1
|
Lezzhov AA, Atabekova AK, Chergintsev DA, Lazareva EA, Solovyev AG, Morozov SY. Viroids and Retrozymes: Plant Circular RNAs Capable of Autonomous Replication. PLANTS (BASEL, SWITZERLAND) 2024; 14:61. [PMID: 39795321 PMCID: PMC11722881 DOI: 10.3390/plants14010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025]
Abstract
Among the long non-coding RNAs that are currently recognized as important regulatory molecules influencing a plethora of processes in eukaryotic cells, circular RNAs (circRNAs) represent a distinct class of RNAs that are predominantly produced by back-splicing of pre-mRNA. The most studied regulatory mechanisms involving circRNAs are acting as miRNA sponges, forming R-loops with genomic DNA, and encoding functional proteins. In addition to circRNAs generated by back-splicing, two types of circRNAs capable of autonomous RNA-RNA replication and systemic transport have been described in plants: viroids, which are infectious RNAs that cause a number of plant diseases, and retrozymes, which are transcripts of retrotransposon genomic loci that are capable of circularization due to ribozymes. Based on a number of common features, viroids and retrozymes are considered to be evolutionarily related. Here, we provide an overview of the biogenesis mechanisms and regulatory functions of non-replicating circRNAs produced by back-splicing and further discuss in detail the currently available data on viroids and retrozymes, focusing on their structural features, replication mechanisms, interaction with cellular components, and transport in plants. In addition, biotechnological approaches involving replication-capable plant circRNAs are discussed, as well as their potential applications in research and agriculture.
Collapse
Affiliation(s)
| | | | | | | | | | - Sergey Y. Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (A.A.L.); (A.K.A.); (D.A.C.); (E.A.L.); (A.G.S.)
| |
Collapse
|
2
|
Ortolá B, Daròs JA. Viroids: Non-Coding Circular RNAs Able to Autonomously Replicate and Infect Higher Plants. BIOLOGY 2023; 12:172. [PMID: 36829451 PMCID: PMC9952643 DOI: 10.3390/biology12020172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023]
Abstract
Viroids are a unique type of infectious agent, exclusively composed of a relatively small (246-430 nt), highly base-paired, circular, non-coding RNA. Despite the small size and non-coding nature, the more-than-thirty currently known viroid species infectious of higher plants are able to autonomously replicate and move systemically through the host, thereby inducing disease in some plants. After recalling viroid discovery back in the late 60s and early 70s of last century and discussing current hypotheses about their evolutionary origin, this article reviews our current knowledge about these peculiar infectious agents. We describe the highly base-paired viroid molecules that fold in rod-like or branched structures and viroid taxonomic classification in two families, Pospiviroidae and Avsunviroidae, likely gathering nuclear and chloroplastic viroids, respectively. We review current knowledge about viroid replication through RNA-to-RNA rolling-circle mechanisms in which host factors, notably RNA transporters, RNA polymerases, RNases, and RNA ligases, are involved. Systemic movement through the infected plant, plant-to-plant transmission and host range are also discussed. Finally, we focus on the mechanisms of viroid pathogenesis, in which RNA silencing has acquired remarkable importance, and also for the initiation of potential biotechnological applications of viroid molecules.
Collapse
Affiliation(s)
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), 46022 Valencia, Spain
| |
Collapse
|
3
|
Manrubia S. The simple emergence of complex molecular function. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20200422. [PMID: 35599566 DOI: 10.1098/rsta.2020.0422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
At odds with a traditional view of molecular evolution that seeks a descent-with-modification relationship between functional sequences, new functions can emerge de novo with relative ease. At early times of molecular evolution, random polymers could have sufficed for the appearance of incipient chemical activity, while the cellular environment harbours a myriad of proto-functional molecules. The emergence of function is facilitated by several mechanisms intrinsic to molecular organization, such as redundant mapping of sequences into structures, phenotypic plasticity, modularity or cooperative associations between genomic sequences. It is the availability of niches in the molecular ecology that filters new potentially functional proposals. New phenotypes and subsequent levels of molecular complexity could be attained through combinatorial explorations of currently available molecular variants. Natural selection does the rest. This article is part of the theme issue 'Emergent phenomena in complex physical and socio-technical systems: from cells to societies'.
Collapse
Affiliation(s)
- Susanna Manrubia
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
- Systems Biology Department, National Biotechnology Centre (CSIC), c/Darwin 3, 28049 Madrid, Spain
| |
Collapse
|
4
|
Flores R, Navarro B, Serra P, Di Serio F. A scenario for the emergence of protoviroids in the RNA world and for their further evolution into viroids and viroid-like RNAs by modular recombinations and mutations. Virus Evol 2022; 8:veab107. [PMID: 35223083 PMCID: PMC8865084 DOI: 10.1093/ve/veab107] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/10/2021] [Accepted: 01/14/2022] [Indexed: 11/14/2022] Open
Abstract
Viroids are tiny, circular, and noncoding RNAs that are able to replicate and systemically infect plants. The smallest known pathogens, viroids have been proposed to represent survivors from the RNA world that likely preceded the cellular world currently dominating life on the earth. Although the small, circular, and compact nature of viroid genomes, some of which are also endowed with catalytic activity mediated by hammerhead ribozymes, support this proposal, the lack of feasible evolutionary routes and the identification of hammerhead ribozymes in a large number of DNA genomes of organisms along the tree of life have led some to question such a proposal. Here, we reassess the origin and subsequent evolution of viroids by complementing phylogenetic reconstructions with molecular data, including the primary and higher-order structure of the genomic RNAs, their replication, and recombination mechanisms and selected biological information. Features of some viroid-like RNAs found in plants, animals, and possibly fungi are also considered. The resulting evolutionary scenario supports the emergence of protoviroids in the RNA world, mainly as replicative modules, followed by a further increase in genome complexity based on module/domain shuffling and combination and mutation. Such a modular evolutionary scenario would have facilitated the inclusion in the protoviroid genomes of complex RNA structures (or coding sequences, as in the case of hepatitis delta virus and delta-like agents), likely needed for their adaptation from the RNA world to a life based on cells, thus generating the ancestors of current infectious viroids and viroid-like RNAs. Other noninfectious viroid-like RNAs, such as retroviroid-like RNA elements and retrozymes, could also be derived from protoviroids if their reverse transcription and integration into viral or eukaryotic DNA, respectively, are considered as a possible key step in their evolution. Comparison of evidence supporting a general and modular evolutionary model for viroids and viroid-like RNAs with that favoring alternative scenarios provides reasonable reasons to keep alive the hypothesis that these small RNA pathogens may be relics of a precellular world.
