180077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 08/27/2018] [Indexed: 11/23/2022] Open
Abstract
The Miyazaki Jitokko chicken, native to the Miyazaki Prefecture in southern Kyushu Island, Japan, is the product of a three-way cross involving the Jitokko, White Plymouth Rock, and Kyushu Rhode breeds. In the present study, associations between a single nucleotide polymorphism (SNP; AB604331, g.420 C>A) of the chicken cholecystokinin type A receptor gene and growth traits in Miyazaki Jitokko chickens were investigated. Unrelated male birds (n=120) that had hatched on the same day were raised in the same chicken house and fed the same diet ad libitum from day 0 to 17 weeks of age. Body weight was recorded at 0, 1, 2, 3, 4, 5, 7, 9, 11, 13, 15, and 17 weeks and the average daily gain of each interval was calculated from the body weight data. SNP genotyping of each bird was performed using the mismatch amplification mutation assay. The associations between the SNP and growth traits were examined using the Thesias program. The genotype frequencies of AA, AC, and CC were 0.525, 0.383, and 0.092, respectively. AA birds were significantly heavier than CC birds from 4 to 17 weeks of age. In the estimated effect of alleles, body weight from 1 to 17 weeks of age in birds with the A allele was greater than that in birds with the C allele. During the rearing period, the effect of the A allele on average daily gain in the first half was greater than that in the second half. We conclude that the g.420 C>A SNP can be used as a selection marker for the parent stock lines of the Miyazaki Jitokko chickens to increase their growth performance.
Collapse
Affiliation(s)
- Shojiroh Horinouchi
- Kawaminami Branch, Miyazaki Prefectural Livestock Research Institute, Kawaminami Town 889-1301, Japan
| | - Hiromi Nakayama
- Kawaminami Branch, Miyazaki Prefectural Livestock Research Institute, Kawaminami Town 889-1301, Japan
| | - Hideaki Takahashi
- Institute of Livestock and Grassland Science, NARO, Tsukuba 305-0901, Japan
| |
Collapse
|
18
|
Iinuma N, Shibata H, Yoshida D, Konno N, Nakamachi T, Matsuda K. Intracerebroventricular administration of sulphated cholecystokinin octapeptide induces anxiety-like behaviour in goldfish. J Neuroendocrinol 2019; 31:e12667. [PMID: 30521069 DOI: 10.1111/jne.12667] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/23/2018] [Accepted: 11/28/2018] [Indexed: 12/01/2022]
Abstract
Sulphated cholecystokinin octapeptide (CCK-8s) is involved in feeding regulation as an anorexigenic neuropeptide in vertebrates. In rodents, i.c.v. administration of CCK-8s has been shown to affect not only feeding behaviour, but also psychomotor activity. However, there is still no information available concerning the psychophysiological effects of CCK-8s in goldfish. Therefore, in the present study, we examined the effect of synthetic goldfish (gf) CCK-8s on psychomotor activity in this species. Intracerebroventricular administration of gfCCK-8s at 0.1, 0.5 and 2.5 pmol g-1 body weight (BW) did not affect swimming distance (locomotor activity). Because goldfish prefer the lower to the upper area of a tank, we used this as a preference test (upper/lower test) to assess anxiety-like behaviour. Intracerebroventricular administration of gfCCK-8s at 2.5 pmol g-1 BW shortened the time spent in the upper area. The action of gfCCK-8s mimicked that of FG-7142 (the central-type benzodiazepine receptor inverse agonist, an anxiogenic agent) at 5 and 10 pmol g-1 BW. The anxiogenic-like effect of gfCCK-8s was abolished by treatment with the CCK receptor antagonist proglumide at 50 pmol g-1 BW. We also investigated the localisation of CCK/gastrin-like immunoreactivity in the goldfish brain. CCK/gastrin-like immunoreactivity was observed in the anxiety-related regions (the nucleus habenularis and the interpeduncular nucleus). These data indicate that gfCCK-8s potently affects psychomotor activity in goldfish, and exerts an anxiogenic-like effect via the CCK receptor-signalling pathway.
Collapse
Affiliation(s)
- Naoto Iinuma
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Haruki Shibata
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Daisuke Yoshida
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Norifumi Konno
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Tomoya Nakamachi
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Kouhei Matsuda
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
- Laboratory of Regulatory Biology, Graduate School of Innovative Life Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
19
|
The A Allele of the Cholecystokinin Type A Receptor Gene g.420 C > A Polymorphism Improves Growth Traits in Amakusa Daioh Cross Chicken. J Poult Sci 2019; 56:91-95. [PMID: 32055202 PMCID: PMC7005401 DOI: 10.2141/jpsa.0180065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Amakusa Daioh cross chickens are F1 hybrids of restored Amakusa Daioh sires and Kyushu Rhode dams. In the present study, the association between a single nucleotide polymorphism (SNP; AB604331, g.420 C>A) in the cholecystokinin type A receptor gene and growth traits in Amakusa Daioh cross chicken were investigated. We used 72 male and 72 female birds that had hatched on the same day, were raised in the same chicken house, and were fed the same diet ad libitum from day 0 to 17 weeks (wks) of age. Body weight was recorded at weekly intervals and average daily gain of each week interval was calculated from body weight data. Birds were sacrificed at 17 wks and carcass traits were recorded. SNP genotyping was carried out using the mismatch amplification mutation assay. Associations between the SNP and growth traits were analyzed by a generalized linear model. Body weight from 6 to 17 wks was higher in birds with the A allele than in birds with the C allele, although significant differences in average daily gain traits between birds with A and C alleles were not detected during most of the duration of the experiment. Carcass data showed that birds with the A allele had heavier wings and a smaller proportion of the gizzard than those with the C allele. The g.420 C>A SNP will be useful as a selection marker for parent stock lines to increase the growth performance of Amakusa Daioh cross chickens.
