1
|
DORN A, BRAUER D, OTTO B, FANNING E, KNIPPERS R. Subclasses of Simian-Virus-40 Large Tumor Antigen. ACTA ACUST UNITED AC 2005. [DOI: 10.1111/j.1432-1033.1982.tb06930.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
2
|
Dean F, Borowiec J, Eki T, Hurwitz J. The simian virus 40 T antigen double hexamer assembles around the DNA at the replication origin. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49688-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
3
|
Tack LC, Wright JH. Altered phosphorylation of free and bound forms of monkey p53 and simian virus 40 large T antigen during lytic infection. J Virol 1992; 66:1312-20. [PMID: 1310751 PMCID: PMC240852 DOI: 10.1128/jvi.66.3.1312-1320.1992] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have identified the phosphorylation sites in monkey p53 as well as specific changes in the phosphorylation state of free and complexed forms of simian virus 40 (SV40) large T antigen (T) and monkey p53 isolate from SV40 lytically infected CV1 cells. Phosphopeptide analyses of free T and p53 (To and p53o) and complexed T and p53 (T+ and p53+) fractions indicated several quantitative increases in the specific phosphorylation of complexed forms of both proteins. The N terminus of monkey p53+ is phosphorylated at Ser-9, Ser-15, Ser-20, either Ser-33 or Ser-37, and at least one of Ser-90 to Ser-99. The C-terminal sites are Ser-315 and Ser-392. On comparing p53+ with p53o, we found that labeling of the two N-terminal phosphotryptic peptides encompassing residues 1 to 20 and 33 to 101 was increased fivefold and that Ser-315 was sevenfold more labeled than was Ser-392. When T+ was compared with To, the N-terminal peptide containing phosphorylation sites Ser-106 through Thr-124 was twofold more labeled, the peptide containing Ser-657 through Ser-679 was sixfold more labeled and contained up to four phosphorylated serine residues, and Ser-639 and Thr-701 appeared unchanged. Overall, T+ molecules appeared to contain 3.5 mol more of labeled phosphate than did To, with the N-terminal peptide appearing fully phosphorylated. The phosphopeptide patterns obtained for lytic T+ and To fractions were nearly identical to those found for wild-type SV40 T (stably complexed with mouse p53) and mutant 5080 T (defective for p53 binding) expressed in transformed C3H10T1/2 cells (L. Tack, C. Cartwright, J. Wright, A. Srinivasan, W. Eckhart, K. Peden, and J. Pipas, J. Virol. 63:3362-3367, 1989). These results indicate that increases in specific phosphorylation sites in both T+ and p53+ correlate with the association of T with p53. The enhanced phosphorylation state may be a consequence of complex formation between T and p53 or reflect an increased affinity of p53 for highly phosphorylated forms of T.
Collapse
Affiliation(s)
- L C Tack
- Molecular Biology and Virology Laboratory, Salk Institute, San Diego, California 92138
| | | |
Collapse
|
4
|
Scheidtmann KH, Buck M, Schneider J, Kalderon D, Fanning E, Smith AE. Biochemical characterization of phosphorylation site mutants of simian virus 40 large T antigen: evidence for interaction between amino- and carboxy-terminal domains. J Virol 1991; 65:1479-90. [PMID: 1847465 PMCID: PMC239928 DOI: 10.1128/jvi.65.3.1479-1490.1991] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The simian virus 40 large T antigen is phosphorylated at eight or more sites that are clustered in an amino-terminal region and a carboxy-terminal region of the protein. Mutants carrying exchanges at these phosphorylation sites have been generated in vitro by bisulfite or oligonucleotide-directed mutagenesis and analyzed for their phosphorylation patterns. Two-dimensional phosphopeptide analyses of the mutant large T antigens confirmed most of the previously identified phosphorylation sites, namely, serine residues 106, 112, 123, 639, 677, and 679 and threonine residues 124 and 701. In addition, serine residue 120 was identified as a new site, whereas serines residues 111 and 676 were excluded. Interestingly, several of the mutants exhibited secondary effects in that a mutation in the amino-terminal region affected phosphorylation at distant and even carboxy-terminal sites and vice versa. Thus, the amino- and carboxy-terminal domains appear to be in close proximity in the three-dimensional structure of large T antigen. The possible consequences of the above findings and the role of phosphorylation are discussed.
Collapse
|
5
|
Höss A, Moarefi I, Scheidtmann KH, Cisek LJ, Corden JL, Dornreiter I, Arthur AK, Fanning E. Altered phosphorylation pattern of simian virus 40 T antigen expressed in insect cells by using a baculovirus vector. J Virol 1990; 64:4799-807. [PMID: 2168968 PMCID: PMC247968 DOI: 10.1128/jvi.64.10.4799-4807.1990] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The phosphorylation pattern of simian virus 40 (SV40) large tumor (T) antigen purified from insect cells infected with a recombinant baculovirus was compared with that reported previously for T antigen from SV40-infected monkey cells. The specific activity of metabolic phosphate labeling of baculovirus T antigen was reduced, and the phosphopeptide map of the baculovirus protein, while qualitatively similar to that of lytic T, revealed several quantitative differences. The most striking difference was the prominence in the baculovirus map of peptides containing phosphothreonine 124. These peptides are known to arise from other phosphopeptides upon dephosphorylation of neighboring serines, suggesting that baculovirus T may be underphosphorylated at these serines and perhaps other sites. Functional assays used to further investigate the phosphorylation state of the baculovirus protein included SV40 DNA binding after enzymatic dephosphorylation with alkaline phosphatase and after phosphorylation by a murine homolog of cdc2 protein kinase. The results imply that baculovirus T antigen is underphosphorylated, in particular at those serine residues whose phosphorylation is responsible for down regulation of DNA-binding activity at site II in the core origin of DNA replication. In contrast, no evidence for a functionally significant underphosphorylation at threonine 124 could be found.
Collapse
Affiliation(s)
- A Höss
- Institute for Biochemistry, Munich, Federal Republic of Germany
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Cellular phosphoprotein p53, which seems to be a multifunctional protein, may be assigned to different structural subclasses. Recently established immortalized or transformed cell lines that overexpress p53 allowed us to perform a detailed analysis of the quaternary structure of p53. By means of sucrose density gradient centrifugation, we found in simian virus 40-transformed cells that overexpress p53, in addition to high-molecular-weight T-p53 complexes, low-molecular-weight forms. The level of T-p53 complexes within simian virus 40-transformed cells seemed to be determined by the intracellular concentration of p53. However, the presence of uncomplexed T antigen and p53 indicated that an appropriate modification of at least one of the two proteins appears to be necessary for complex formation. Using different monoclonal antibodies that distinguish between (i) p53 associated with T antigen or heat shock proteins and (ii) p53 in apparently free form, we found p53 from transformed cells always in high-molecular-weight forms. p53 from normal and immortalized cells, however, was found mainly in low-molecular-weight forms. Pulse-labeling experiments revealed that oligomerization of p53 is a very rapid process. Monomeric forms of p53 which could be detected only by 2 min of pulse-labeling were rapidly converted to stable, high-molecular-weight oligomers. Furthermore, our data indicate a correlation between the occurrence of p53 in high-molecular-weight forms and the transformation state of the cell.
Collapse
Affiliation(s)
- S Kraiss
- Department of Biochemistry, University of Ulm, Federal Republic of Germany
| | | | | | | |
Collapse
|
7
|
Abstract
Using immunofluorescence and immunoadsorption, CV1 cell clones MA2, V4, USA3, TR7 and P3 infected with SV40 were found to express variably SV40 large T antigen. The monoclonal antibody used was Pab 419. The results indicate that P3 cells express T antigen to a considerable level as early as 10 h post-infection, while that of TR7 and USA3 cells is minute as judged from their positive nuclei. MA2 and V4 cells did not show any positive nuclei over this period of infection. At 20 h post-infection MA2, V4 and USA3 cells developed a considerable amount of fluorescence in their nuclei while TR7 and P3 cells produced high values. By immunoadsorption of cell extracts for the same periods of infection, similar results were obtained on the electrophoretograms. We also relate these findings with those from induction of heatshock proteins by SV40 infection.