Collapse
Affiliation(s)
- Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas–Universidad Politécnica de Valencia, Ingeniero Fausto Elio s/n, Valencia 46022, Spain
| | - Beatriz Navarro
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via Amendola 122/D, Bari 70126, Italy
| | - Pedro Serra
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas–Universidad Politécnica de Valencia, Ingeniero Fausto Elio s/n, Valencia 46022, Spain
| | - Francesco Di Serio
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via Amendola 122/D, Bari 70126, Italy
| |
Collapse
|
5
|
Viroids and Viroid-like Circular RNAs: Do They Descend from Primordial Replicators? LIFE (BASEL, SWITZERLAND) 2022; 12:life12010103. [PMID: 35054497 PMCID: PMC8781251 DOI: 10.3390/life12010103] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 01/09/2023]
Abstract
Viroids are a unique class of plant pathogens that consist of small circular RNA molecules, between 220 and 450 nucleotides in size. Viroids encode no proteins and are the smallest known infectious agents. Viroids replicate via the rolling circle mechanism, producing multimeric intermediates which are cleaved to unit length either by ribozymes formed from both polarities of the viroid genomic RNA or by coopted host RNAses. Many viroid-like small circular RNAs are satellites of plant RNA viruses. Ribozyviruses, represented by human hepatitis delta virus, are larger viroid-like circular RNAs that additionally encode the viral nucleocapsid protein. It has been proposed that viroids are direct descendants of primordial RNA replicons that were present in the hypothetical RNA world. We argue, however, that much later origin of viroids, possibly, from recently discovered mobile genetic elements known as retrozymes, is a far more parsimonious evolutionary scenario. Nevertheless, viroids and viroid-like circular RNAs are minimal replicators that are likely to be close to the theoretical lower limit of replicator size and arguably comprise the paradigm for replicator emergence. Thus, although viroid-like replicators are unlikely to be direct descendants of primordial RNA replicators, the study of the diversity and evolution of these ultimate genetic parasites can yield insights into the earliest stages of the evolution of life.
Collapse
|
6
|
Venkataraman S, Badar U, Shoeb E, Hashim G, AbouHaidar M, Hefferon K. An Inside Look into Biological Miniatures: Molecular Mechanisms of Viroids. Int J Mol Sci 2021; 22:2795. [PMID: 33801996 PMCID: PMC8001946 DOI: 10.3390/ijms22062795] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 11/17/2022] Open
Abstract
Viroids are tiny single-stranded circular RNA pathogens that infect plants. Viroids do not encode any proteins, yet cause an assortment of symptoms. The following review describes viroid classification, molecular biology and spread. The review also discusses viroid pathogenesis, host interactions and detection. The review concludes with a description of future prospects in viroid research.
Collapse
Affiliation(s)
| | | | | | | | | | - Kathleen Hefferon
- Cell and System Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; (S.V.); (U.B.); (E.S.); (G.H.); (M.A.)
| |
Collapse
|
7
|
Badar U, Venkataraman S, AbouHaidar M, Hefferon K. Molecular interactions of plant viral satellites. Virus Genes 2020; 57:1-22. [PMID: 33226576 DOI: 10.1007/s11262-020-01806-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/24/2020] [Indexed: 12/18/2022]
Abstract
Plant viral satellites fall under the category of subviral agents. Their genomes are composed of small RNA or DNA molecules a few hundred nucleotides in length and contain an assortment of highly complex and overlapping functions. Each lacks the ability to either replicate or undergo encapsidation or both in the absence of a helper virus (HV). As the number of known satellites increases steadily, our knowledge regarding their sequence conservation strategies, means of replication and specific interactions with host and helper viruses is improving. This review demonstrates that the molecular interactions of these satellites are unique and highly complex, largely influenced by the highly specific host plants and helper viruses that they associate with. Circularized forms of single-stranded RNA are of particular interest, as they have recently been found to play a variety of novel cellular functions. Linear forms of satRNA are also of great significance as they may complement the helper virus genome in exacerbating symptoms, or in certain instances, actively compete against it, thus reducing symptom severity. This review serves to describe the current literature with respect to these molecular mechanisms in detail as well as to discuss recent insights into this emerging field in terms of evolution, classification and symptom development. The review concludes with a discussion of future steps in plant viral satellite research and development.
Collapse
Affiliation(s)
- Uzma Badar
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | | | - Mounir AbouHaidar
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Kathleen Hefferon
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
8
|
Adkar-Purushothama CR, Perreault JP. Impact of Nucleic Acid Sequencing on Viroid Biology. Int J Mol Sci 2020; 21:ijms21155532. [PMID: 32752288 PMCID: PMC7432327 DOI: 10.3390/ijms21155532] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/26/2022] Open
Abstract
The early 1970s marked two breakthroughs in the field of biology: (i) The development of nucleotide sequencing technology; and, (ii) the discovery of the viroids. The first DNA sequences were obtained by two-dimensional chromatography which was later replaced by sequencing using electrophoresis technique. The subsequent development of fluorescence-based sequencing method which made DNA sequencing not only easier, but many orders of magnitude faster. The knowledge of DNA sequences has become an indispensable tool for both basic and applied research. It has shed light biology of viroids, the highly structured, circular, single-stranded non-coding RNA molecules that infect numerous economically important plants. Our understanding of viroid molecular biology and biochemistry has been intimately associated with the evolution of nucleic acid sequencing technologies. With the development of the next-generation sequence method, viroid research exponentially progressed, notably in the areas of the molecular mechanisms of viroids and viroid diseases, viroid pathogenesis, viroid quasi-species, viroid adaptability, and viroid–host interactions, to name a few examples. In this review, the progress in the understanding of viroid biology in conjunction with the improvements in nucleotide sequencing technology is summarized. The future of viroid research with respect to the use of third-generation sequencing technology is also briefly envisaged.