Collapse
|
20
|
Vázquez-León P, Campos-Rodríguez C, Gonzalez-Pliego C, Miranda-Páez A. Differential effects of cholecystokinin (CCK-8) microinjection into the ventrolateral and dorsolateral periaqueductal gray on anxiety models in Wistar rats. Horm Behav 2018; 106:105-111. [PMID: 30342011 DOI: 10.1016/j.yhbeh.2018.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 09/28/2018] [Accepted: 10/03/2018] [Indexed: 01/27/2023]
Abstract
Cholecystokinin (CCK) is one of the main neurohormone peptide systems in the brain, and a major anxiogenic mediator. The periaqueductal gray (PAG) is a key midbrain structure for defensive behaviors, which could include anxiety, fear, or even panic. The CCK system has wide distribution in the PAG, where the dorsolateral region (DL) participates in active defensive behavior and the ventrolateral region (VL) in passive defensive behavior. The aim of this study was to assess the effect of CCK-8 microinjection into DL-PAG or VL-PAG on anxiety-like behavior through two tests: elevated plus maze (EPM) and defensive burying behavior (DBB). CCK-8 (0.5 and 1.0 μg/0.5 μL) presently microinjected into the DL-PAG produced an anxiogenic-like effect on the EPM evidenced by decreasing the time spent/number of entries in open arms compared to vehicle group. Additionally, the latency to burying decreased and burying time increased on the DBB test. Contrarily, CCK-8 microinjected into the VL-PAG resulted in greater open-arm time and more open-arm entries compared to the vehicle-microinjected group. The results on the DBB test confirmed an anxiolytic-like response of CCK-8 into the VL-PAG. In conclusion, CCK-8 microinjected into DL-PAG produced anxiety-like behavior on EPM, and for first time reported on DBB. Contrarily, CCK-8 microinjected into the VL-PAG reduced anxiety-like behavior also for first time reported using both behavioral models EPM and DBB.
Collapse
Affiliation(s)
- Priscila Vázquez-León
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico
| | - Carolina Campos-Rodríguez
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico
| | - Carlos Gonzalez-Pliego
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico
| | - Abraham Miranda-Páez
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico.
| |
Collapse
|
21
|
Yoshida R, Shin M, Yasumatsu K, Takai S, Inoue M, Shigemura N, Takiguchi S, Nakamura S, Ninomiya Y. The Role of Cholecystokinin in Peripheral Taste Signaling in Mice. Front Physiol 2017; 8:866. [PMID: 29163209 PMCID: PMC5671461 DOI: 10.3389/fphys.2017.00866] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/16/2017] [Indexed: 11/13/2022] Open
Abstract
Cholecystokinin (CCK) is a gut hormone released from enteroendocrine cells. CCK functions as an anorexigenic factor by acting on CCK receptors expressed on the vagal afferent nerve and hypothalamus with a synergistic interaction between leptin. In the gut, tastants such as amino acids and bitter compounds stimulate CCK release from enteroendocrine cells via activation of taste transduction pathways. CCK is also expressed in taste buds, suggesting potential roles of CCK in taste signaling in the peripheral taste organ. In the present study, we focused on the function of CCK in the initial responses to taste stimulation. CCK was coexpressed with type II taste cell markers such as Gα-gustducin, phospholipase Cβ2, and transient receptor potential channel M5. Furthermore, a small subset (~30%) of CCK-expressing taste cells expressed a sweet/umami taste receptor component, taste receptor type 1 member 3, in taste buds. Because type II taste cells are sweet, umami or bitter taste cells, the majority of CCK-expressing taste cells may be bitter taste cells. CCK-A and -B receptors were expressed in both taste cells and gustatory neurons. CCK receptor knockout mice showed reduced neural responses to bitter compounds compared with wild-type mice. Consistently, intravenous injection of CCK-Ar antagonist lorglumide selectively suppressed gustatory nerve responses to bitter compounds. Intravenous injection of CCK-8 transiently increased gustatory nerve activities in a dose-dependent manner whereas administration of CCK-8 did not affect activities of bitter-sensitive taste cells. Collectively, CCK may be a functionally important neurotransmitter or neuromodulator to activate bitter nerve fibers in peripheral taste tissues.