Collapse
Affiliation(s)
- D P Matthopoulos
- Laboratory of General Biology, Medical School, University of Ioannina, Greece
| | | |
Collapse
|
8
|
Schneider J, Fanning E. Mutations in the phosphorylation sites of simian virus 40 (SV40) T antigen alter its origin DNA-binding specificity for sites I or II and affect SV40 DNA replication activity. J Virol 1988; 62:1598-605. [PMID: 3357207 PMCID: PMC253187 DOI: 10.1128/jvi.62.5.1598-1605.1988] [Citation(s) in RCA: 100] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A series of mutants of simian virus 40 was constructed by oligonucleotide-directed mutagenesis to study the role of phosphorylation in the functions of large T antigen. Each of the previously mapped phosphorylated serine and threonine residues in large T antigen was replaced by an alanine or cysteine residue or, in one case, by glutamic acid. Mutant DNAs were assayed for plaque-forming activity, viral DNA replication, expression of T antigen, and morphological transformation of rat cells. Viable mutants were isolated, suggesting that modification of some residues is not essential for the biological functions of T antigen. Two of these mutants replicated more efficiently than did the wild type. Seven mutants were partially or completely deficient in viral DNA replication but retained cell transformation activity comparable with that of the wild-type protein. Biochemical analysis of the mutant T antigens demonstrated novel origin DNA-binding properties of several mutant proteins. The results are consistent with the idea that differential phosphorylation defines several functional subclasses of T-antigen molecules.
Collapse
Affiliation(s)
- J Schneider
- Institute for Biochemistry, Munich, Federal Republic of Germany
| | | |
Collapse
|
9
|
Phosphorylation of p53 in normal and simian virus 40-transformed NIH 3T3 cells. Mol Cell Biol 1988. [PMID: 2827007 DOI: 10.1128/mcb.8.1.461] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We observed six major tryptic phosphopeptides in p53 from simian virus 40-transformed and normal NIH 3T3 cells. Analyses of the phosphopeptides indicated that serines 37, 310 and/or 312, 389 and one or more of serines 7, 9, 12, 18, and 23 were phosphorylated. Phosphorylation of serines 310 and/or 312 was twofold higher in the simian virus 40-transformed cells as compared with that in normal NIH 3T3 cells.
Collapse
|
10
|
Borowiec JA, Hurwitz J. ATP stimulates the binding of simian virus 40 (SV40) large tumor antigen to the SV40 origin of replication. Proc Natl Acad Sci U S A 1988; 85:64-8. [PMID: 2829177 PMCID: PMC279482 DOI: 10.1073/pnas.85.1.64] [Citation(s) in RCA: 119] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Simian virus 40 (SV40) large tumor antigen (T antigen) binds to two contiguous sites at the SV40 origin of replication. Of these two sites, I and II, only site II is critical for replication. We have studied the interaction between T antigen and these sites by two methods--nitrocellulose filter binding and DNase I protection. We show that T antigen binds with high occupancy to site I at 0 degrees C, 25 degrees C, and 37 degrees C but to site II only at 0 degrees C and 25 degrees C. At 37 degrees C, the temperature essential for the initiation of SV40 DNA replication in vitro, ATP is required for the interaction of T antigen and site II. ATP can be replaced efficiently by adenosine 5'-[beta,gamma-imido]triphosphate and ADP, suggesting that hydrolysis of the nucleotide is not essential for the binding of T antigen to site II. The binding to the region critical for replication can occur in the presence of a variety of nucleoside triphosphates; dATP supports binding at a concentration 1/30th that of ATP, while dGTP and rGTP were inactive at all concentrations tested.
Collapse
Affiliation(s)
- J A Borowiec
- Graduate Program in Molecular Biology, Sloan-Kettering Cancer Center, New York, NY 10021
| | | |
Collapse
|
11
|
Abstract
We observed six major tryptic phosphopeptides in p53 from simian virus 40-transformed and normal NIH 3T3 cells. Analyses of the phosphopeptides indicated that serines 37, 310 and/or 312, 389 and one or more of serines 7, 9, 12, 18, and 23 were phosphorylated. Phosphorylation of serines 310 and/or 312 was twofold higher in the simian virus 40-transformed cells as compared with that in normal NIH 3T3 cells.
Collapse
Affiliation(s)
- D W Meek
- Molecular Biology and Virology Laboratory, Salk Institute for Biological Studies, San Diego, California 92138
| | | |
Collapse
|
12
|
Affiliation(s)
- T J Kelly
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | | |
Collapse
|
13
|
Montenarh M, Müller D. The phosphorylation at Thr 124 of simian virus 40 large T antigen is crucial for its oligomerization. FEBS Lett 1987; 221:199-204. [PMID: 3040470 DOI: 10.1016/0014-5793(87)80925-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
SV40 large T antigen is phosphorylated at up to ten different amino acids clustered in an N-terminal and a C-terminal part of the polypeptide chain. The N-terminal phosphorylated residues include Ser 123 and Thr 124. We have analyzed the oligomerization, the complex formation with the cellular oncoprotein p53 and the DNA-binding properties of T antigen from two different SV40 transformed cell lines which have either an amino acid exchange at Ser 123 to Phe (W7) or Thr 124 to Ile (D29). In comparison to wild-type T antigen both mutant T antigens have a slightly reduced binding affinity for both binding sites, I and II, of SV40 DNA. Phosphorylation at both residues of T antigen is not essential for formation of the complex with p53. Only the phosphorylation at Thr 124 seems to be critical for the formation of high molecular mass oligomers. Our data support the hypothesis that the oligomerization of T antigen seems to be implicated in viral DNA replication.
Collapse
|
14
|
Runzler R, Thompson S, Fanning E. Oligomerization and origin DNA-binding activity of simian virus 40 large T antigen. J Virol 1987; 61:2076-83. [PMID: 3035209 PMCID: PMC254227 DOI: 10.1128/jvi.61.7.2076-2083.1987] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Simian virus 40 (SV40) large tumor antigen (T antigen) exists in multiple molecular forms, some of which are separable by zone velocity sedimentation of soluble extracts from infected monkey cells. Three subclasses of this antigen from SV40-infected monkey cells have been separated and characterized: the 5S, 7S, and 14S forms. Newly synthesized T antigen occurs primarily in the 5S form. Chemical cross-linking provided evidence that the 14S form is primarily a tetramer, whereas the 5S and 7S forms could not be cross-linked into oligomers. The DNA-binding properties of each subclass were investigated after immunopurification. The affinities of the three forms for SV40 DNA and for a synthetic 19-base-pair sequence from binding site I are very similar (equilibrium dissociation constant [KD], 0.3 to 0.4 nM). The specific activity of DNA binding was greatest for the 5S and 7S subclasses and least for the 14S subclass. Moreover, the specific activity of the 5S and 7S subclasses increased sharply at about 40 h after infection, whereas the activity of the 14S subclass was maintained at a constant low level throughout infection. A model relating oligomerization and DNA binding of T antigen in infected cells is presented.
Collapse
|
15
|
Montenarh M, Vesco C, Scheidtmann KH. Dimers and complexes with p53 are the prevalent oligomeric forms of a transforming nonkaryophilic T antigen of simian virus 40. J Virol 1987; 61:940-4. [PMID: 3027419 PMCID: PMC254044 DOI: 10.1128/jvi.61.3.940-944.1987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The oligomers formed by a mutant nonkaryophilic large T antigen of simian virus 40, which lacks residues 110 through 152 of normal large T antigen and transforms only established cells (L. Fischer-Fantuzzi and C. Vesco, Proc. Natl. Acad. Sci. USA 82:1891-1895, 1985), were found to consist predominantly of dimers. Anti-p53 antibodies precipitated 14 to 16S complexes containing the mutant nonkaryophilic large T antigen and p53 from extracts of transformed cells, and anti-p53 indirect immunofluorescence stained these cells in the cytoplasm.