Collapse
|
9
|
Steger G, Riesner D. Viroid research and its significance for RNA technology and basic biochemistry. Nucleic Acids Res 2019; 46:10563-10576. [PMID: 30304486 PMCID: PMC6237808 DOI: 10.1093/nar/gky903] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/24/2018] [Indexed: 12/27/2022] Open
Abstract
Viroids were described 47 years ago as the smallest RNA molecules capable of infecting plants and autonomously self-replicating without an encoded protein. Work on viroids initiated the development of a number of innovative methods. Novel chromatographic and gelelectrophoretic methods were developed for the purification and characterization of viroids; these methods were later used in molecular biology, gene technology and in prion research. Theoretical and experimental studies of RNA folding demonstrated the general biological importance of metastable structures, and nuclear magnetic resonance spectroscopy of viroid RNA showed the partially covalent nature of hydrogen bonds in biological macromolecules. RNA biochemistry and molecular biology profited from viroid research, such as in the detection of RNA as template of DNA-dependent polymerases and in mechanisms of gene silencing. Viroids, the first circular RNA detected in nature, are important for studies on the much wider spectrum of circular RNAs and other non-coding RNAs.
Collapse
Affiliation(s)
- Gerhard Steger
- Department of Biology, Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Detlev Riesner
- Department of Biology, Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
10
|
Catalán P, Elena SF, Cuesta JA, Manrubia S. Parsimonious Scenario for the Emergence of Viroid-Like Replicons De Novo. Viruses 2019; 11:v11050425. [PMID: 31075860 PMCID: PMC6563258 DOI: 10.3390/v11050425] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 01/12/2023] Open
Abstract
Viroids are small, non-coding, circular RNA molecules that infect plants. Different hypotheses for their evolutionary origin have been put forward, such as an early emergence in a precellular RNA World or several de novo independent evolutionary origins in plants. Here, we discuss the plausibility of de novo emergence of viroid-like replicons by giving theoretical support to the likelihood of different steps along a parsimonious evolutionary pathway. While Avsunviroidae-like structures are relatively easy to obtain through evolution of a population of random RNA sequences of fixed length, rod-like structures typical of Pospiviroidae are difficult to fix. Using different quantitative approaches, we evaluated the likelihood that RNA sequences fold into a rod-like structure and bear specific sequence motifs facilitating interactions with other molecules, e.g., RNA polymerases, RNases, and ligases. By means of numerical simulations, we show that circular RNA replicons analogous to Pospiviroidae emerge if evolution is seeded with minimal circular RNAs that grow through the gradual addition of nucleotides. Further, these rod-like replicons often maintain their structure if independent functional modules are acquired that impose selective constraints. The evolutionary scenario we propose here is consistent with the structural and biochemical properties of viroids described to date.
Collapse
Affiliation(s)
- Pablo Catalán
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK.
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain.
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Paterna, 46980 València, Spain.
- The Santa Fe Institute, Santa Fe, NM 87501, USA.
| | - José A Cuesta
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain.
- Departamento de Matemáticas, Universidad Carlos III de Madrid, 28911 Leganés, Spain.
- Instituto de Biocomputación y Física de Sistemas Complejos (BiFi), Universidad de Zaragoza, 50018 Zaragoza, Spain.
- Institute of Financial Big Data (IFiBiD), Universidad Carlos III de Madrid⁻Banco de Santander, 28903 Getafe, Spain.
| | - Susanna Manrubia
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain.
- National Biotechnology Centre (CSIC), 28049 Madrid, Spain.
| |
Collapse
|
11
|
de la Peña M, Cervera A. Circular RNAs with hammerhead ribozymes encoded in eukaryotic genomes: The enemy at home. RNA Biol 2017; 14:985-991. [PMID: 28448743 PMCID: PMC5680766 DOI: 10.1080/15476286.2017.1321730] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
A new family of non-autonomous retrotransposons with self-cleaving hammerhead ribozymes, the so called retrozymes, has recently been found encoded in diverse plant genomes. These retroelements can be actively transcribed, and their RNAs accumulate in the cells as abundant non-coding circular RNAs (circRNAs) of small size (600–1000 nt). Related circRNAs with self-cleaving ribozymes had already been described in plants, and belong to a group of infectious RNA agents with an uncertain origin: the viroids and viroid-like satellites of plant RNA viruses. These pathogenic circRNAs show many structural similarities with retrozyme circRNAs, and both have been found to occur in flowering plants as heterogeneous RNA molecules of positive and negative polarities. Taking all these data together, we hypothesize that circRNAs encoded by genomic retrozymes could have given origin to infectious circRNAs with self-cleaving ribozymes. Moreover, we propose that retrozymes in time could have evolved from the ancient family of Penelope-like retroelements, which also harbour hammerhead ribozymes. Putative retrozyme sequences with hammerhead ribozymes have been detected as well in metazoan genomes, opening the door to a common occurrence of circRNAs with self-cleaving motifs among eukaryotes.
Collapse
Affiliation(s)
- Marcos de la Peña
- a Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València) C/ Ingeniero Fausto Elio s/n , Valencia , Spain
| | - Amelia Cervera
- a Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València) C/ Ingeniero Fausto Elio s/n , Valencia , Spain
| |
Collapse
|
12
|
Flores R, Owens RA, Taylor J. Pathogenesis by subviral agents: viroids and hepatitis delta virus. Curr Opin Virol 2016; 17:87-94. [PMID: 26897654 DOI: 10.1016/j.coviro.2016.01.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 01/21/2016] [Accepted: 01/29/2016] [Indexed: 12/18/2022]
Abstract
The viroids of plants are the simplest known infectious genetic elements. They have RNA genomes of up to 400 nucleotides in length and no protein encoding capacity. Hepatitis delta virus (HDV), an infectious agent found only in humans co-infected with hepatitis B virus (HBV), is just slightly more complex, with an RNA genome of about 1700 nucleotides, and the ability to express just one small protein. Viroid and HDV RNAs share several features that include circular structure, compact folding, and replication via a rolling-circle mechanism. Both agents were detected because of their obvious pathogenic effects. Their simplicity demands a greater need than conventional RNA or DNA viruses to redirect host components for facilitating their infectious cycle, a need that directly and indirectly incites pathogenic effects. The mechanisms by which these pathogenic effects are produced are the topic of this review. In this context, RNA silencing mediates certain aspects of viroid pathogenesis.