Collapse
Affiliation(s)
- Ryusuke Yoshida
- Section of Oral Neuroscience, Graduate School of Dental Sciences, Kyushu University, Fukuoka, Japan.,OBT Research Center, Graduate School of Dental Sciences, Kyushu University, Fukuoka, Japan
| | - Misa Shin
- Section of Oral Neuroscience, Graduate School of Dental Sciences, Kyushu University, Fukuoka, Japan.,Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Keiko Yasumatsu
- Section of Oral Neuroscience, Graduate School of Dental Sciences, Kyushu University, Fukuoka, Japan.,Division of Sensory Physiology, Research and Development Center for Taste and Odor Sensing, Kyushu University, Fukuoka, Japan
| | - Shingo Takai
- Section of Oral Neuroscience, Graduate School of Dental Sciences, Kyushu University, Fukuoka, Japan
| | - Mayuko Inoue
- OBT Research Center, Graduate School of Dental Sciences, Kyushu University, Fukuoka, Japan.,Division of Sensory Physiology, Research and Development Center for Taste and Odor Sensing, Kyushu University, Fukuoka, Japan
| | - Noriatsu Shigemura
- Section of Oral Neuroscience, Graduate School of Dental Sciences, Kyushu University, Fukuoka, Japan
| | - Soichi Takiguchi
- National Kyushu Cancer Center, Institute for Clinical Research, Fukuoka, Japan
| | - Seiji Nakamura
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yuzo Ninomiya
- Section of Oral Neuroscience, Graduate School of Dental Sciences, Kyushu University, Fukuoka, Japan.,Division of Sensory Physiology, Research and Development Center for Taste and Odor Sensing, Kyushu University, Fukuoka, Japan.,Monell Chemical Senses Center, Philadelphia, PA, United States
| |
Collapse
|
22
|
Romański KW. Importance of the enteric nervous system in the control of the migrating motility complex. Physiol Int 2017; 104:97-129. [PMID: 28665193 DOI: 10.1556/2060.104.2017.2.4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The migrating motility complex (MMC), a cyclical phenomenon, represents rudimentary motility pattern in the gastrointestinal tract. The MMC is observed mostly in the stomach and gut of man and numerous animal species. It contains three or four phases, while its phase III is the most characteristic. The mechanisms controlling the pattern are unclear in part, although the neural control of the MMC seems crucial. The main goal of this article was to discuss the importance of intrinsic innervation of the gastrointestinal tract in MMC initiation, migration, and cessation to emphasize that various MMC-controlling mechanisms act through the enteric nervous system. Two main neural regions, central and peripheral, are able to initiate the MMC. However, central regulation of the MMC may require cooperation with the enteric nervous system. When central mechanisms are not active, the MMC can be initiated peripherally in any region of the small bowel. The enteric nervous system affects the MMC in response to the luminal stimuli which can contribute to the initiation and cessation of the cycle, and it may evoke irregular phasic contractions within the pattern. The hormonal regulators released from the endocrine cells may exert a modulatory effect upon the MMC mostly through the enteric nervous system. Their central action could also be considered. It can be concluded that the enteric nervous system is involved in the great majority of the MMC-controlling mechanisms.
Collapse
Affiliation(s)
- K W Romański
- 1 Department of Animal Physiology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences , Wrocław, Poland
| |
Collapse
|
23
|
Ballaz S. The unappreciated roles of the cholecystokinin receptor CCK(1) in brain functioning. Rev Neurosci 2017; 28:573-585. [DOI: 10.1515/revneuro-2016-0088] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/05/2017] [Indexed: 12/13/2022]
Abstract
AbstractThe CCK(1) receptor is a G-protein-coupled receptor activated by the sulfated forms of cholecystokinin (CCK), a gastrin-like peptide released in the gastrointestinal tract and mammal brain. A substantial body of research supports the hypothesis that CCK(1)r stimulates gallbladder contraction and pancreatic secretion in the gut, as well as satiety in brain. However, this receptor may also fulfill relevant roles in behavior, thanks to its widespread distribution in the brain. The strategic location of CCK(1)r in mesolimbic structures and specific hypothalamic and brainstem nuclei lead to complex interactions with neurotransmitters like dopamine, serotonin, and glutamate, as well as hypothalamic hormones and neuropeptides. The activity of CCK(1)r maintains adequate levels of dopamine and regulates the activity of serotonin neurons of raphe nuclei, which makes CCK(1)r an interesting therapeutic target for the development of adjuvant treatments for schizophrenia, drug addiction, and mood disorders. Unexplored functions of CCK(1)r, like the transmission of interoceptive sensitivity in addition to the regulation of hypothalamic hormones and neurotransmitters affecting emotional states, well-being, and attachment behaviors, may open exciting roads of research. The absence of specific ligands for the CCK(1) receptor has complicated the study of its distribution in brain so that research about its impact on behavior has been published sporadically over the last 30 years. The present review reunites all this body of evidence in a comprehensive way to summarize our knowledge about the actual role of CCK in the neurobiology of mental illness.
Collapse
Affiliation(s)
- Santiago Ballaz
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San Jose y Proyecto Yachay s/n, San Miguel de Urcuquí 100119, Ecuador
| |
Collapse
|
24
|
Bi S, Moran TH. Obesity in the Otsuka Long Evans Tokushima Fatty Rat: Mechanisms and Discoveries. Front Nutr 2016; 3:21. [PMID: 27512691 PMCID: PMC4961687 DOI: 10.3389/fnut.2016.00021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/01/2016] [Indexed: 12/27/2022] Open
Abstract
Understanding the neural systems underlying the controls of energy balance has been greatly advanced by identifying the deficits and underlying mechanisms in rodent obesity models. The current review focuses on the Otsuka Long Evans Tokushima Fatty (OLETF) rat obesity model. Since its recognition in the 1990s, significant progress has been made in identifying the causes and consequences of obesity in this model. Fundamental is a deficit in the cholecystokinin (CCK)-1 receptor gene resulting in the absence of CCK-1 receptors in both the gastrointestinal track and the brain. OLETF rats have a deficit in their ability to limit the size of meals and in contrast to CCK-1 receptor knockout mice, do not compensate for this increase in the size of their spontaneous meals, resulting in hyperphagia. Prior to becoming obese and in response to pair feeding, OLETF rats have increased expression of neuropeptide Y (NPY) in the compact region of the dorsomedial hypothalamus (DMH), and this overexpression contributes to their overall hyperphagia. Study of the OLETF rats has revealed important differences in the organization of the DMH in rats and mice and elucidated previously unappreciated roles for DMH NPY in energy balance and glucose homeostasis.
Collapse
Affiliation(s)
- Sheng Bi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| | - Timothy H Moran
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Global Obesity Prevention Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
25
|
Kue CS, Kamkaew A, Burgess K, Kiew LV, Chung LY, Lee HB. Small Molecules for Active Targeting in Cancer. Med Res Rev 2016; 36:494-575. [PMID: 26992114 DOI: 10.1002/med.21387] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 12/29/2022]
Abstract
For the purpose of this review, active targeting in cancer research encompasses strategies wherein a ligand for a cell surface receptor expressed on tumor cells is used to deliver a cytotoxic or imaging cargo. This area of research is more than two decades old, but in those 20 and more years, how many receptors have been studied extensively? What kinds of the ligands are used for active targeting? Are they mostly naturally occurring molecules such as folic acid, or synthetic substances developed in campaigns for medicinal chemistry efforts? This review outlines the most important receptor or ligand combinations that have been used in active targeting to answer these questions, and therefore to address the most important one of all: is research in active targeting affording diminishing returns, or is this an area for which the potential far exceeds progress made so far?