Collapse
|
16
|
A mutant herpesvirus protein leads to a block in nuclear localization of other viral proteins. Mol Cell Biol 1987. [PMID: 3023931 DOI: 10.1128/mcb.6.7.2371] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The herpes simplex virus mutants KOS1.1 ts756 and HFEM tsLB2 express temperature-sensitive ICP4 proteins that are not localized properly to the cell nucleus at the nonpermissive temperature. In these infected cells at the nonpermissive temperature, nuclear localization of at least two other viral proteins, ICP0 and ICP8, is impaired. Replacement of the mutated sequences in the ICP4 gene of tsLB2 restored proper nuclear localization of all of the proteins. The ICP0 and ICP8 proteins expressed in cells transfected with their individual genes were localized to the cell nucleus. Therefore, in infected cells, the mutant ICP4 gene product appears to be the primary defect which leads to the block in nuclear localization of the other proteins. One viral protein, ICP27, was not inhibited for nuclear localization in these cells. These data indicate that there are at least two pathways for nuclear localization of HSV proteins, one of which is inhibited by the mutant ICP4 protein. The mutant ICP4 protein may define a probe for one of the pathways of nuclear localization of proteins.
Collapse
|
17
|
Simmons DT, Chou W, Rodgers K. Phosphorylation downregulates the DNA-binding activity of simian virus 40 T antigen. J Virol 1986; 60:888-94. [PMID: 3023678 PMCID: PMC253314 DOI: 10.1128/jvi.60.3.888-894.1986] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Proteolytic fragments of simian virus 40 tumor (T) antigen and T antigen that was dephosphorylated with alkaline phosphatase bound between 1.5 to 2 times more origin-containing simian virus 40 DNA than did intact T antigen in DNA saturation experiments. Kinetic experiments showed that these treatments also enhanced the rate at which T antigen bound to the DNA. The enhanced binding of T-antigen fragments correlated with the generation of DNA-binding fragments that lacked the NH2-terminal region. Dephosphorylation of T antigen in vitro resulted in the removal of phosphate groups from the NH2-terminal region as well as from the COOH-terminal region. To test the effects of dephosphorylation on the size of the protein, immunoaffinity-purified T antigen was subjected to sedimentation with and without prior treatment with alkaline phosphatase. Most of the purified protein sedimented as a monomer and no significant effect was observed after dephosphorylation, indicating that the enhanced DNA-binding activity was probably not due to the uncovering of additional binding sites buried specifically in oligomerized T antigen. Taken together, these results indicate that in vivo phosphorylation of the NH2-terminal region (residues 106 to 124) decreases the binding of the protein to the DNA origin. The effect is reversed by in vitro dephosphorylation or by proteolysis which removes the highly phosphorylated NH2-terminal arm of the polypeptide. We suggest that phosphorylation inactivates one of two distinct DNA-binding activities on the polypeptide chain perhaps corresponding to two separate regions in T antigen.
Collapse
|
18
|
Montenarh M, Kohler M, Henning R. Complex formation of simian virus 40 large T antigen with cellular protein p53. J Virol 1986; 60:761-4. [PMID: 3022008 PMCID: PMC288952 DOI: 10.1128/jvi.60.2.761-764.1986] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We investigated the formation of native complexes between simian virus 40 large T antigen and the cellular protein p53 (T-p53) by using simian virus 40 tsA58-transformed mouse fibroblasts (tsA58 F2b). We observed that newly synthesized p53 bound to all structural subclasses of large T antigen detectable on sucrose density gradients. This led to various intermediates of T-p53 complexes which converted within 2 h into typical mature aggregates. The final levels of stable T-p53 complexes seemed to be determined by p53 rather than by large T antigen.
Collapse
|
19
|
Knipe DM, Smith JL. A mutant herpesvirus protein leads to a block in nuclear localization of other viral proteins. Mol Cell Biol 1986; 6:2371-81. [PMID: 3023931 PMCID: PMC367790 DOI: 10.1128/mcb.6.7.2371-2381.1986] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The herpes simplex virus mutants KOS1.1 ts756 and HFEM tsLB2 express temperature-sensitive ICP4 proteins that are not localized properly to the cell nucleus at the nonpermissive temperature. In these infected cells at the nonpermissive temperature, nuclear localization of at least two other viral proteins, ICP0 and ICP8, is impaired. Replacement of the mutated sequences in the ICP4 gene of tsLB2 restored proper nuclear localization of all of the proteins. The ICP0 and ICP8 proteins expressed in cells transfected with their individual genes were localized to the cell nucleus. Therefore, in infected cells, the mutant ICP4 gene product appears to be the primary defect which leads to the block in nuclear localization of the other proteins. One viral protein, ICP27, was not inhibited for nuclear localization in these cells. These data indicate that there are at least two pathways for nuclear localization of HSV proteins, one of which is inhibited by the mutant ICP4 protein. The mutant ICP4 protein may define a probe for one of the pathways of nuclear localization of proteins.
Collapse
|
20
|
Hassauer M, Scheidtmann KH, Walter G. Mapping of phosphorylation sites in polyomavirus large T antigen. J Virol 1986; 58:805-16. [PMID: 3009889 PMCID: PMC252987 DOI: 10.1128/jvi.58.3.805-816.1986] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The phosphorylation sites of polyomavirus large T antigen from infected or transformed cells were investigated. Tryptic digestion of large T antigen from infected, 32Pi-labeled cells revealed seven major phosphopeptides. Five of these were phosphorylated only at serine residues, and two were phosphorylated at serine and threonine residues. The overall ratio of phosphoserine to phosphothreonine was 6:1. The transformed cell line B4 expressed two polyomavirus-specific phosphoproteins: large T antigen, which was only weakly phosphorylated, and a truncated form of large T antigen of 34,000 molecular weight which was heavily phosphorylated. Both showed phosphorylation patterns similar to that of large T antigen from infected cells. Peptide analyses of large T antigens encoded by the deletion mutants dl8 and dl23 or of specific fragments of wild-type large T antigen indicated that the phosphorylation sites are located in an amino-terminal region upstream of residue 194. The amino acid composition of the phosphopeptides as revealed by differential labeling with various amino acids indicated that several phosphopeptides contain overlapping sequences and that all phosphorylation sites are located in four tryptic peptides derived from a region between Met71 and Arg191. Two of the potential phosphorylation sites were identified as Ser81 and Thr187. The possible role of this modification of large T antigen is discussed.
Collapse
|
21
|
Samad A, Anderson CW, Carroll RB. Mapping of phosphomonoester and apparent phosphodiester bonds of the oncogene product p53 from simian virus 40-transformed 3T3 cells. Proc Natl Acad Sci U S A 1986; 83:897-901. [PMID: 3006031 PMCID: PMC322977 DOI: 10.1073/pnas.83.4.897] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The oncogene product p53, isolated from SV3T3 cells where it forms a complex with simian virus 40 large tumor antigen (T antigen) in the nucleus, has been found to be phosphorylated at at least four distinct sites on the 390 amino acid protein. Separation of tryptic phosphopeptides has permitted identification of two sites as Ser-312 and Ser-389, and permitted analysis of the types of phosphate bonds. The peptide containing Ser-312 separates electrophoretically into three charged forms; two are resistant to dephosphorylation by both alkaline phosphatase and alkaline hydrolysis, suggesting a phosphodiester. The carboxyl-terminal phosphopeptide containing Ser-389 was alkaline phosphatase-resistant and liberated four ribonucleoside monophosphates upon base or RNase hydrolysis, suggesting that Ser-389 may be covalently linked to RNA. Phosphorylation of Ser-389 decreased markedly at the nonpermissive temperature in simian virus 40 tsA58-transformed cells, indicating a dependence on native T antigen function and a possible role in transformation by T antigen. Two additional phosphorylation sites, one involving serine and one involving threonine, probably reside in the amino-terminal segment of p53 and appear to be peptide-phosphate monoesters.
Collapse
|
22
|
Stedman D, Whittaker L, Hand R. Simian virus 40 large T antigen oligomers: analysis of electrophoresis in the absence of detergent. J Virol 1985; 56:711-6. [PMID: 2999426 PMCID: PMC252640 DOI: 10.1128/jvi.56.3.711-716.1985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Large T antigen of simian virus 40 is found as monomeric and oligomeric species in transformed cells. These can be demonstrated in cell extracts by velocity centrifugation in sucrose gradients. We analyzed them further in a transformed human line cell (SV80) and a transformed mouse line cell (SVT2). Individual fractions from sucrose gradients were subjected to polyacrylamide gel electrophoresis in the absence of detergent. T-antigen species were then detected by protein blotting and antibody overlay with polyclonal anti-D2 T antibody or monoclonal Pab419, Pab101, or Pb1700 antibody. The rapidly sedimenting species (14S and larger) of large T antigen from both cell lines reproducibly showed two major bands with estimated molecular weights of 670,000 and 850,000. A third band of 1,200,000 was more prominent in SVT2 cells than in SV80 cells. In SV80 cells the slowly sedimenting species of large T antigen (5S to 11S) contained two reproducible bands. A band with a molecular weight of 95,000 was the predominant one in all fractions between 5S and 11S. A relatively minor band with a molecular weight of 230,000 was found in fractions between 9S and 11S. The low-molecular-weight forms were seen in SVT2 cells only when a prominent peak at 5S to 7S was present, that is, when extracts were stored before analysis. In fresh extracts, the low-molecular-weight bands and slowly sedimenting forms were absent.