Collapse
Affiliation(s)
- Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Valencia 46022, Spain.
| | - Robert A Owens
- Molecular Plant Pathology Laboratory, USDA-ARS, Beltsville, MD 20705, USA.
| | - John Taylor
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
13
|
Pek JW, Okamura K. Regulatory RNAs discovered in unexpected places. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 6:671-86. [DOI: 10.1002/wrna.1309] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/14/2015] [Accepted: 08/21/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Jun Wei Pek
- Temasek Life Sciences Laboratory; 1 Research Link, National University of Singapore; Singapore Singapore
| | - Katsutomo Okamura
- Temasek Life Sciences Laboratory; 1 Research Link, National University of Singapore; Singapore Singapore
- School of Biological Sciences; Nanyang Technological University; Singapore Singapore
| |
Collapse
|
14
|
Rao ALN, Kalantidis K. Virus-associated small satellite RNAs and viroids display similarities in their replication strategies. Virology 2015; 479-480:627-36. [PMID: 25731957 DOI: 10.1016/j.virol.2015.02.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/01/2015] [Accepted: 02/10/2015] [Indexed: 12/15/2022]
Abstract
Since the discovery of non-coding, small, highly structured, satellite RNAs (satRNAs) and viroids as subviral pathogens of plants , have been of great interest to molecular biologists as possible living fossils of pre-cellular evolution in an RNA world. Despite extensive studies performed in the last four decades, there is still mystery surrounding the origin and evolutionary relationship between these subviral pathogens. Recent technical advances revealed some commonly shared replication features between these two subviral pathogens. In this review, we discuss our current perception of replication and evolutionary origin of these petite RNA pathogens.
Collapse
Affiliation(s)
- A L N Rao
- Department of Plant Pathology & Microbiology, University of California, Riverside, CA 92521-0122, United States.
| | - Kriton Kalantidis
- IMBB-FORTH, Vasilika Vouton, Heraklion, Crete, Greece and Dept. of Biology, University of Crete, Heraklion, Greece
| |
Collapse
|
15
|
Abstract
Because RNA can be a carrier of genetic information and a biocatalyst, there is a consensus that it emerged before DNA and proteins, which eventually assumed these roles and relegated RNA to intermediate functions. If such a scenario--the so-called RNA world--existed, we might hope to find its relics in our present world. The properties of viroids that make them candidates for being survivors of the RNA world include those expected for primitive RNA replicons: (a) small size imposed by error-prone replication, (b) high G + C content to increase replication fidelity, (c) circular structure for assuring complete replication without genomic tags, (d) structural periodicity for modular assembly into enlarged genomes, (e) lack of protein-coding ability consistent with a ribosome-free habitat, and (f) replication mediated in some by ribozymes, the fingerprint of the RNA world. With the advent of DNA and proteins, those protoviroids lost some abilities and became the plant parasites we now know.
Collapse
Affiliation(s)
- Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), 46022 València, Spain;
| | | | | | | | | |
Collapse
|
16
|
Martinez G, Castellano M, Tortosa M, Pallas V, Gomez G. A pathogenic non-coding RNA induces changes in dynamic DNA methylation of ribosomal RNA genes in host plants. Nucleic Acids Res 2013; 42:1553-62. [PMID: 24178032 PMCID: PMC3919566 DOI: 10.1093/nar/gkt968] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Viroids are plant-pathogenic non-coding RNAs able to interfere with as yet poorly known host-regulatory pathways and to cause alterations recognized as diseases. The way in which these RNAs coerce the host to express symptoms remains to be totally deciphered. In recent years, diverse studies have proposed a close interplay between viroid-induced pathogenesis and RNA silencing, supporting the belief that viroid-derived small RNAs mediate the post-transcriptional cleavage of endogenous mRNAs by acting as elicitors of symptoms expression. Although the evidence supporting the role of viroid-derived small RNAs in pathogenesis is robust, the possibility that this phenomenon can be a more complex process, also involving viroid-induced alterations in plant gene expression at transcriptional levels, has been considered. Here we show that plants infected with the ‘Hop stunt viroid’ accumulate high levels of sRNAs derived from ribosomal transcripts. This effect was correlated with an increase in the transcription of ribosomal RNA (rRNA) precursors during infection. We observed that the transcriptional reactivation of rRNA genes correlates with a modification of DNA methylation in their promoter region and revealed that some rRNA genes are demethylated and transcriptionally reactivated during infection. This study reports a previously unknown mechanism associated with viroid (or any other pathogenic RNA) infection in plants providing new insights into aspects of host alterations induced by the viroid infectious cycle.
Collapse
Affiliation(s)
- German Martinez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC)-UPV, CPI, Edificio 8 E, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | | | | | | | | |
Collapse
|
17
|
Designing a bioengine for detection and analysis of base string on an affected sequence in high-concentration regions. BIOMED RESEARCH INTERNATIONAL 2013; 2013:372646. [PMID: 24000321 PMCID: PMC3755424 DOI: 10.1155/2013/372646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 07/13/2013] [Indexed: 11/17/2022]
Abstract
We design an Algorithm for bioengine. As a program are enable optimal alignments searching between two sequences, the host sequence (normal plant) as well as query sequence (virus). Searching for homologues has become a routine operation of biological sequences in 4 × 4 combination with different subsequence (word size). This program takes the advantage of the high degree of homology between such sequences to construct an alignment of the matching regions. There is a main aim which is to detect the overlapping reading frames. This program also enables to find out the highly infected colones selection highest matching region with minimum gap or mismatch zones and unique virus colones matches. This is a small, portable, interactive, front-end program intended to be used to find out the regions of matching between host sequence and query subsequences. All the operations are carried out in fraction of seconds, depending on the required task and on the sequence length.