Collapse
Affiliation(s)
- Chin S Kue
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Anyanee Kamkaew
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX, 77842
| | - Kevin Burgess
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX, 77842
| | - Lik V Kiew
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Lip Y Chung
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Hong B Lee
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
26
|
Bhattacharya R, Francis MM. In the proper context: Neuropeptide regulation of behavioral transitions during food searching. WORM 2015; 4:e1062971. [PMID: 26430569 PMCID: PMC4588156 DOI: 10.1080/21624054.2015.1062971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 05/27/2015] [Accepted: 06/11/2015] [Indexed: 12/22/2022]
Abstract
Neuromodulation enables transient restructuring of anatomically fixed neural circuits, generating alternate outputs and distinct states that allow for flexible organismal responses to changing conditions. We recently identified a requirement for the neuropeptide-like protein NLP-12, a Caenorhabditis elegans homolog of mammalian Cholecystokinin (CCK), in the control of behavioral responses to altered food availability. We showed that deletion of nlp-12 impairs turning during local food searching while nlp-12 overexpression is sufficient to induce deep body bends and enhance turning. nlp-12 is solely expressed in the DVA interneuron that is located postsynaptic to the dopaminergic PDE neurons and presynaptic to premotor and motor neurons, well-positioned for modulating sensorimotor tasks. Interestingly, DVA was previously implicated in a NLP-12 mediated proprioceptive feedback loop during C. elegans locomotion. Here, we discuss the modulatory effects of NLP-12 with an emphasis on the potential for circuit level integration with olfactory information about food availability. In addition, we propose potential mechanisms by which DVA may integrate distinct forms of sensory information to regulate NLP-12 signaling and mediate context-dependent modulation of the motor circuit.
Collapse
Affiliation(s)
- Raja Bhattacharya
- Department of Neurobiology; University of Massachusetts Medical School ; Worcester, MA USA
| | - Michael M Francis
- Department of Neurobiology; University of Massachusetts Medical School ; Worcester, MA USA
| |
Collapse
|
27
|
Moody TW, Nuche-Berenguer B, Moreno P, Jensen RT. CI-988 Inhibits EGFR Transactivation and Proliferation Caused by Addition of CCK/Gastrin to Lung Cancer Cells. J Mol Neurosci 2015; 56:663-72. [PMID: 25761747 DOI: 10.1007/s12031-015-0533-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/19/2015] [Indexed: 02/06/2023]
Abstract
Cholecystokinin (CCK) receptors are G-protein coupled receptors (GPCR) which are present on lung cancer cells. CCK-8 stimulates the proliferation of lung cancer cells, whereas the CCK2R receptor antagonist CI-988 inhibits proliferation. GPCR for some gastrointestinal hormones/neurotransmitters mediate lung cancer growth by causing epidermal growth factor receptor (EGFR) transactivation. Here, the role of CCK/gastrin and CI-988 on EGFR transactivation and lung cancer proliferation was investigated. Addition of CCK-8 or gastrin-17 (100 nM) to NCI-H727 human lung cancer cells increased EGFR Tyr(1068) phosphorylation after 2 min. The ability of CCK-8 to cause EGFR tyrosine phosphorylation was blocked by CI-988, gefitinib (EGFR tyrosine kinase inhibitor), PP2 (Src inhibitor), GM6001 (matrix metalloprotease inhibitor), and tiron (superoxide scavenger). CCK-8 nonsulfated and gastrin-17 caused EGFR transactivation and bound with high affinity to NCI-H727 cells, suggesting that the CCK2R is present. CI-988 inhibited the ability of CCK-8 to cause ERK phosphorylation and elevate cytosolic Ca(2+). CI-988 or gefitinib inhibited the basal growth of NCI-H727 cells or that stimulated by CCK-8. The results indicate that CCK/gastrin may increase lung cancer proliferation in an EGFR-dependent manner.
Collapse
Affiliation(s)
- Terry W Moody
- Department of Health and Human Services, National Cancer Institute, Center for Cancer Research, Office of the Director, 9609 Medical Center Drive, Room 2 W-130, Bethesda, MD, 20892, USA,
| | | | | | | |
Collapse
|
28
|
Abstract
The landmark discovery by Bayliss and Starling in 1902 of the first hormone, secretin, emerged from earlier observations that a response (pancreatic secretion) following a stimulus (intestinal acidification) occurred after section of the relevant afferent nerve pathway. Nearly 80 years elapsed before it became clear that visceral afferent neurons could themselves also be targets for gut and other hormones. The action of gut hormones on vagal afferent neurons is now recognised to be an early step in controlling nutrient delivery to the intestine by regulating food intake and gastric emptying. Interest in these mechanisms has grown rapidly in view of the alarming global increase in obesity. Several of the gut hormones (cholecystokinin (CCK); peptide YY3-36 (PYY3-36); glucagon-like peptide-1 (GLP-1)) excite vagal afferent neurons to activate an ascending pathway leading to inhibition of food intake. Conversely others, e.g. ghrelin, that are released in the inter-digestive period, inhibit vagal afferent neurons leading to increased food intake. Nutrient status determines the neurochemical phenotype of vagal afferent neurons by regulating a switch between states that promote orexigenic or anorexigenic signalling through mechanisms mediated, at least partly, by CCK. Gut-brain signalling is also influenced by leptin, by gut inflammation and by shifts in the gut microbiota including those that occur in obesity. Moreover, there is emerging evidence that diet-induced obesity locks the phenotype of vagal afferent neurons in a state similar to that normally occurring during fasting. Vagal afferent neurons are therefore early integrators of peripheral signals underling homeostatic mechanisms controlling nutrient intake. They may also provide new targets in developing treatments for obesity and feeding disorders.