Collapse
|
23
|
Wachter M, Riedle G, Henning R. Functional implications of oligomerization of simian virus 40 large T antigen during lytic virus infection. J Virol 1985; 56:520-6. [PMID: 2997473 PMCID: PMC252608 DOI: 10.1128/jvi.56.2.520-526.1985] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The formation of oligomers of simian virus 40 (SV40) large T antigen in SV40-infected and -transformed monkey cells was analyzed by sucrose density gradient centrifugation. The overall distribution of total T antigen during lytic infection showed mainly low-molecular-weight forms (monomers and dimers) in the early phase (10 h postinfection) and an increase in the number of oligomers in the late phase of the lytic cycle (36 h postinfection), indicating an accumulation of these final products. In contrast, studying the conversion of newly synthesized T antigen into oligomers by appropriate pulse-chase radiolabeling of infected cells revealed that this processing decelerates considerably during the late phase of infection. This mechanism can be reaccelerated by blocking DNA replication with aphidicolin. Since none of these results could be obtained by using synchronized SV40-transformed monkey cells (COS-1), these observations are compatible with the idea that the process of T antigen oligomerization may be involved in viral, but not in cellular, DNA synthesis.
Collapse
|
24
|
Stürzbecher HW, Mörike M, Montenarh M, Henning R. Relationship of phosphorylation to the oligomerization of SV40 T antigen and its association with p53. FEBS Lett 1985; 180:285-90. [PMID: 2981725 DOI: 10.1016/0014-5793(85)81087-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The potential significance of the phosphorylation of SV40 large T antigen for oligomers and complexes with the cellular protein p53 was investigated. We observed that T antigen oligomers remain stable after enzymatic dephosphorylation by alkaline phosphatase up to 80%. Separate analysis of free and p53-bound T antigen revealed a considerably lower phosphorylation of the p53-bound subclass. Therefore, a simple correlation between the overall phosphorylation of T antigen and the formation of oligomers and T-p53 complexes is highly unlikely.
Collapse
|
25
|
Association of simian virus 40 T antigen with the nuclear matrix of infected and transformed monkey cells. Mol Cell Biol 1985. [PMID: 6095067 DOI: 10.1128/mcb.4.7.1384] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The subnuclear distribution of simian virus 40 large T antigen within nuclei of transformed Cos and C6 monkey cells was examined. Cos cells express wild-type T antigen but lack viral sequences required for DNA replication, whereas C6 cells contain a functional viral origin but express a replication-defective mutant T antigen which is unable to bind specifically to viral DNA. Discrete subpopulations of T antigen were isolated from the soluble nucleoplasm, chromatin, and nuclear matrix of both cell lines. Although only a small quantity (2 to 12%) of the total nuclear T antigen from Cos cells was associated with the nuclear matrix, a high proportion (25 to 50%) of C6 T antigen was bound to this structure. Results obtained from lytically infected monkey cells showed that early in infection, before viral replication was initiated, a higher proportion (22%) of T antigen was found associated with the nuclear matrix compared with amounts found associated with this structure later in infection (5 to 8%). These results suggest that an increased association of T antigen with this structure is not correlated with viral replication. T antigen isolated from the C6 nuclear matrix was more highly phosphorylated than was soluble C6 T antigen and was capable of binding to the host p53 protein. C6 DNA contains three mutations: two corresponding to N-terminal changes at amino acid positions 30 and 51 and a third located internally at amino acid position 153. By analysis of the subnuclear distribution of T antigen from rat cells transformed by C6 submutant T antigens, it was determined that one or both of the mutations at the NH2 terminus are responsible for the increased quantity of C6 T antigen associated with the nuclear matrix. These results suggest that neither a functional viral DNA replication origin nor the origin binding property of T antigen is required for association of this protein with the nuclear matrix.
Collapse
|
26
|
Schmieg FI, Simmons DT. Intracellular location and kinetics of complex formation between simian virus 40 T antigen and cellular protein p53. J Virol 1984; 52:350-5. [PMID: 6092664 PMCID: PMC254533 DOI: 10.1128/jvi.52.2.350-355.1984] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The intracellular location and kinetics at which the simian virus 40 T antigen and the cellular protein p53 associate with one another were determined for simian virus 40-transformed mouse (215) and rat (14B) cells. Cells were labeled under pulse-chase conditions and fractionated into nuclear and cytoplasmic components, and the proteins were immunoprecipitated with monoclonal antibodies (pAb 416, 101, and 122). We found that newly made T antigen and p53 migrated to the nucleus of these cells independently; that is, in uncomplexed form. Newly made p53 was transported to the nucleus more rapidly than T antigen in both cell lines and formed a complex with a mature form of T antigen recognizable by pAb 101. This association was very rapid in both cell lines (t 1/2, 5 to 15 min). In contrast, the time course of complex formation between newly made T antigen and the p53 in the nucleus varied with the ratio of T antigen to p53 of the cell line studied. In 215 cells, where the ratio was 3.6, the kinetics were quite slow (t 1/2, 30 min), whereas in 14B cells, where the ratio was 1.7, they were quite rapid (t 1/2, 5 min). We suggest that a competition between newly made and uncomplexed T antigen for the p53 in the nucleus is the major determinant of the rate of complex formation for newly made T antigen. Our studies indicate that this macromolecular interaction is extremely dynamic.
Collapse
|
27
|
Paucha E, Harvey R, Smith AE. Immunoprecipitation of some forms of simian virus 40 large-T antigen by antibodies to synthetic peptides. J Virol 1984; 51:670-81. [PMID: 6088792 PMCID: PMC255825 DOI: 10.1128/jvi.51.3.670-681.1984] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Antibodies were raised against six synthetic peptides corresponding to overlapping amino acid sequences (106 through 145) from a putative DNA binding domain in simian virus 40 (SV40) large-T antigens. All six antipeptide sera immunoprecipitated large-T from crude extracts of SV40-transformed cells, but the efficiency varied widely; in general, antibodies to the longer peptides produced the strongest anti-large-T activity. Antisera were purified by immunoaffinity chromatography on immobilized peptide. The purified antisera recognized only some forms of large-T; full-sized large-T from transformed cells, super-T from SV3T3 C120 cells, and 70,000-dalton T-antigen from Taq-BamHI cells were immunoprecipitated, whereas large-T from productively infected cells reacted irreproducibly, and the full-sized protein, synthesized in vitro or eluted from sodium dodecyl sulfate-containing gels, and the 33,000- and 22,000-dalton truncated large-Ts from Swiss SV3T3 and MES2006 cells, respectively, were not immunoprecipitated. This pattern of reactivity was explained when extracts were fractionated by sucrose density centrifugation, and it was found that only rapidly sedimenting forms of large-T were immunoprecipitated by the antipeptide sera; that is, large-T complexed with nonviral T antigen was detected, whereas lighter forms were not detected. Cascade immunoprecipitations did not support the view that this result was caused by the low affinity of the peptide antisera for large-T, and Western blotting experiments confirmed that the peptide antisera react directly with immobilized, monomeric large-T but not with nonviral T antigen. Immunoprecipitation assays to detect large-T:nonviral T antigen complexes bound specifically to fragments of SV40 DNA showed that under conditions of apparent antibody excess, DNA still bound to the complex.