Collapse
|
18
|
Tessitori M, Maria G, Capasso C, Catara G, Rizza S, De Luca V, Catara A, Capasso A, Carginale V. Differential display analysis of gene expression in Etrog citron leaves infected by Citrus viroid III. ACTA ACUST UNITED AC 2007; 1769:228-35. [PMID: 17475349 DOI: 10.1016/j.bbaexp.2007.03.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 03/14/2007] [Accepted: 03/16/2007] [Indexed: 11/30/2022]
Abstract
Citrus are natural hosts of several viroids, which are plant pathogens composed exclusively of a non-protein-coding, small single-stranded circular RNA that is able to replicate autonomously in susceptible hosts. They are responsible for symptoms such as stunting, leaf epinasty, and chlorosis. Citrus viroid III (CVd-III) has been long regarded as a possible dwarfing agent of citrus grafted on trifoliate orange and its hybrids. To investigate molecular mechanisms involved in pathogenesis, the messenger RNA (mRNA) differential display technique was here applied to identify genes whose transcription was significantly altered in leaves of Etrog citron (Citrus medica) infected by CVd-III (variant b). Of eighteen genes identified, thirteen were up-regulated by viroid infection, while five were down-regulated. Except for two genes that encode proteins of unknown function, the remaining genes are mainly involved in plant defence/stress responses, signal transduction, amino acid transport, and cell wall structure. Among the up-regulated genes, it is noteworthy a suppressor of RNA silencing that might be involved in viroid and virus pathogenicity. The functions of these genes are discussed.
Collapse
Affiliation(s)
- Matilde Tessitori
- Dipartimento di Scienze e Tecnologie Fitosanitarie, DISTEF, University of Catania, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Itaya A, Matsuda Y, Gonzales RA, Nelson RS, Ding B. Potato spindle tuber viroid strains of different pathogenicity induces and suppresses expression of common and unique genes in infected tomato. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:990-999. [PMID: 12437296 DOI: 10.1094/mpmi.2002.15.10.990] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Viroids are the smallest plant pathogens. These RNAs do not encode proteins and are not encapsidated, and yet they can replicate autonomously, move systemically, and cause diseases in infected plants. Notably, strains of a viroid with subtle differences in nucleotide sequences can cause dramatically different symptoms in infected plants. These features make viroids unique probes to investigate the role of a pathogenic RNA genome in triggering host responses. We conducted a comprehensive analysis of the differential gene expression patterns of tomato plants at various stages of infection by a mild and severe strain of Potato spindle tuber viroid (PSTVd). We also compared tomato gene expression altered by the PSTVd strains with that altered by Tobacco mosaic virus (TMV). Our analyses revealed that the two PSTVd strains altered expression of both common and unique tomato genes. These genes encode products involved in defense/stress response, cell wall structure, chloroplast function, protein metabolism, and other diverse functions. Five genes have unknown functions. Four genes are novel. The expression of some but not all of these genes was also altered by TMV infection. Our results indicate that viroids, although structurally simple, can trigger complex host responses. Further characterization of viroid-altered gene expression in a host plant should help understand viroid pathogenicity and, potentially, the mechanisms of RNA-mediated regulation of plant gene expression.
Collapse
Affiliation(s)
- Asuka Itaya
- Department of Plant Biology and Plant Biotechnology Center, Ohio State University, Columbus 43210, USA
| | | | | | | | | |
Collapse
|
20
|
Abstract
In its methodology, the unexpected discovery of the viroid in 1971 resembles that of the virus by Beijerinck some 70 years earlier. In either case, a novel type of plant pathogen was recognized by its ability to penetrate through a medium with pores small enough to exclude even the smallest previously known pathogen: bacteria as compared with the tobacco mosaic agent; viruses as compared with the potato spindle tuber agent. Interestingly, one of the two methods used by Beijerinck, diffusion of the tobacco mosaic agent into agar gels, is conceptually similar to one method used to establish the size of the potato spindle tuber agent, namely polyacrylamide gel electrophoresis. Further work demonstrated that neither agent is an unusually small conventional pathogen (a microbe in the case of the tobacco mosaic agent; a virus in the case of the potato spindle tuber agent), but that either agent represents the prototype of a fundamentally distinct class of pathogen, the viruses and the viroids, respectively. With the viroids, this distinction became evident once their unique molecular structure, lack of mRNA activity, and autonomous replication had become elucidated. Functionally, viroids rely to a far greater extent than viruses on their host's biosynthetic systems: Whereas translation of viral genetic information is essential for virus replication, viroids are totally dependent on their hosts' transcriptional system and, in contrast to viruses, no viroid-coded proteins are involved. Because of the viroids' simplicity and extremely small size they approach more closely even than viruses Beijerinck's concept of a contagium vivum fluidum.
Collapse
Affiliation(s)
- T O Diener
- Center for Agricultural Biotechnology, University of Maryland, College Park, USA
| |
Collapse
|
21
|
Abstract
Viroids, the smallest and simplest agents of infectious disease, cause a number of economically important diseases of crop plants. Present evidence indicates that most of these diseases originated recently (in the 20th century) by chance transfer of viroids from endemically infected wild plants or by use of viroid-infected germplasm during plant breeding. Modern agricultural practices, such as widespread monoculture of genetically identical plants, and worldwide distribution of planting material, has made it possible for the pathogens to maintain themselves in the crop plants and to conquer new territories. Phylogenetic analysis of their nucleotide sequences indicates that viroids and satellite RNAs represent a monophyletic group, with all but the two self-cleaving viroids forming one cluster and the satellite RNAs another. The two self-cleaving viroids are phylogenetically distant from either cluster; they may represent ancestral forms. Results from site-directed mutagenesis experiments indicate that, upon exposure to selective pressures, viroids can evolve extremely rapidly, with another, fitter, component of the quasi-species often becoming dominant within days or weeks. This extreme plasticity of their nucleotide sequences establishes viroids as the most rapidly evolving biological system known.
Collapse
Affiliation(s)
- T O Diener
- Center for Agricultural Biotechnology, University of Maryland Biotechnology Institute, University of Maryland, College Park 20742, USA
| |
Collapse
|
22
|
Somerville RA, Bendheim PE, Bolton DC. The transmissible agent causing scrapie must contain more than protein. Rev Med Virol 1991. [DOI: 10.1002/rmv.1980010302] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
23
|
Elena SF, Dopazo J, Flores R, Diener TO, Moya A. Phylogeny of viroids, viroidlike satellite RNAs, and the viroidlike domain of hepatitis delta virus RNA. Proc Natl Acad Sci U S A 1991; 88:5631-5634. [PMID: 1712103 PMCID: PMC51931 DOI: 10.1073/pnas.88.13.5631] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We report a phylogenetic study of viroids, some plant satellite RNAs, and the viroidlike domain of human hepatitis delta virus RNA. Our results support a monophyletic origin of these RNAs and are consistent with the hypothesis that they may be "living fossils" of a precellular RNA world. Moreover, the viroidlike domain of human hepatitis delta virus RNA appears closely related to the viroidlike satellite RNAs of plants, with which it shares some structural and functional properties. On the basis of our phylogenetic analysis, we propose a taxonomic classification of these RNAs.
