1
|
My remembrances of H.G. Khorana: exploring the mechanism of bacteriorhodopsin with site-directed mutagenesis and FTIR difference spectroscopy. Biophys Rev 2023; 15:103-110. [PMID: 36909952 PMCID: PMC9995631 DOI: 10.1007/s12551-023-01046-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/23/2023] [Indexed: 02/09/2023] Open
Abstract
H.G. Khorana's seminal contributions to molecular biology are well-known. He also had a lesser known but still major influence on current application of advanced vibrational spectroscopic techniques such as FTIR difference spectroscopy to explore the mechanism of bacteriorhodopsin and other integral membrane proteins. In this review, I provide a personal perspective of my collaborative research and interactions with Gobind, from 1982 to 1995 when our groups published over 25 papers together which resulted in an early picture of key features of the bacteriorhodopsin proton pump mechanism. Much of this early work served as a blueprint for subsequent advances based on combining protein bioengineering and vibrational spectroscopic techniques to study integral membrane proteins.
Collapse
|
2
|
Interdisciplinary biophysical studies of membrane proteins bacteriorhodopsin and rhodopsin. Biophys Rev 2023; 15:111-125. [PMID: 36909961 PMCID: PMC9995646 DOI: 10.1007/s12551-022-01003-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/28/2022] [Indexed: 10/10/2022] Open
Abstract
The centenary of the birth of H. Gobind Khorana provides an auspicious opportunity to review the origins and evolution of parallel advances in biophysical methodology and molecular genetics technology used to study membrane proteins. Interdisciplinary work in the Khorana laboratory in the late 1970s and for the next three decades led to productive collaborations and fostered three subsequent scientific generations whose biophysical work on membrane proteins has led to detailed elucidation of the molecular mechanisms of energy transduction by the light-driven proton pump bacteriorhodopsin (bR) and signal transduction by the G protein-coupled receptor (GPCR) rhodopsin. This review will highlight the origins and advances of biophysical studies of membrane proteins made possible by the application of molecular genetics approaches to engineer site-specific alterations of membrane protein structures.
Collapse
|
3
|
de Grip WJ, Ganapathy S. Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering. Front Chem 2022; 10:879609. [PMID: 35815212 PMCID: PMC9257189 DOI: 10.3389/fchem.2022.879609] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/16/2022] [Indexed: 01/17/2023] Open
Abstract
The first member and eponym of the rhodopsin family was identified in the 1930s as the visual pigment of the rod photoreceptor cell in the animal retina. It was found to be a membrane protein, owing its photosensitivity to the presence of a covalently bound chromophoric group. This group, derived from vitamin A, was appropriately dubbed retinal. In the 1970s a microbial counterpart of this species was discovered in an archaeon, being a membrane protein also harbouring retinal as a chromophore, and named bacteriorhodopsin. Since their discovery a photogenic panorama unfolded, where up to date new members and subspecies with a variety of light-driven functionality have been added to this family. The animal branch, meanwhile categorized as type-2 rhodopsins, turned out to form a large subclass in the superfamily of G protein-coupled receptors and are essential to multiple elements of light-dependent animal sensory physiology. The microbial branch, the type-1 rhodopsins, largely function as light-driven ion pumps or channels, but also contain sensory-active and enzyme-sustaining subspecies. In this review we will follow the development of this exciting membrane protein panorama in a representative number of highlights and will present a prospect of their extraordinary future potential.