Collapse
Affiliation(s)
- Graham J Dockray
- Department of Cell and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St, Liverpool, L69 3BX, UK
| |
Collapse
|
29
|
Roy P, Jakate AS, Patel A, Abramowitz W, Wangsa J, Persiani S, Kapil R. Effect of Multiple-Dose Dexloxiglumide on the Pharmacokinetics of Oral Contraceptives in Healthy Women. J Clin Pharmacol 2013; 45:329-36. [PMID: 15703367 DOI: 10.1177/0091270004272732] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This study was undertaken to evaluate the effect of dexloxiglumide, a selective cholecystokinin receptor antagonist, on the pharmacokinetics of a combination oral contraceptive (OC). A single-blind, placebo-controlled, 2-period crossover study was conducted in 24 healthy young female subjects who received Ortho Tri-Cyclen containing ethinyl estradiol (EE, 0.035 mg) and norgestimate (NE, 0.180 mg/0.215 mg/0.250 mg per 7-day phase, respectively) for 5 days (days 17-21) concurrently with either 200 mg dexloxiglumide (3 times a day on days 17-20, followed by a single dose on day 21) or matching placebo during 2 consecutive 28-day OC dosing cycles. Plasma was sampled up to 24 hours for the determination of EE, NE, and 17-deactyl norgestimate (17-DNE, a rapidly formed pharmacologically active metabolite of NE). The geometric mean ratios (GMRs, dexloxiglumide/placebo) of the plasma concentration-time curve over 24 hours with corresponding 90% confidence intervals (CIs) for EE and 17-DNE were 1.21 (1.17-1.26) and 0.92 (0.89-0.95), respectively. The GMRs (90% CI) of C(max) for EE and 17-DNE were 1.15 (1.09-1.20) and 0.93 (0.90-0.96), respectively. Coadministration of OC and dexloxiglumide was well tolerated and safe. Comparable systemic exposure of EE and 17-DNE in the presence and absence of dexloxiglumide suggests that dexloxiglumide treatment is unlikely to interfere with the safety and efficacy of oral contraceptives based on the analysis of the resulting pharmacokinetic profile.
Collapse
Affiliation(s)
- Partha Roy
- Department of Clinical Pharmacology and Drug Dynamics, Forest Research Institute, Harborside Financial Center, Plaza V, Jersey City, NJ 07311, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Alén F, Ramírez-López MT, Gómez de Heras R, Rodríguez de Fonseca F, Orio L. Cannabinoid Receptors and Cholecystokinin in Feeding Inhibition. ANOREXIA 2013; 92:165-96. [DOI: 10.1016/b978-0-12-410473-0.00007-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
31
|
Effect of a Single-Nucleotide Polymorphism in the Cholecystokinin Type A Receptor Gene on Growth Traits in the Hinai-dori Chicken Breed. J Poult Sci 2013. [DOI: 10.2141/jpsa.0120130] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
32
|
The Role of Cholecystokinin Receptors in the Short-Term Control of Food Intake. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 114:277-316. [DOI: 10.1016/b978-0-12-386933-3.00008-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
33
|
Modulation of acetylcholine release by cholecystokinin in striatum: receptor specificity; role of dopaminergic neuronal activity. Brain Res Bull 2012; 89:177-84. [PMID: 22981453 DOI: 10.1016/j.brainresbull.2012.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 08/29/2012] [Indexed: 11/20/2022]
Abstract
Cholecystokinin, a neuroactive peptide functioning as a neurotransmitter and neuromodulator in the central nervous system, mediates a number of processes and is implicated in neurological and psychiatric disorders such as Parkinson's disease, anxiety and schizophrenia. Striatum is one of the brain structures with the highest concentrations of CCK in the brain, rich in CCK receptors as well. The physiological effect of CCK on cholinergic interneurons, which are the major interneurons in striatum and the modulatory interactions which exist between dopamine, acetylcholine and cholecystokinin in this brain structure are still unclear. We studied the effect of cholecystokinin octapeptide (CCK-8) on the release of acetylcholine (ACh) from striatal slices of the rat brain. CCK-8 (0.01-0.1μM) showed no statistically significant effect on the basal but enhanced dose-dependently the electrically (2Hz)-evoked release of [(3)H]ACh. When slices were preperfused with 100μM sulpiride, a selective dopamine D(2) receptor antagonist, the CCK-8 (0.01μM) effect on electrically stimulated ACh release was increased nearly 2-fold. A similar increase was observed after depletion of endogenous dopamine (DA) from nigro-striatal dopaminergic neurons with 6-hydroxydopamine (6-OHDA) (2× 250μg/animal, i.c.v.). Furthermore in the presence of dopamine (100μM) or apomorphine (10μM), the prototypical DA receptor agonist, CCK-8 (0.01μM) failed to enhance the stimulation-evoked release of [(3)H]ACh. The D(2) receptor agonist quinpirol (1μM) abolished the CCK-8 effect on electrically stimulated ACh release as well. The increase in electrically induced [(3)H]ACh release produced by 0.01μM CCK-8 was antagonized by d,l loxiglumide (CR 1505), 10μM, a non-peptide CCK-A receptor antagonist and by Suc-Tyr-(OSO3)-Met-Gly-Trp-Met-Asp-β-phenethyl-amide (GE-410), 1μM, a peptide CCK-A receptor antagonist. The antagonistic effect of GE-410 on the CCK-8-potentiated, electrically induced release of [(3)H]ACh was studied in striatum for the first time. CAM 1028 (10μM), a CCK-B receptor antagonist, also prevented the potentiating effect of CCK-8 (0.01μM) on electrically stimulated release of [(3)H]ACh. The presented results indicate that (i) CCK-8 is capable of increasing ACh elicited by field electrical stimulation in striatum; (ii) CCK-8 is more effective in its ACh-stimulating effect when dopaminergic activity in striatum is blocked i.e. CCK-8-facilitated release of electrically induced ACh from cholinergic interneurons in the striatum is under the inhibitory control of the tonic activity of dopamine from the nigrostriatal pathway; (iii) the enhancing effect of CCK-8 on electrically evoked ACh release is mediated through both CCK-A and CCK-B cholecystokinin receptors located most likely on the cell bodies of cholinergic interneurons in striatum.