Collapse
|
28
|
Simmons DT. Stepwise phosphorylation of the NH2-terminal region of the simian virus 40 large T antigen. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)39777-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
29
|
Covey L, Choi Y, Prives C. Association of simian virus 40 T antigen with the nuclear matrix of infected and transformed monkey cells. Mol Cell Biol 1984; 4:1384-92. [PMID: 6095067 PMCID: PMC368921 DOI: 10.1128/mcb.4.7.1384-1392.1984] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The subnuclear distribution of simian virus 40 large T antigen within nuclei of transformed Cos and C6 monkey cells was examined. Cos cells express wild-type T antigen but lack viral sequences required for DNA replication, whereas C6 cells contain a functional viral origin but express a replication-defective mutant T antigen which is unable to bind specifically to viral DNA. Discrete subpopulations of T antigen were isolated from the soluble nucleoplasm, chromatin, and nuclear matrix of both cell lines. Although only a small quantity (2 to 12%) of the total nuclear T antigen from Cos cells was associated with the nuclear matrix, a high proportion (25 to 50%) of C6 T antigen was bound to this structure. Results obtained from lytically infected monkey cells showed that early in infection, before viral replication was initiated, a higher proportion (22%) of T antigen was found associated with the nuclear matrix compared with amounts found associated with this structure later in infection (5 to 8%). These results suggest that an increased association of T antigen with this structure is not correlated with viral replication. T antigen isolated from the C6 nuclear matrix was more highly phosphorylated than was soluble C6 T antigen and was capable of binding to the host p53 protein. C6 DNA contains three mutations: two corresponding to N-terminal changes at amino acid positions 30 and 51 and a third located internally at amino acid position 153. By analysis of the subnuclear distribution of T antigen from rat cells transformed by C6 submutant T antigens, it was determined that one or both of the mutations at the NH2 terminus are responsible for the increased quantity of C6 T antigen associated with the nuclear matrix. These results suggest that neither a functional viral DNA replication origin nor the origin binding property of T antigen is required for association of this protein with the nuclear matrix.
Collapse
|
30
|
Leppard KN, Crawford LV. An oligomeric form of simian virus 40 large T-antigen is immunologically related to the cellular tumor antigen p53. J Virol 1984; 50:457-64. [PMID: 6323746 PMCID: PMC255647 DOI: 10.1128/jvi.50.2.457-464.1984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The cellular tumor antigen p53 is bound to the simian virus 40 (SV40) large T-antigen in SV40-infected and -transformed cells. As a result, p53 can in general be immunoprecipitated by either monoclonal or polyclonal antibodies that react with large T-antigen. Despite extensive immunological characterization of both these antigens, they have not previously been found to share any antigenic determinants. We have isolated several monoclonal antibodies that bind to the human p53 protein (K. Leppard and L. V. Crawford, EMBO J. 2:1457-1464, 1983) and show here that antibody PAb1104 has distinct, intrinsic activities towards both p53 and SV40 large T-antigen. Only a subset of T-antigen is bound by PAb1104. This subset is an oligomeric form of T-antigen, as judged by its sedimentation velocity in sucrose. In contrast, all of the detectable p53 carries the PAb1104-reactive determinant. The detection of a chance cross-reactivity between two antigens that are already well characterized and which associate with one another in vivo is highly unlikely. It is possible therefore that the element of structural similarity between large T and p53 that is implied by our results has some genuine functional significance.
Collapse
|
31
|
Scheidtmann KH, Schickedanz J, Walter G, Lanford RE, Butel JS. Differential phosphorylation of cytoplasmic and nuclear variants of simian virus 40 large T antigen encoded by simian virus 40-adenovirus 7 hybrid viruses. J Virol 1984; 50:636-40. [PMID: 6323765 PMCID: PMC255692 DOI: 10.1128/jvi.50.2.636-640.1984] [Citation(s) in RCA: 38] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The phosphorylation patterns of cytoplasmic and nuclear forms of simian virus 40 large T antigen encoded by simian virus 40-adenovirus 7 hybrid viruses were analyzed by two-dimensional peptide mapping. The PARA(cT) mutant which encodes a large T antigen defective for nuclear transport was used as source for cytoplasmic large T antigen. The data suggest that the large T antigen is phosphorylated in a sequential manner at a subset of sites in the cytoplasm and at additional sites in the nucleus.
Collapse
|
32
|
Scheidtmann KH, Hardung M, Echle B, Walter G. DNA-binding activity of simian virus 40 large T antigen correlates with a distinct phosphorylation state. J Virol 1984; 50:1-12. [PMID: 6321781 PMCID: PMC255574 DOI: 10.1128/jvi.50.1.1-12.1984] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The state of phosphorylation and the relationship of various subclasses of simian virus 40 large T antigen (large T) differing in DNA-binding activity, degree of oligomerization, age, and subcellular distribution were investigated. Young large T (continuously labeled for 4 h late in infection) comprised about 20% of the total cellular large T. It was phosphorylated to a low degree and existed primarily in a monomeric form, sedimenting at 5S. More than 50% of this fraction bound to simian virus 40 DNA, preferentially to origin-containing sequences. Old large T (continuously labeled for 17 h, followed by a 4-h chase) represented the majority of the population. It was highly phosphorylated and predominantly in an oligomeric form, sedimenting at 15S to 23S. Only 10 to 20% of this fraction bound to simian virus 40 DNA. Another subclass of large T which was extracted from nuclei with 0.5 M salt resembled newly synthesized molecules in all properties tested; it was phosphorylated to a low degree, sedimented at 5S, and bound to viral DNA with high efficiency (greater than 70%). Two-dimensional phosphopeptide analysis of the individual subclasses revealed two distinct phosphorylation patterns, one characteristic for young, monomeric, and DNA-binding large T, the other for old, oligomeric, and non-DNA-binding large T. All sites previously identified in unfractionated large T (K.H. Scheidtmann et al., J. Virol. 44:116-133, 1982) were also phosphorylated in the various subclasses, but to different degrees. Peptide maps of the DNA-binding fraction, the 5S form, and the nuclear high-salt fraction showed two prominent phosphopeptides not previously characterized. Both peptides were derived from the amino-terminal region of large T, presumably involved in origin binding, and probably represent partially phosphorylated intermediates of known phosphopeptides. Our data show that the DNA-binding activity, age, and oligomerization of large T correlate with distinct states of phosphorylation. We propose that differential phosphorylation might play a role in the interaction of large T with DNA.
Collapse
|
33
|
Bouck N, Fikes J, Rundell MK. Large-T-antigen-p53 complex formation is not cold sensitive in a cold-sensitive transformant induced by simian virus 40 mutant tsA1499. J Virol 1984; 49:997-1001. [PMID: 6321780 PMCID: PMC255564 DOI: 10.1128/jvi.49.3.997-1001.1984] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
F111 rat cells transformed by simian virus 40 mutant tsA1499 are cold sensitive for the expression of transformation. Yet, unlike F111 cells transformed by tsA58, they do not lose the ability to stabilize the transformation-associated host cell protein p53 at the temperature at which transformation is extinguished.
Collapse
|
34
|
Pomerantz BJ, Hassell JA. Polyomavirus and simian virus 40 large T antigens bind to common DNA sequences. J Virol 1984; 49:925-37. [PMID: 6321773 PMCID: PMC255555 DOI: 10.1128/jvi.49.3.925-937.1984] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The large T antigens of polyomavirus and simian virus 40 (SV40) recognize and bind to specific, noncoding DNA sequences which are located between the beginning of the early and late transcription units in their respective genomes. Each large T antigen binds to multiple sites within this intergenic DNA stretch. Polyomavirus large T antigen binds to at least two sites within its DNA, and SV40 large T antigen binds to three sites within SV40 DNA. Comparison of the DNA sequences which comprise the binding sites in polyomavirus DNA or those which make up the binding sites in SV40 DNA has led to recognition of a common sequence, -GAGGC-, which is repeated within each large-T-antigen-binding site. We tested the hypothesis that repeats of this pentanucleotide form the recognition-binding site for polyomavirus and SV40 large T antigen. This was accomplished by measuring the binding of each large T antigen to both polyomavirus and SV40 DNA and to synthetic DNA substrates which did or did not contain repeats of the -GAGGC- sequence. Polyomavirus large T antigen bound to specific fragments of SV40 DNA, and SV40 large T antigen bound with specificity to polyomavirus DNA. In each case, the DNA fragments bound by the heterologous large T antigen were the same as those bound by the homologous large T antigen. Moreover, polyomavirus and SV40 large T antigen only bound to synthetic DNA substrates which contained repeats of the pentameric sequence. This synthetic DNA also competed effectively with native polyomavirus or SV40 DNA as a substrate in binding reactions with one or the other large T antigen. These results led us to conclude that repeats of the -GAGGC- sequence form the recognition-binding site for both polyomavirus and SV40 large T antigen.