Collapse
Affiliation(s)
- Willem J. de Grip
- Leiden Institute of Chemistry, Department of Biophysical Organic Chemistry, Leiden University, Leiden, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Srividya Ganapathy
- Department of Imaging Physics, Delft University of Technology, Netherlands
| |
Collapse
|
4
|
Lorenz-Fonfria VA, Yagi K, Ito S, Kandori H. Retinal Vibrations in Bacteriorhodopsin are Mechanically Harmonic but Electrically Anharmonic: Evidence From Overtone and Combination Bands. Front Mol Biosci 2022; 8:749261. [PMID: 34977154 PMCID: PMC8718751 DOI: 10.3389/fmolb.2021.749261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/18/2021] [Indexed: 11/28/2022] Open
Abstract
Fundamental vibrations of the chromophore in the membrane protein bacteriorhodopsin (BR), a protonated Schiff base retinal, have been studied for decades, both by resonance Raman and by infrared (IR) difference spectroscopy. Such studies started comparing vibrational changes between the initial BR state (all-trans retinal) and the K intermediate (13-cis retinal), being later extended to the rest of intermediates. They contributed to our understanding of the proton-pumping mechanism of BR by exploiting the sensitivity of fundamental vibrational transitions of the retinal to its conformation. Here, we report on new bands in the 2,500 to 1,800 cm−1 region of the K-BR difference FT-IR spectrum. We show that the bands between 2,500 and 2,300 cm−1 originate from overtone and combination transitions from C-C stretches of the retinal. We assigned bands below 2,300 cm−1 to the combination of retinal C-C stretches with methyl rocks and with hydrogen-out-of-plane vibrations. Remarkably, experimental C-C overtone bands appeared at roughly twice the wavenumber of their fundamentals, with anharmonic mechanical constants ≤3.5 cm−1, and in some cases of ∼1 cm−1. Comparison of combination and fundamental bands indicates that most of the mechanical coupling constants are also very small. Despite the mechanical quasi-harmonicity of the C-C stretches, the area of their overtone bands was only ∼50 to ∼100 times smaller than of their fundamental bands. We concluded that electrical anharmonicity, the second mechanism giving intensity to overtone bands, must be particularly high for the retinal C-C stretches. We corroborated the assignments of negative bands in the K-BR difference FT-IR spectrum by ab initio anharmonic vibrational calculations of all-trans retinal in BR using a quantum-mechanics/molecular mechanics approach, reproducing reasonably well the small experimental anharmonic and coupling mechanical constants. Yet, and in spite accounting for both mechanical and electrical anharmonicities, the intensity of overtone C-C transitions was underestimated by a factor of 4–20, indicating room for improvement in state-of-the-art anharmonic vibrational calculations. The relatively intense overtone and combination bands of the retinal might open the possibility to detect retinal conformational changes too subtle to significantly affect fundamental transitions but leaving a footprint in overtone and combination transitions.
Collapse
Affiliation(s)
| | - Kiyoshi Yagi
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
| | - Shota Ito
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya, Japan
| |
Collapse
|
5
|
Mei G, Cavini CM, Mamaeva N, Wang P, DeGrip WJ, Rothschild KJ. Optical Switching Between Long-lived States of Opsin Transmembrane Voltage Sensors. Photochem Photobiol 2021; 97:1001-1015. [PMID: 33817800 PMCID: PMC8596844 DOI: 10.1111/php.13428] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/27/2022]
Abstract
Opsin-based transmembrane voltage sensors (OTVSs) are membrane proteins increasingly used in optogenetic applications to measure voltage changes across cellular membranes. In order to better understand the photophysical properties of OTVSs, we used a combination of UV-Vis absorption, fluorescence and FT-Raman spectroscopy to characterize QuasAr2 and NovArch, two closely related mutants derived from the proton pump archaerhodopsin-3 (AR3). We find both QuasAr2 and NovArch can be optically cycled repeatedly between O-like and M-like states using 5-min exposure to red (660 nm) and near-UV (405 nm) light. Longer red-light exposure resulted in the formation of a long-lived photoproduct similar to pink membrane, previously found to be a photoproduct of the BR O intermediate with a 9-cis retinylidene chromophore configuration. However, unlike QuasAr2 whose O-like state is stable in the dark, NovArch exhibits an O-like state which slowly partially decays in the dark to a stable M-like form with a deprotonated Schiff base and a 13-cis,15-anti retinylidene chromophore configuration. These results reveal a previously unknown complexity in the photochemistry of OTVSs including the ability to optically switch between different long-lived states. The possible molecular basis of these newly discovered properties along with potential optogenetic and biotechnological applications are discussed.