Collapse
Affiliation(s)
- S F Elena
- Departament de Genètica i Servei de Bioinformàtica, Universitat de València, Spain
| | | | | | | | | |
Collapse
|
24
|
Abstract
The demonstration of enzymatic capabilities of certain RNAs, in addition to their well-known template properties, has led to the recognition that RNAs are the only biological macromolecules that can function both as genotype and phenotype, hence raising the possibility of Darwinian selection and precellular evolution at the RNA level in the absence of DNA or protein. Recent models of such precellular RNA systems are patterned after the properties of intron-derived ribozymes. On the basis of a phylogenetic analysis and known properties of certain small plant pathogenic RNAs (viroids and viroid-like satellite RNAs), I suggest that these plant RNAs are more plausible candidates than introns as "living fossils" of a precellular RNA world. Their small size and circularity would have enhanced probability of their survival in error-prone, primitive self-replicating RNA systems and assured complete replication without the need for initiation or termination signals. All of these RNAs possess efficient mechanisms for the precise cleavage of monomers from oligomeric replication intermediates. Some (most viroids) require a host factor, but others (viroid-like satellite RNAs and one viroid) function as self-cleaving RNA enzymes far smaller and simpler than those derived from introns. The question is raised whether introns could have evolved from viroids or viroid-like satellite RNAs rather than vice versa, as has been widely speculated.
Collapse
Affiliation(s)
- T O Diener
- Center for Agricultural Biotechnology, University of Maryland, College Park, 20742
| |
Collapse
|
25
|
Diener TO. Subviral pathogens of plants: the viroids. LA RICERCA IN CLINICA E IN LABORATORIO 1989; 19:105-28. [PMID: 2672273 DOI: 10.1007/bf02871800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Research during the last 15 years has conclusively shown that viroids are not only fundamentally different from viruses at the molecular level, but that they are most likely not directly related to viruses in an evolutionary sense. Today, viroids are among the most thoroughly studied biological macromolecules. Their molecular structures have been elucidated to a large extent, but much needs to be learned regarding the correlation between molecular structure and biological function. The availability of the tools of recombinant DNA technology in viroid research promises rapid progress in these areas of inquiry.
Collapse
Affiliation(s)
- T O Diener
- Center for Agricultural Biotechnology, University of Maryland, College Park
| |
Collapse
|
26
|
Hashimoto J, Koganezawa H. Nucleotide sequence and secondary structure of apple scar skin viroid. Nucleic Acids Res 1987; 15:7045-52. [PMID: 3658673 PMCID: PMC306191 DOI: 10.1093/nar/15.17.7045] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The complete nucleotide sequence of apple scar skin viroid(ASSV) has been established, and a probable secondary structure is proposed. A single-stranded circular ASSV RNA consists of 330 nucleotides and can assume the rodlike conformation with extensive base-pairing characteristic of all the known viroids. ASSV shows low sequence homologies with other viroids and lacks the central conserved region. These indicate that ASSV should be allocated to a separate viroid group. However, homologous sequences with potato spindle tuber viroid(PSTV) in ASSV occur in limited and scattered regions of both viroids. These homologous regions fall within the particular domains in the viroid domain model which has been previously proposed by Keese and Symons(Proc. Natl. Acad. Sci. USA. 82, 4582-4586, 1985).
Collapse
Affiliation(s)
- J Hashimoto
- National Institute of Agrobiological Resources, Ibaraki, Japan
| | | |
Collapse
|
27
|
Abstract
Group I introns are found in nuclear rRNA genes, mitochondrial mRNA and rRNA genes, and chloroplast tRNA genes. The hallmarks of this intron class are a 16-nucleotide consensus sequence and three sets of complementary sequences. The viroids (circular pathogenic plant RNAs) and the virusoids (plant satellite RNAs) also contain the consensus sequence and the three sets of complementary bases. Pairing of the complementary bases would generate a viroid structure resembling a group I intron, which might be stabilized in vivo through interactions with proteins. The Tetrahymena self-splicing rRNA intron further has sequences homologous with regions of potato spindle tuber viroid associated with the severity of viroid symptoms.
Collapse
|
28
|
Hadidi A. Relationship of viroids and certain other plant pathogenic nucleic acids to group I and II introns. PLANT MOLECULAR BIOLOGY 1986; 7:129-142. [PMID: 24302232 DOI: 10.1007/bf00040139] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/21/1986] [Indexed: 06/02/2023]
Abstract
The nucleotide sequences of viroids contain features believed to be essential for the splicing of group I introns. Common sequence elements include a 16-nucleotide consensus sequence and three pairs of short sequences arranged in the same sequential order in both types of RNAs. The calculated probability of finding sequences resembling the 16-nucleotide consensus sequence in random nucleotide chains showed that at low fidelity (up to 5 mismatched nucleotides), the number of such sequences in viroids, plant viral satellite RNAs, plant viral RNAs and one plant viral DNA, group I introns and flanking exons does not significantly differ from the number expected at random. As the degree of fidelity is increased, the number in both introns and viroids, but not in exons or the other plant pathogens examined, greatly exceeds that expected in random chains. These findings suggest that viroids may have evolved from group I introns and/or that processing of viroid oligomers to monomers may have structural requirements similar to those of group I introns. The nucleotide sequences of viroids do not show close homology with two conserved regions of group II introns, the 14-base pair consensus region and the 5' terminal segment. However, close homology does exist between the conserved sequence of the 3' terminal segment of group II introns and viroids thus suggesting a possible evolutionary or functional relationship.