Collapse
|
35
|
Montenarh M, Kohler M, Henning R. Oligomerization of simian virus 40 large T antigen is not necessarily repressed by temperature-sensitive A gene lesions. J Virol 1984; 49:658-64. [PMID: 6321754 PMCID: PMC255521 DOI: 10.1128/jvi.49.3.658-664.1984] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Simian virus 40 large T antigen is a multifunctional protein which exists in different molecular weight forms. According to several reports, T antigen encoded by temperature-sensitive simian virus 40 A locus mutants (tsA) is unable to oligomerize into high-molecular-weight species. To try to correlate structural and functional properties, we selected tsA58 and tsA1499, both of which are heat sensitive for lytic growth, but only tsA58 is heat sensitive for transformation. Here we report that at permissive and nonpermissive temperatures, T antigen from tsA1499-infected monkey cells retained the ability to oligomerize, whereas reported previously, tsA58 T antigen failed to oligomerize at the nonpermissive temperature. Furthermore, we studied the formation of complexes between T antigen and the cellular p53 protein (T-p53) late in infection. Corresponding to its heat-stable oligomerization properties, T antigen encoded by tsA1499 formed T-p53 complexes regardless of temperature. In contrast, tsA58 encoded T-p53 complexes, preformed at the permissive temperature, remained heat stable after shifting up to the nonpermissive temperature; but at this temperature no new T-p53 complexes arose. The mutants did not replicate viral DNA at the nonpermissive temperature, suggesting that neither the oligomerization of T antigen nor the formation of T-p53 complexes seems to be sufficient for viral DNA replication or for the expression of late viral proteins.
Collapse
|
36
|
Santos M, Butel JS. Dynamic nature of the association of large tumor antigen and p53 cellular protein with the surfaces of simian virus 40-transformed cells. J Virol 1984; 49:50-6. [PMID: 6690721 PMCID: PMC255423 DOI: 10.1128/jvi.49.1.50-56.1984] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A molecular complex of simian virus 40 large tumor antigen (T-Ag) and p53 cellular protein is present on the surface of simian virus 40-transformed mouse cells. The stability of the association of the two proteins with the cell surface was characterized. Cells were either surface iodinated by the lactoperoxidase technique or metabolically labeled with [35S]methionine, and surface antigens were detected by differential immunoprecipitation with specific antibodies immediately after labeling or after incubation at 37 degrees C. A rapid, concomitant disappearance of T-Ag and p53 from the cell surface was observed. The half-life of iodinated surface T-Ag was less than 30 min, whereas that of [35S]methionine-labeled surface T-Ag was 1 to 2 h. Although T-Ag and p53 were rapidly lost, both were also rapidly replaced on the cell surface, since newly exposed molecules could be detected when cells were reiodinated after a 2-h chase period. Control experiments established that the loss of the surface molecules was not induced by the iodination reaction. The appearance of surface T-Ag was prevented when cellular protein synthesis was inhibited with cycloheximide. The disappearance and replacement of T-Ag and p53 appeared to be energy-independent processes, as neither was inhibited by sodium azide or 2,4-dinitrophenol. Incubation of iodinated cells at 4 degrees C did block the loss of T-Ag and p53. These observations suggest that T-Ag and p53 are coordinately turned over in the plasma membrane. The nature of the association of the T-Ag-p53 complex with the cell surface can best be described as highly dynamic.
Collapse
|
37
|
La Bella F, Brown EH, Basilico C. Changes in the levels of viral and cellular gene-transcripts in the cell cycle of SV40 transformed mouse cells. J Cell Physiol 1983; 117:62-8. [PMID: 6311850 DOI: 10.1002/jcp.1041170110] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We have analyzed the regulation of transcription of integrated SV40 DNA and of five cellular genes during the cell cycle of two lines of SV40 transformed mouse 3T3 cells. These cells (ts SV3T3) are temperature sensitive for the expression of the transformed phenotype and at the nonpermissive temperature (39 degrees C) become arrested in G1 at low serum concentrations. SV40 specific RNAs are not detected either in the nuclear or in the cytoplasmic poly(A+)RNA of quiescent cells, suggesting control at the level of transcription. After serum stimulation, however, viral transcription increases and reaches its maximum during S-phase. The expression of a group of selected housekeeping genes has received parallel analysis to determine whether other cellular genes, beside the integrated SV40, are shut off in G1 arrested cells or are expressed in restricted periods of the cell cycle. We have found that, while the mRNAs for collagen, adenosinphosphoribosiltransferase (APRT) and the mouse major histocompatibility complex (H2) are present throughout the cell cycle, the genes coding for the multifunctional protein CAD and dehydrofolate reductase are cell-cycle regulated.
Collapse
|
38
|
Morrison B, Kress M, Khoury G, Jay G. Simian virus 40 tumor antigen: isolation of the origin-specific DNA-binding domain. J Virol 1983; 47:106-14. [PMID: 6306267 PMCID: PMC255208 DOI: 10.1128/jvi.47.1.106-114.1983] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
To localize the origin-specific DNA-binding domain on the simian virus 40 tumor (T) antigen molecule, we used limited proteolysis with trypsin to generate fractional peptides for analysis. A 17,000-Mr peptide was found to be capable of binding not only to calf thymus DNA, but also specifically to the simian virus 40 origin of DNA replication. This approximately 130-amino-acid peptide was derived from the extreme N-terminus of the T antigen and represented less than one-fifth of the entire molecule. The coding sequence for this tryptic peptide was located approximately between 0.51 and 0.67 map units (excluding the intron, which maps between 0.54 and 0.59). Since the first 82 amino acids are shared between large T and small t antigens, and since the latter does not bind DNA, it can be concluded that the sequence between isoleucine 83 and approximately arginine 130 is necessary for origin-specific binding by the T antigen. We also observed that in vivo phosphorylation of the T antigen within this region completely abolished the ability of the 17,000-Mr peptide to bind DNA. This observation is consistent with the idea that DNA binding by the T antigen is regulated by posttranslational modifications.
Collapse
|
39
|
Freed MI, Lubin I, Simmons DT. Stoichiometry of large T antigen and pp53 in complexes isolated from simian virus 40-transformed rat cells. J Virol 1983; 46:1061-5. [PMID: 6304337 PMCID: PMC256585 DOI: 10.1128/jvi.46.3.1061-1065.1983] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Simian virus 40-transformed cells synthesize high-molecular-weight protein complexes (22 to 30S) that consist of the virus-coded large T antigen (81,500 daltons) and the cellular antigen pp53. These complexes were partially purified from lysates of transformed rat cells by sucrose velocity sedimentation. The stoichiometry of the two proteins in the complex was studied by direct enzyme-linked immunosorbent assays, using alkaline phosphatase-conjugated anti-T and anti-pp53 monoclonal antibodies. The results from these experiments indicate that the T antigen-to-pp53 ratio in the complex is 0.87 +/- 0.27. No statistically significant differences were found in this ratio for faster- and slower-sedimenting complexes. These results from enzyme-linked immunosorbent assays and previous molecular weight estimates of the complex suggest that this complex is composed, on the average, of four molecules of T antigen and four or five molecules of pp53.
Collapse
|
40
|
Abstract
Most animal viruses studied so far induce chromosomal aberrations. In addition, adenoviruses, papovaviruses, and retroviruses are known to induce gene mutations like mutagenic bacteriophages. At least in one case studied retrovirus induced mutagenesis involves gene and/or scripton splitting analogous to the mutagenic mechanism of action of mutatorphage Mu and other movable DNA elements. On the contrary, several results obtained by independent means indicate that Simian virus 40, a papovavirus, does not act by splitting the affected gene but presumably by generation of base pair substitutions or of other minor DNA damages leading to amino acid substitutions. The mechanisms involved are still unknown. There a some hints, however, that these mechanisms might have some step(s) in common with processes leading to malignancy. In fact those viruses proved unequivocally so far to be capable of inducing gene mutations are oncogenic viruses.