Collapse
|
34
|
COMMUNICATION. Br J Pharmacol 2012. [DOI: 10.1111/j.1476-5381.1987.tb16603.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
35
|
Laverman P, Sosabowski JK, Boerman OC, Oyen WJG. Radiolabelled peptides for oncological diagnosis. Eur J Nucl Med Mol Imaging 2012; 39 Suppl 1:S78-92. [PMID: 22388627 PMCID: PMC3304069 DOI: 10.1007/s00259-011-2014-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Radiolabelled receptor-binding peptides targeting receptors (over)expressed on tumour cells are widely under investigation for tumour diagnosis and therapy. The concept of using radiolabelled receptor-binding peptides to target receptor-expressing tissues in vivo has stimulated a large body of research in nuclear medicine. The 111In-labelled somatostatin analogue octreotide (OctreoScan™) is the most successful radiopeptide for tumour imaging, and was the first to be approved for diagnostic use. Based on the success of these studies, other receptor-targeting peptides such as cholecystokinin/gastrin analogues, glucagon-like peptide-1, bombesin (BN), chemokine receptor CXCR4 targeting peptides, and RGD peptides are currently under development or undergoing clinical trials. In this review, we discuss some of these peptides and their analogues, with regard to their potential for radionuclide imaging of tumours.
Collapse
Affiliation(s)
- Peter Laverman
- Department of Nuclear Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
36
|
Boyce M, David O, Darwin K, Mitchell T, Johnston A, Warrington S. Single oral doses of netazepide (YF476), a gastrin receptor antagonist, cause dose-dependent, sustained increases in gastric pH compared with placebo and ranitidine in healthy subjects. Aliment Pharmacol Ther 2012; 36:181-9. [PMID: 22607579 DOI: 10.1111/j.1365-2036.2012.05143.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 03/26/2012] [Accepted: 05/01/2012] [Indexed: 12/17/2022]
Abstract
BACKGROUND Nonclinical studies have shown netazepide (YF476) to be a potent, selective, competitive and orally active gastrin receptor antagonist. AIM To administer to humans for the first time single oral doses of netazepide, to assess their tolerability, safety, pharmacokinetics and effect on 24-h gastric pH. METHODS We did two randomised double-blind single-dose studies in healthy subjects. The first (n = 12) was a six-way incomplete crossover pilot study of rising doses of netazepide (range 0.5-100 mg) and placebo. The second (n = 20) was a five-way complete crossover study of netazepide 5, 25 and 100 mg, ranitidine 150 mg and placebo. In both trials we collected frequent blood samples, measured plasma netazepide and calculated pharmacokinetic parameters. In the comparative trial we measured gastric pH continuously for 24 h and compared treatments by percentage time gastric pH ≥4. RESULTS Netazepide was well tolerated. Median t (max) and t (½) for the 100 mg dose were about 1 and 7 h, respectively, and the pharmacokinetics were dose-proportional. Netazepide and ranitidine each increased gastric pH. Onset of activity was similarly rapid for both. All netazepide doses were more effective than placebo (P ≤ 0.023). Compared with ranitidine, netazepide 5 mg was as effective, and netazepide 25 and 100 mg were much more effective (P ≤ 0.010), over the 24 h after dosing. Activity of ranitidine lasted about 12 h, whereas that of netazepide exceeded 24 h. CONCLUSIONS In human: netazepide is an orally active gastrin antagonist, and gastrin has a major role in controlling gastric acidity. Repeated-dose studies are justified. NCT01538784 and NCT01538797.
Collapse
Affiliation(s)
- M Boyce
- Hammersmith Medicines Research, Central Middlesex Hospital, London, UK.
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Cholecystokinin (CCK), a peptide originally discovered in the gastrointestinal tract, is one of the most abundant and widely distributed neuropeptides in the brain. In spite of its abundance, recent data indicate that CCK modulates intrinsic neuronal excitability and synaptic transmission in a surprisingly cell-type specific manner, acting as a key molecular switch to regulate the functional output of neuronal circuits. The central importance of CCK in neuronal networks is also reflected in its involvement in a variety of neuropsychiatric and neurological disorders including panic attacks and epilepsy.