Collapse
Affiliation(s)
- A Hadidi
- Microbiology and Plant Pathology Laboratory, Plant Protection Institute, ARS, U.S. Department of Agriculture, 20705, Beltsville, MD, U.S.A
| |
Collapse
|
29
|
Diener TO. Viroid processing: a model involving the central conserved region and hairpin I. Proc Natl Acad Sci U S A 1986; 83:58-62. [PMID: 3455758 PMCID: PMC322790 DOI: 10.1073/pnas.83.1.58] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A model is proposed for the processing of oligomeric viroid replication intermediates into monomeric, circular progeny viroids. The model identifies a thermodynamically extremely stable base-paired configuration that partially or completely dimeric, as well as higher, viroid oligomers can assume and postulates that this structure, which involves structural features common to all viroids (the central conserved region and secondary hairpin I), is essential for precise cleavage and ligation. The model explains why recombinant plasmids containing tandem repeats of two or more viroid sequence equivalents are highly infectious when inoculated into viroid-susceptible plants, why certain plasmids containing partially duplicated viroid-specific inserts are less infectious, and why plasmids containing monomeric inserts are noninfectious or at best marginally infectious. The model also accounts for the fact that vector-derived sequences on either or both sides of the viroid sequence(s) of a restriction fragment are precisely excised and are lacking in progeny viroids.
Collapse
|
30
|
Collmer CW, Hadidi A, Kaper JM. Nucleotide sequence of the satellite of peanut stunt virus reveals structural homologies with viroids and certain nuclear and mitochondrial introns. Proc Natl Acad Sci U S A 1985; 82:3110-4. [PMID: 3858808 PMCID: PMC397724 DOI: 10.1073/pnas.82.10.3110] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Peanut stunt virus-associated RNA 5 (PARNA 5), the satellite of a plant cucumovirus, is a linear RNA of 393 nucleotides with a 5' cap and a 3' hydroxyl group. Determination of its nucleotide sequence has revealed two consecutive open reading frames that together extend most of its length. Sequences at the 5' and 3' ends are homologous with those of the satellite of the related cucumber mosaic virus, and the double-stranded forms of both satellites contain an unpaired guanosine at the 3' end of the minus strand. However, little other homology exists between the two satellites. In contrast, PARNA 5 has several regions of 90% sequence homology with various plant viroids, including sequences of the conserved central region of most viroids. Such homologies suggest a common origin with viroids coupled with specific adaptation as a linear RNA. The presence within PARNA 5 of conserved intron sequences essential to proper RNA processing suggests a possible origin from plant introns and/or involvement of such sequences in the processing of PARNA 5 multimers to monomers at some stage of replication.
Collapse
|
31
|
Liu MH, Reddy R, Henning D, Spector D, Busch H. Primary and secondary structure of dinoflagellate U5 small nuclear RNA. Nucleic Acids Res 1984; 12:1529-42. [PMID: 6199742 PMCID: PMC318594 DOI: 10.1093/nar/12.3.1529] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
U5 RNA is one of the six capped small nuclear RNAs present in most eukaryotic cells. Like U1, U2, U4 and U6 RNAs, U5 RNA is associated with hnRNP particles and is thus probably involved in some, as yet undefined, aspects of pre-messenger RNA processing. In this study, the complete nucleotide sequence of U5 RNA of a dinoflagellate, Crypthecodinium cohnii was determined. The analysis of this dinoflagellate U5 RNA sequence showed that a) the sequence homology between human, rat and chicken U5 RNA sequences and dinoflagellate U5 RNA sequence is 64%; b) the extent and the position of post-transcriptional modifications are similar to those found in U5 RNA of higher eukaryotes; c) although the dinoflagellate U5 RNA is shorter in length (108 nucleotides long vs 117 long in human, rat and chicken cells), the RNA fits well into the same secondary structure proposed for U5 RNA of higher eukaryotes (Krol et al. (1981) Nucl. Acids Res. 9, 769); and d) the AUn nucleotide sequence protected by the Sm-antigen and the tight secondary structure found near the 3'-end of other U-RNAs was also found in dinoflagellate U5 RNA. The high order of homology observed between dinoflagellate U5 RNA and U5 RNA of higher eukaryotes indicates that dinoflagellates are more closely related to metazoans than to early eukaryotes.
Collapse
|
32
|
Riesner D, Colpan M, Goodman TC, Nagel L, Schumacher J, Steger G, Hofmann H. Dynamics and interactions of viroids. J Biomol Struct Dyn 1983; 1:669-88. [PMID: 6400894 DOI: 10.1080/07391102.1983.10507474] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Viroids are single stranded circular RNA molecules of 120,000 daltons which are pathogens of certain higher plants and replicate autonomously in the host cell. Virusoids are similar to viroids in respect to size and circularity but do replicate only as a part of a larger plant virus. The structure and structural transitions have been investigated by thermodynamic, kinetic and hydrodynamic methods and have been compared to results from calculations of the most favorable native structures and the denaturation process. The algorithm of Zuker et al. was modified for the application to circular nucleic acids. For viroids the calculations confirm our earlier theoretical and experimental results about the extended native structure and the highly cooperative transition into a branched structure. Virusoids, although described in the literature as viroid-like, show less base pairing, branching in the native secondary structure, and only low cooperativity during denaturation. They resemble more closely the properties of random sequences with length, G:C content, and circularity as in viroids but sequences generated by a computer. The comparison of viroids, virusoids and circular RNA of random sequences underlines the uniqueness of viroid structure. The interactions of viroids with dye and oligonucleotide-ligands and with RNA-polymerase II from wheat germ, which enzyme replicates viroids in vitro, has been studied in order to correlate viroid structure and its ability for specific interactions. Specificity of the interactions may be interpreted on the basis of the neighbourhood of double stranded and single stranded regions. In the host cell viroids are localized in the cell nucleus; they may be detected as free nucleic acids and in high molecular weight complexes together with other RNA and proteins.
Collapse
Affiliation(s)
- D Riesner
- Institute für Physikalische Biologie, Universität Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Sequence homology was found by computer analysis between potato spindle tuber viroid (PSTV) RNA and U3B snRNA of Novikoff hepatoma cells. This homology is colinear in arrangement, extends in length to 81% of the entire U3B snRNA molecule and is involved in the PSTV molecule unique sites which, if depicted in terms of the secondary structure of the circular PSTV molecule, reveal a conspicuous regularity in their location. A strong relation in primary structure between PSTV and U3B snRNA is demonstrated by statistical analysis.