Collapse
|
41
|
Chaudry F, Belsham GJ, Smith AE. Biochemical properties of the 145,000-dalton super-T antigen from simian virus 40-transformed BALB/c 3T3 clone 20 cells. J Virol 1983; 45:1098-106. [PMID: 6300448 PMCID: PMC256518 DOI: 10.1128/jvi.45.3.1098-1106.1983] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
SV3T3 C120 cells contain a 145,000-dalton form of simian virus 40 (SV40) super-T antigen but little if any normal-sized large-T. The subcellular location of super-T, its DNA binding properties, and its interaction with nonviral tumor antigen (NVT) were examined. Immunofluorescence microscopy and subcellular fractionation indicated that super-T is almost exclusively nuclear. Chromatography on double-stranded DNA-cellulose showed that super-T binds to double-stranded DNA and has an elution profile indistinguishable from normal-sized large-T. Super-T also binds specifically to a fragment of SV40 DNA which contains the origin of DNA replication. However, immunoprecipitation of super-T or large-T either with anti-tumor cell serum or with anti-NVT serum from fractions obtained by sucrose density centrifugation of 32P-labeled or [35S]methionine-labeled extracts revealed clear differences in the sedimentation characteristics of these proteins. The bulk of labeled 145,000-dalton super-T sedimented between 4S and 10S, whereas the bulk of 32P-labeled large-T from normal SV40-transformed cells sedimented as two peaks at 23S to 25S and 16S to 18S. By contrast, the sedimentation properties of NVT from the SV3T3 C120 cells were similar to those normally observed with other SV3T3 cell lines. The reason for this apparent difference in complex formation between super-T and NVT and that normally observed with large-T is unclear, but it probably has no deleterious effect on the ability of super-T to maintain transformation.
Collapse
|
42
|
May E, Lasne C, Prives C, Borde J, May P. Study of the functional activities concomitantly retained by the 115,000 Mr super T antigen, an evolutionary variant of simian virus 40 large T antigen expressed in transformed rat cells. J Virol 1983; 45:901-13. [PMID: 6300461 PMCID: PMC256496 DOI: 10.1128/jvi.45.3.901-913.1983] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Simian virus 40 (SV40) transformed V 11 F 1 clone 1 subclone 7 rat cells (subclone 7) do not synthesize normal-size large T antigen (M(r), 90,000); instead, they produce a 115,000 M(r) super T antigen (115K super T antigen). This super T antigen is SV40 virus coded, and its synthesis results from rearrangement and amplification of integrated viral DNA sequences in subclone 7 (May et al., Nucleic Acids Res. 9:4111-4128, 1981). In this study the functional activities of 115K super T antigen were compared with the functional activities of SV40 large T antigen. Transfection experiments were performed with (i) cosmid SVE 5 Kb and plasmid pSVsT, both containing the super T antigen gene and (ii) plasmids pSV1 and pSV40, both containing the large T antigen gene. Transfection of pSVsT DNA or SVE 5 Kb DNA into secondary cultures of rat kidney cells induced the formation of transformed cell foci with an efficiency that was about 50% of the efficiency of pSV1 DNA or pSV40 DNA. Concomitant with the transforming activity, two other activities were also retained by super T antigen, namely, the ability to enhance the level of host cellular protein p53 and the capacity to bind to p53. In contrast, pSVsT and SVE 5 Kb DNAs were markedly deficient in the capacity to support tsA58 DNA replication in CV1-P cells at a nonpermissive temperature (41 degrees C), as shown by cotransfection experiments. The yield of virus produced in these experiments was 400-fold less than the yield obtained in parallel experiments with pSV40 or pSV1. However, SVE 5 Kb and pSVsT have a functional SV40 replication origin, as shown by their efficient replication in COS 1 cells which provided functional large T antigen. Super T antigen also possesses a specific affinity for sequences of SV40 viral origin. Our results suggest that under certain conditions, evolutionary changes in T antigen take place and that these changes could be restricted to the phenotypic requirement of maintaining a structure that is able to induce cell transformation, to form a complex with p53, and to enhance the cellular level of p53. Therefore, there appears to be a close relationship among the activities of T antigen involved in transforming cells, in binding to p53, and in enhancing the p53 cellular level. Moreover, this set of activities appears to be separable from the replicative ability of T antigen, based on the observation that 115K super T antigen is markedly defective for initiating viral DNA synthesis.
Collapse
|
43
|
Montenarh M, Henning R. Self-assembly of simian virus 40 large T antigen oligomers by divalent cations. J Virol 1983; 45:531-8. [PMID: 6300417 PMCID: PMC256446 DOI: 10.1128/jvi.45.2.531-538.1983] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In simian virus 40-transformed cells, simian virus 40 large T antigen can be detected in different forms separable by sucrose density gradient centrifugation. In our experiments, light forms sedimented around 5 to 7S, oligomers such as tetramers were detected around 16S, and higher aggregates sedimented in a broad distribution reaching above 23S. The oligomers sedimenting at and above 16S could be disassembled into the slowly sedimenting 5 to 7S forms by chelating agents [EDTA or ethylene bis(oxonitrilo)tetraacetate]. After the addition of divalent cations (CaCl2 or MgCl2) in excess of chelating agents, oligomeric forms reassembled and appeared in a sedimentation pattern resembling that observed before treatment with chelating agents. Time course studies permitted the identification of the 5 to 7S forms as precursors upon pulse-labeling (15 min); the 16S and higher oligomers were identified as the successors after a 14-h chase. Treatment of extracts of pulse-chase-labeled cells with chelating agents again disassembled the oligomers, whereas pulse-labeled precursors did not change their 5 to 7S sedimentation pattern. Adding an excess of divalent cations reassembled the pulse-chase-labeled T antigen to oligomers but did not influence the sedimentation behavior of pulse-labeled 5 to 7S precursors. It is therefore reasonable to assume that a posttranslational modulation induces divalent cation binding, leading finally to the oligomerization of T antigen. Thus, some of the multifunctional activities of T antigen can be dictated by divalent cation binding properties.
Collapse
|
44
|
van Roy F, Fransen L, Fiers W. Improved localization of phosphorylation sites in simian virus 40 large T antigen. J Virol 1983; 45:315-31. [PMID: 6296439 PMCID: PMC256414 DOI: 10.1128/jvi.45.1.315-331.1983] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The location of phosphorylation sites in the large T antigen of simian virus 40 has been studied both by partial chemical cleavage and by partial proteolysis of various forms of large T. These included the full-size wild-type molecule with an apparent molecular weight of 88,000, deleted molecules coded for by the mutants dl1265 and dl1263, and several shortened derivatives generated by the action of a cellular protease. These molecules differed from each other by variations in the carboxy-terminal end. In contrast, a ubiquitous but minor large T form with a molecular weight of 91,000 was found to be modified in the amino-terminal half of the molecule. In addition to the phosphorylation of threonine at position 701 (K.-H. Scheidtmann et al., J. Virol. 38:59-69, 1981), two other discrete domains of phosphorylation were recognized, one at either side of the molecule. The amino-terminal region was located between positions 81 and 124 and contained both phosphothreonine and phosphoserine residues. The carboxy-terminal region was located between approximate positions 500 and 640 and contained at least one phosphoserine residue but no phosphothreonine. The presence in the phosphorylated domains of large T of known recognition sequences for different types of protein kinases is discussed, together with possible functions of large T associated with these domains.
Collapse
|
45
|
Klockmann U, Deppert W. Acylated simian virus 40 large T-antigen: a new subclass associated with a detergent-resistant lamina of the plasma membrane. EMBO J 1983; 2:1151-7. [PMID: 6313352 PMCID: PMC555249 DOI: 10.1002/j.1460-2075.1983.tb01560.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We have analyzed the plasma membrane association of the SV40 large tumor antigen (large T) in SV40-transformed BALB/c mouse tumor cells (mKSA). Isolated plasma membranes were subfractionated: treatment with the non-ionic detergent Nonidet P40 (NP40) resulted in a NP40-resistant plasma membrane lamina, which could be further extracted with the zwitterionic detergent Empigen BB. Analysis of the different plasma membrane fractions revealed that only about one third of large T associated with isolated plasma membranes could be solubilized with NP40. The residual plasma membrane-associated large T was tightly bound to the NP40-resistant lamina of the plasma membrane from which it was released by treatment with the zwitterionic detergent Empigen BB. Further evidence for a specific interaction of a distinct subclass of large T with the plasma membrane was provided by showing that only T associated with the NP40-resistant lamina of the plasma membrane contained covalently bound fatty acid. Neither nuclear large T nor large T in the NP40-soluble plasma membrane fraction could be labeled with [3H]palmitic acid. Our results indicate that an acylated subclass of large T interacts specifically with a structure of the plasma membrane, suggesting that it might be involved in a membrane-dependent biological function.