Collapse
Affiliation(s)
- Soo Yeun Lee
- Department of Anatomy and Neurobiology, University of California, Irvine, California, USA.
| | | |
Collapse
|
38
|
Cell-type-specific CCK2 receptor signaling underlies the cholecystokinin-mediated selective excitation of hippocampal parvalbumin-positive fast-spiking basket cells. J Neurosci 2011; 31:10993-1002. [PMID: 21795548 DOI: 10.1523/jneurosci.1970-11.2011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Parvalbumin-positive (PV+) fast-spiking basket cells are thought to play key roles in network functions related to precise time keeping during behaviorally relevant hippocampal synchronous oscillations. Although they express relatively few receptors for neuromodulators, the highly abundant and functionally important neuropeptide cholecystokinin (CCK) is able to selectively depolarize PV+ basket cells, making these cells sensitive biosensors for CCK. However, the molecular mechanisms underlying the CCK-induced selective and powerful excitation of PV+ basket cells are not understood. We used single and paired patch-clamp recordings in acute rat hippocampal slices, in combination with post hoc identification of the recorded interneurons, to demonstrate that CCK acts via G-protein-coupled CCK2 receptors to engage sharply divergent intracellular pathways to exert its cell-type-selective effects. In contrast to CCK2 receptors on pyramidal cells that signal through the canonical G(q)-PLC pathway to trigger endocannabinoid-mediated signaling events, CCK2 receptors on neighboring PV+ basket cells couple to an unusual, pertussis-toxin-sensitive pathway. The latter pathway involves ryanodine receptors on intracellular calcium stores that ultimately activate a nonselective cationic conductance to depolarize PV+ basket cells. CCK has highly cell-type-selective effects even within the PV+ cell population, as the PV+ dendrite-targeting bistratified cells do not respond to CCK. Together, these results demonstrate that an abundant ligand such as CCK can signal through the same receptor in different neurons to use cell-type-selective signaling pathways to provide divergence and specificity to its effects.
Collapse
|
39
|
Rikimaru K, Komatsu M, Suzuki K, Uemoto Y, Takeda H, Takahashi H. Association between cholecystokinin type A receptor haplotypes and growth traits in Japanese Hinai-dori crossbred chickens. Mol Biol Rep 2011; 39:4479-84. [PMID: 21947885 DOI: 10.1007/s11033-011-1237-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 09/13/2011] [Indexed: 11/26/2022]
Abstract
We previously identified quantitative trait loci for body weight and average daily gain in a common region between MCW0240 (chr 4: 69.9 Mb) and ABR0622 (chr 4: 86.3 Mb) on chicken chromosome 4 in an F(2) resource population produced by crossing low- and high-growth lines of the Hinai-dori breed. Cholecystokinin type A receptor (CCKAR) is a candidate gene affecting growth traits in the region. In this study, we genotyped polymorphisms of the CCKAR gene and investigated its association with growth traits in a Hinai-dori F(2) intercross population. All the exons of the CCKAR gene in the parental population were subjected to PCR amplification, nucleotide sequenced and haplotypes identified. To distinguish resultant diplotype individuals in the F(2) population, a mismatch amplification mutation assay was performed. Five haplotypes (Haplotypes 1-5) were accordingly identified. Six genotypes produced by the combination of three haplotypes (Haplotype 1, 3, and 4) were examined in order to identify associations between CCKAR haplotypes and growth traits. The data indicate that Haplotype 1 was superior to Haplotype 3 and 4 in body weight at 10 and 14 weeks of age, average daily gain between 4 and 10 weeks, 10 and 14 weeks, and 0 and 14 weeks of age. It was concluded that CCKAR is a useful marker of growth traits and could be used to develop strategies for improving growth traits in the Hinai-dori breed.
Collapse
Affiliation(s)
- Kazuhiro Rikimaru
- Livestock Experiment Station, Akita Prefectural Agriculture, Forestry, and Fisheries Research Center, Daisen, 019-1701, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Roberts K, Ursini A, Barnaby R, Cassarà PG, Corsi M, Curotto G, Donati D, Feriani A, Finizia G, Marchioro C, Niccolai D, Oliosi B, Polinelli S, Ratti E, Reggiani A, Tedesco G, Tranquillini ME, Trist DG, van Amsterdam FTM. Synthesis and structure-activity relationship of new 1,5-dialkyl-1,5-benzodiazepines as cholecystokinin-2 receptor antagonists. Bioorg Med Chem 2011; 19:4257-73. [PMID: 21689940 DOI: 10.1016/j.bmc.2011.05.057] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 05/25/2011] [Accepted: 05/26/2011] [Indexed: 11/18/2022]
Abstract
This article deals with the synthesis and the activities of some 1,5-dialkyl-3-arylureido-1,5-benzodiazepin-2,4-diones which were prepared as potential CCK2 antagonists, with the intention to find a possible follow up of our lead compound GV150013, showing an improved pharmacokinetic profile. The phenyl ring at N-5 was replaced with more hydrophilic substituents, like alkyl groups bearing basic functions. In some cases, the resolution of the racemic key intermediates 3-amino-benzodiazepines was also accomplished. Among the compounds synthesized and characterised so far in this class, the 5-morpholinoethyl derivative 54, was selected as potential follow up of GV150013 and submitted for further evaluation.
Collapse
Affiliation(s)
- Karen Roberts
- GlaxoSmithKline, Medicines Research Centre, Via A. Fleming, 4, 37100 Verona, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
|
42
|
|
43
|
Hermkens PHH, Ottenheijm HCJ, van der Werf-Pieters JML, Broekkamp CLE, de Boer T, van Nispen JW. CCK-A Agonists: Endeavours involving structure-activity relationship studies. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/recl.19931120205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
44
|
Roosenburg S, Laverman P, van Delft FL, Boerman OC. Radiolabeled CCK/gastrin peptides for imaging and therapy of CCK2 receptor-expressing tumors. Amino Acids 2010; 41:1049-58. [PMID: 20198494 PMCID: PMC3205271 DOI: 10.1007/s00726-010-0501-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 01/25/2010] [Indexed: 11/30/2022]
Abstract
Cholecystokinin (CCK) receptors are overexpressed in numerous human cancers, like medullary thyroid carcinomas, small cell lung cancers and stromal ovarian cancers. The specific receptor-binding property of the endogenous ligands for these receptors can be exploited by labeling peptides with a radionuclide and using these as carriers to guide the radioactivity to the tissues that express the receptors. In this way, tumors can be visualized using positron emission tomography and single photon emission computed tomography imaging. A variety of radiolabeled CCK/gastrin-related peptides has been synthesized and characterized for imaging. All peptides have the C-terminal CCK receptor-binding tetrapeptide sequence Trp-Met-Asp-Phe-NH2 in common or derivatives thereof. This review focuses on the development and application of radiolabeled CCK/gastrin peptides for radionuclide imaging and radionuclide therapy of tumors expressing CCK receptors. We discuss both preclinical studies as well as clinical studies with CCK and gastrin peptides.