Collapse
|
34
|
Cress DE, Kiefer MC, Owens RA. Construction of infectious potato spindle tuber viroid cDNA clones. Nucleic Acids Res 1983; 11:6821-35. [PMID: 6314259 PMCID: PMC326416 DOI: 10.1093/nar/11.19.6821] [Citation(s) in RCA: 96] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Contiguous restriction fragments from two cloned partial-length potato spindle tuber viroid (PSTV) cDNAs were used to construct recombinant DNAs containing full-length monomeric and dimeric PSTV cDNA. When five different PSTV cDNA plasmids and RNA isolated from E. coli cells harboring these plasmids were tested for infectivity on tomato, plasmid DNAs containing PSTV cDNA dimers were infectious. RNA transcripts containing the sequence of PSTV from these plasmids were also infectious. The sequences of the viroid progeny and the cloned DNA were identical. In vitro mutagenesis of infectious PSTV cDNAs will allow systematic investigation of the role of specific sequences in viroid replication and pathogenesis.
Collapse
|
35
|
Kiefer MC, Owens RA, Diener TO. Structural similarities between viroids and transposable genetic elements. Proc Natl Acad Sci U S A 1983; 80:6234-8. [PMID: 6312450 PMCID: PMC394270 DOI: 10.1073/pnas.80.20.6234] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The primary structures of the tomato planta macho and tomato apical stunt viroids have been determined, and probable secondary structures are proposed. Both viroids can assume the rodlike conformation with extensive base-pairing characteristic of all known viroids. Sequence homologies between the two viroids (75%) and with members of the potato spindle tuber viroid group (73-83%) indicate that they both belong to this group. Comparative sequence analysis of all members of the group reveals striking similarities with the ends of transposable genetic elements. These similarities, the presence of inverted repeats often ending with the dinucleotides U-G and C-A, and flanking imperfect direct repeats suggest that viroids may have originated from transposable elements or retroviral proviruses by deletion of interior portions of the viral (or element) DNA.
Collapse
|
36
|
Ohno T, Takamatsu N, Meshi T, Okada Y. Hop stunt viroid: molecular cloning and nucleotide sequence of the complete cDNA copy. Nucleic Acids Res 1983; 11:6185-97. [PMID: 6312412 PMCID: PMC326366 DOI: 10.1093/nar/11.18.6185] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The complete cDNA of hop stunt viroid (HSV) has been cloned by the method of Okayama and Berg (Mol.Cell.Biol.2,161-170. (1982] and the complete nucleotide sequence has been established. The covalently closed circular single-stranded HSV RNA consists of 297 nucleotides. The secondary structure predicted for HSV contains 67% of its residues base-paired. The native HSV can possess an extended rod-like structure characteristic of viroids previously established. The central region of the native HSV has a similar structure to the conserved region found in all viroids sequenced so far except for avocado sunblotch viroid. The sequence homologous to the 5'-end of U1a RNA is also found in the sequence of HSV but not in the central conserved region.
Collapse
|
37
|
|
38
|
|
39
|
Reddy R, Busch H. Small nuclear RNAs and RNA processing. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1983; 30:127-62. [PMID: 6198692 DOI: 10.1016/s0079-6603(08)60685-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
40
|
Rohde W, Rackwitz HR, Boege F, Sänger HL. Viroid RNA is accepted as a template for in vitro transcription by DNA-dependent DNA polymerase I and RNA polymerase from Escherichia coli. Biosci Rep 1982; 2:929-39. [PMID: 6760914 DOI: 10.1007/bf01114900] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The RNA genome of potato spindle tuber viroid (PSTV) is transcribed in vitro into complementary DNA and RNA by DNA-dependent DNA polymerase I and RNA polymerase, respectively, from Escherichia coli. In vitro synthesis of complementary RNA produces distinct transcripts larger than unit length thus reflecting the in vivo mechanism of viroid replication. The influence of varying experimental conditions on the transcription process is studied; actinomycin D is found to drastically reduce complementary RNA synthesis from the PSTV RNA template by RNA polymerase.
Collapse
|
41
|
Randles JW, Steger G, Riesner D. Structural transitions in viroid-like RNAs associated with cadang-cadang disease, velvet tobacco mottle virus, and Solanum nodiflorum mottle virus. Nucleic Acids Res 1982; 10:5569-86. [PMID: 7145707 PMCID: PMC320907 DOI: 10.1093/nar/10.18.5569] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The conformational transitions of viroid-like RNAs associated with cadang-cadang disease, velvet tobacco mottle virus, and solanum nodiflorum mottle virus were studied by melting analysis and fast temperature jump technique in 1 mM sodium-cacodylate, 10 mM NaCl, 0.1 mM EDTA, pH 6.8. The 4 circular RNAs of cadang-cadang show a highly cooperative transition between 45 and 49 degrees C, respectively, and a second transition of less hypochromicity at about 10 degrees C higher temperatures. The data are interpreted quantitatively on the basis of the sequences and secondary structure models. A very similar scheme for the structure and structural transitions as derived earlier for other viroids applies to the cadang-cadang RNAs. In the main transition the total native secondary structure is disrupted and a stable hairpin consisting of 9 base pairs is newly formed which dissociates in the second transition. The thermal denaturation of the circular RNAs from the viruses mentioned above is clearly distinct from viroid RNA in respect to stability and cooperativity. The results on cadang-cadang RNA are discussed in the light of recent hypotheses about the interference of viroids with the splicing process of the host cell.
Collapse
|
42
|
|
43
|
Kiss T, Solymosy F. Sequence homologies between a viroid and a small nuclear RNA (snRNA) species of mammalian origin. FEBS Lett 1982; 144:318-20. [PMID: 6180931 DOI: 10.1016/0014-5793(82)80662-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
44
|
Abstract
The sequence of the 247 nucleotide residues of the single strand circular RNA of avocado sunblotch viroid (ASBV) was determined using partial enzymic cleavage methods on overlapping viroid fragments obtained by partial ribonuclease digestion followed by 32p-labelling in vitro at their 5'-ends. ASBV is much smaller than potato spindle tuber viroid (PSTV; 359 residues) and chrysanthemum stunt viroid (CSV; 356 residues). A secondary structure model for ASBV is proposed and contains 67% of its residues base paired. In contrast to the extensive (69%) sequence homology of CSV with PSTV, only 18% of the ASBV sequence is homologous to PSTV and CSV. There are eight potential polypeptide translation products with chain lengths from 4 to 63 amino acid residues coded for by the plus (infectious) strand and four potential translation products (2 to 60 residues) coded for by the minus strand. An improved method is described for the synthesis of gamma-32p-ATP of high specific activity.
Collapse
|