Collapse
|
46
|
Van Roy F, Fransen L, Fiers W. Metabolic turnover of phosphorylation sites in simian virus 40 large T antigen. J Virol 1983; 45:442-6. [PMID: 6296451 PMCID: PMC256427 DOI: 10.1128/jvi.45.1.442-446.1983] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Four (groups of) phosphorylation sites exist in the large T antigen of simian virus 40, and they involve at least two serine and two threonine residues (Van Roy et al. J. Virol. 45:315-331, 1983). All the phosphorylation sites were found to be modified and again dephosphorylated at discrete rates, with phosphoserine residues having the highest turnover rate. The measured half-lives ranged between 3 h (for the carboxy-terminal phosphoserine site) and 5.5 h (for the amino-terminal phosphothreonine site). The influence of four temperature-sensitive A mutations on phosphorylation of large T antigen was also examined. At restrictive temperature, phosphorylation of the carboxy-terminal phosphoserine in mutated large T antigen was found to be particularly impaired. These data emphasize the physiological importance of the latter phosphorylation site.
Collapse
|
47
|
Baumann EA, Hand R. Phosphorylation and dephosphorylation alter the structure of D2 hybrid T antigen. J Virol 1982; 44:78-87. [PMID: 6292506 PMCID: PMC256242 DOI: 10.1128/jvi.44.1.78-87.1982] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
D2 hybrid T antigen is a protein closely related to simian virus 40 large T antigen and is synthesized in large quantities in cells infected with Ad2+D2, an adenovirus-simian virus 40 hybrid. We have analyzed the effects of phosphorylation on the structure and DNA binding of this protein. On nondenaturing pore-gradient gels, the purified protein migrated with an apparent molecular weight of 135,000, with a minor band at 330,000 molecular weight. In vitro phosphorylation catalyzed by the protein kinase activity associated with the protein resulted in a structural change so that most of it migrated with an apparent molecular weight of 740,000. Treatment of the phosphorylated form of the protein with alkaline phosphatase (which removed 95% of the phosphate) caused the disappearance of the 740,000-molecular-weight form and reappearance of the smaller forms. Partial tryptic digestion showed that D2 T antigen has two major regions of phosphorylation, only one of which was phosphorylated in vitro. The region phosphorylated in vitro was responsible for the aggregation of D2 T antigen and was tentatively assigned to the N-terminal part of the protein. As shown by protein blotting onto nitrocellulose filters, it was mainly the form of 740,000 molecular weight that bound to simian virus 40 DNA. However, sucrose gradient analyses showed that only a fraction of the in vitro-phosphorylated protein bound to DNA, suggesting that aggregation alone is not sufficient for binding.
Collapse
|
48
|
Scheidtmann KH, Echle B, Walter G. Simian virus 40 large T antigen is phosphorylated at multiple sites clustered in two separate regions. J Virol 1982; 44:116-33. [PMID: 6292479 PMCID: PMC256246 DOI: 10.1128/jvi.44.1.116-133.1982] [Citation(s) in RCA: 165] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The phosphorylation sites of simian virus 40 large T antigen were determined within the primary structure of the molecule. Exhaustive digestion of (32)P-labeled large T antigen with trypsin generated six major phosphopeptides which could be separated in a newly developed isobutyric acid-containing chromatography system. By partial tryptic digestion, large T antigen was cleaved into an amino-terminal fragment of 17,000 daltons and overlapping fragments from the carboxy-terminal region ranging in size between 71,000 and 13,000 daltons. The location of the phosphopeptides was then determined by fingerprint analyses of individual fragments. Their physical properties were analyzed by sizing on polyacrylamide gels and by sequential digestion and peptide mapping; their amino acid composition was determined by differential labeling with various amino acids. The amino-terminal 17,000-dalton fragment gave rise to only one phosphopeptide (phosphopeptide 3) that contained half of the phosphate label incorporated into large T antigen. It contained phosphoserine and phosphothreonine sites, all of which were clustered within a small segment between Cys(105) and Lys(127). This segment contained five serines and two threonines. Among these, Ser(106), Ser(123), and Thr(124) were identified as phosphorylated residues; in addition, either one or both of Ser(111) and Ser(112) were phosphorylated. The neighboring residues, Ser(123) and Thr(124), were found in three different phosphorylation states in that either Ser(123) or Thr(124) or both were phosphorylated. Phosphopeptides 1, 2, 4, 5, and 6 were all derived from a single fragment extending 26,000 daltons upstream from the carboxy terminus of large T antigen. Phosphopeptide 6 was identical with the previously determined phosphothreonine peptide phosphorylated at Thr(701). Phosphopeptides 1, 2, 4, and 5 contained only serine-bound phosphate. Phosphopeptides 1, 2, and 4 represented overlapping peptides, all of which were phosphorylated at Ser(639) located next to a cluster of six acidic residues. In phosphopeptide 5, a large peptide ranging from Asn(653) to Arg(691), at least two of seven serines were phosphorylated. Thus, large T antigen contains at least eight phosphorylation sites. Their clustering within two separate regions might correlate with structural and functional domains of this protein.
Collapse
|
49
|
Fischer-Fantuzzi L, Vesco C. Cold-sensitive growth of simian virus 40 in semipermissive variants of CV1 cells. J Virol 1982; 43:791-9. [PMID: 6292461 PMCID: PMC256189 DOI: 10.1128/jvi.43.3.791-799.1982] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Two cell clones were isolated from the simian line CV1, permissive for simian virus 40 (SV40), by selection at low temperature with the tsA239 mutant of SV40. These clones exhibited cold-sensitive semipermissivity to both SV40 virions and SV40 DNA. On the basis of virus yields, their resistance to viral DNA was increased approximately 15 times over that of CV1 cells when the incubation temperature was lowered from 38.5 to 33.5 degrees C. A further 30- to 40-fold resistance increase was exhibited at both temperatures upon infection with SV40 virions. Partial characterization of these clones indicated that the cold sensitivity affected an early function in viral growth, between viral uncoating and the appearance of T-antigen positivity, with a burst-size decrease in all cells at the restricted temperature. This conditional defect appeared to be superimposed upon a temperature-independent uncoating defect, presumably carried in a CV1 subpopulation from which the two clones were ultimately selected.
Collapse
|
50
|
Gidoni D, Scheller A, Barnet B, Hantzopoulos P, Oren M, Prives C. Different forms of simian virus 40 large tumor antigen varying in their affinities for DNA. J Virol 1982; 42:456-66. [PMID: 6283167 PMCID: PMC256872 DOI: 10.1128/jvi.42.2.456-466.1982] [Citation(s) in RCA: 74] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In various permissive monkey cell lines infected with simian virus 40 there are two major forms of large T antigen which differ in their rate of sedimentation through sucrose gradients. The lighter (5 to 7S) form sedimented slightly more rapidly than the 4S tRNA marker, whereas the heavier (16S) form sedimented slightly more slowly than the 18S rRNA marker. The small t antigen did not form complexes which sedimented as rapidly as those formed by the large T antigen. The 16S T antigen form was converted to the slowly sedimenting 5 to 7S form in the presence of 1.0 M NaCl. The majority of large T antigen synthesized in cell-free protein-synthesizing systems primed by mRNA isolated from infected cells sedimented as the 5 to 7S form even when premixed with excess quantities of cellular T antigen. The formation of the 16S form in infected cells did not require ongoing viral or cellular DNA replication because considerable quantities of this T antigen class were produced in the presence of DNA synthesis inhibitors, such as cytosine arabinoside. Both 5 to 7S and 16S forms could be isolated separately and, therefore, each could be analyzed as to its individual properties. The 5 to 7S T antigen form bound more efficiently and tightly to DNA and had specific affinity for sequences at the viral origin of replication, whereas the 16S form bound less efficiently to DNA and exhibited very little specificity for origin-containing DNA sequences. It is therefore likely that the active DNA-binding species of T antigen isolated from infected cells is the 5 to 7S form.
Collapse
|