Collapse
Affiliation(s)
- Susan Roosenburg
- Department of Nuclear Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
45
|
Ichiba H, Nakamoto M, Yajima T, Takayama M, Fukushima T. Analysis of oxidation process of cholecystokinin octapeptide with reactive oxygen species by high-performance liquid chromatography and subsequent electrospray ionization mass spectrometry. Biomed Chromatogr 2010; 24:140-7. [PMID: 19517450 DOI: 10.1002/bmc.1262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The C-terminal octapeptide of cholecystokinin (CCK8) includes some easily oxidizable amino acids. The oxidation of CCK8 by reactive oxygen species (ROS) such as hydrogen peroxide (H(2)O(2)) and hydroxyl radicals (OH(*)) was investigated using reversed-phase high performance liquid chromatography (RP-HPLC) and subsequent electrospray ionization mass spectrometry. The mechanism of oxidation of CCK8 in the H(2)O(2) system differed from that of CCK8 in the Fenton system, in which OH(*) are produced. In the H(2)O(2) system, (28)Met and (31)Met were oxidized to methionine sulfoxide, and no further oxidation or degradation/hydrolysis occurred. On the other hand, in the Fenton system, (28)Met and (31)Met residues were oxidized to methionine sulfone via the formation of methionine sulfoxide. In addition, the oxidized product was observed at the Trp residue but not at the Tyr residue, and small peptide fragments from CCK8 were observed in the Fenton system. From these results, it was concluded that (28)Met and (31)Met residues of CCK8 are susceptible to oxidation by ROS.
Collapse
Affiliation(s)
- Hideaki Ichiba
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba 274-8510, Japan
| | | | | | | | | |
Collapse
|
46
|
Cawston EE, Miller LJ. Therapeutic potential for novel drugs targeting the type 1 cholecystokinin receptor. Br J Pharmacol 2009; 159:1009-21. [PMID: 19922535 DOI: 10.1111/j.1476-5381.2009.00489.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cholecystokinin (CCK) is a physiologically important gastrointestinal and neuronal peptide hormone, with roles in stimulating gallbladder contraction, pancreatic secretion, gastrointestinal motility and satiety. CCK exerts its effects via interactions with two structurally related class I guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs), the CCK(1) receptor and the CCK(2) receptor. Here, we focus on the CCK(1) receptor, with particular relevance to the broad spectrum of signalling initiated by activation with the natural full agonist peptide ligand, CCK. Distinct ligand-binding pockets have been defined for the natural peptide ligand and for some non-peptidyl small molecule ligands. While many CCK(1) receptor ligands have been developed and have had their pharmacology well described, their clinical potential has not yet been fully explored. The case is built for the potential importance of developing more selective partial agonists and allosteric modulators of this receptor that could have important roles in the treatment of common clinical syndromes.
Collapse
Affiliation(s)
- Erin E Cawston
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ, USA
| | | |
Collapse
|
47
|
Hökfelt, Kristina Holmb Erg, Tie-Ju T. CCK-ergic mechanisms in sensory systems. Scand J Clin Lab Invest 2009. [DOI: 10.1080/clb.61.234.69.74] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
48
|
Chung L, Moore SD, Cox CL. Cholecystokinin action on layer 6b neurons in somatosensory cortex. Brain Res 2009; 1282:10-9. [PMID: 19497313 DOI: 10.1016/j.brainres.2009.05.061] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 05/09/2009] [Accepted: 05/11/2009] [Indexed: 11/30/2022]
Abstract
Layer 6b in neocortex is a distinct sublamina at the ventral portion of layer 6. Corticothalamic projections arise from 6b neurons, but few studies have examined the functional properties of these cells. In the present study we examined the actions of cholecystokinin (CCK) on layer 6b neocortical neurons using whole-cell patch clamp recording techniques. We found that the general CCK receptor agonist CCK8S (sulfated CCK octapeptide) strongly depolarized the neurons, and this action persisted in the presence of tetrodotoxin, suggesting a postsynaptic site of action. The excitatory actions of CCK8S were mimicked by the selective CCK(B) receptor agonist CCK4, and attenuated by the selective CCK(B) receptor antagonist L365260, indicating a role for CCK(B) receptors. Voltage-clamp recordings revealed that CCK8S produced a slow inward current associated with a decreased conductance with a reversal potential near the K(+) equilibrium potential. In addition, intracellular cesium also blocked the inward current, suggesting the involvement of a K(+) conductance, likely K(leak). Our data indicate that CCK, acting via CCK(B) receptors, produces a long-lasting excitation of layer 6b neocortical neurons, and this action may play a critical role in modulation of corticothalamic circuit activity.
Collapse
Affiliation(s)
- Leeyup Chung
- Neuroscience Program, Beckman Institute, University of Illinois, Urbana, IL 61801, USA
| | | | | |
Collapse
|
49
|
MARSEIGNE I, DOR A, PELAPRAT D, REIBAUD M, ZUNDEL J, BLANCHARD J, ROQUES B. Structure-activity relationships of CCK26-33-related analogues modified in position 33. ACTA ACUST UNITED AC 2009. [DOI: 10.1111/j.1399-3011.1989.tb00214.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
|