Collapse
Affiliation(s)
- Gaoxiang Mei
- Molecular Biophysics LaboratoryDepartment of PhysicsPhotonics CenterBoston UniversityBostonMA
| | - Cesar M. Cavini
- Molecular Biophysics LaboratoryDepartment of PhysicsPhotonics CenterBoston UniversityBostonMA
| | - Natalia Mamaeva
- Molecular Biophysics LaboratoryDepartment of PhysicsPhotonics CenterBoston UniversityBostonMA
| | | | - Willem J. DeGrip
- Department of Biophysical Organic ChemistryLeiden Institute of ChemistryLeiden UniversityLeidenThe Netherlands
- Department of BiochemistryRadboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Kenneth J. Rothschild
- Molecular Biophysics LaboratoryDepartment of PhysicsPhotonics CenterBoston UniversityBostonMA
| |
Collapse
|
6
|
Tomida S, Kitagawa S, Kandori H, Furutani Y. Inverse Hydrogen-Bonding Change Between the Protonated Retinal Schiff Base and Water Molecules upon Photoisomerization in Heliorhodopsin 48C12. J Phys Chem B 2021; 125:8331-8341. [PMID: 34292728 DOI: 10.1021/acs.jpcb.1c01907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Heliorhodopsin (HeR) is a new class of the rhodopsin family discovered in 2018 through functional metagenomic analysis (named 48C12). Similar to typical microbial rhodopsins, HeR possesses seven transmembrane (TM) α-helices and an all-trans-retinal covalently bonded to the lysine residue on TM7 via a protonated Schiff base. Remarkably, the HeR membrane topology is inverted compared with that of typical microbial rhodopsins. The X-ray crystal structure of HeR 48C12 was elucidated after the first report on a HeR variant from Thermoplasmatales archaeon SG8-52-1, which revealed the water-mediated hydrogen-bonding network connected to the Schiff base region in the cytoplasmic side. Herein, low-temperature light-induced FTIR spectroscopic analyses of HeR 48C12 and 15N isotopically labeled proteins were used to elucidate the structural changes during retinal photoisomerization. N-D stretching vibrations of the protonated retinal Schiff base (PRSB) at 2286 and 2302 cm-1 in the dark state, and 2239 and 2252 cm-1 in the K intermediate were observed. The frequency changes indicated that the hydrogen bond of PRSB strengthens upon photoisomerization in HeR. Moreover, O-D stretching vibration frequencies of the internal water molecules indicate that the hydrogen-bonding strength decreases concomitantly. Therefore, the PRSB hydrogen bond responds to photoisomerization in an opposite way to the hydrogen-bonding network involving water molecules. No frequency changes of the indole N-H or N-D stretching vibrations of tryptophan residues were observed upon photoisomerization, suggesting that all tryptophan residues in the HeR 48C12 maintained the hydrogen-bonding strengths in the K intermediate. These results provide insights into the molecular mechanism of the energy storage and propagation upon retinal photoisomerization in HeR.
Collapse
Affiliation(s)
- Sahoko Tomida
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Shinya Kitagawa
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Yuji Furutani
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
7
|
Abstract
Infrared difference spectroscopy probes vibrational changes of proteins upon their perturbation. Compared with other spectroscopic methods, it stands out by its sensitivity to the protonation state, H-bonding, and the conformation of different groups in proteins, including the peptide backbone, amino acid side chains, internal water molecules, or cofactors. In particular, the detection of protonation and H-bonding changes in a time-resolved manner, not easily obtained by other techniques, is one of the most successful applications of IR difference spectroscopy. The present review deals with the use of perturbations designed to specifically change the protein between two (or more) functionally relevant states, a strategy often referred to as reaction-induced IR difference spectroscopy. In the first half of this contribution, I review the technique of reaction-induced IR difference spectroscopy of proteins, with special emphasis given to the preparation of suitable samples and their characterization, strategies for the perturbation of proteins, and methodologies for time-resolved measurements (from nanoseconds to minutes). The second half of this contribution focuses on the spectral interpretation. It starts by reviewing how changes in H-bonding, medium polarity, and vibrational coupling affect vibrational frequencies, intensities, and bandwidths. It is followed by band assignments, a crucial aspect mostly performed with the help of isotopic labeling and site-directed mutagenesis, and complemented by integration and interpretation of the results in the context of the studied protein, an aspect increasingly supported by spectral calculations. Selected examples from the literature, predominately but not exclusively from retinal proteins, are used to illustrate the topics covered in this review.
Collapse
|
8
|
Esfandian F, Peyravi M, Ghoreyshi AA, Jahanshahi M, Rad AS. Fabrication of TFC nanofiltration membranes via co-solvent assisted interfacial polymerization for lactose recovery. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2017.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
9
|
Salih PAŞA. Synthesis and characterization of di-Schiff based boronic structures: Therapeutic investigation against cancer and implementation for antioxidant. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.05.133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
10
|
Yi A, Li H, Mamaeva N, Fernandez De Cordoba RE, Lugtenburg J, DeGrip WJ, Spudich JL, Rothschild KJ. Structural Changes in an Anion Channelrhodopsin: Formation of the K and L Intermediates at 80 K. Biochemistry 2017; 56:2197-2208. [PMID: 28350445 DOI: 10.1021/acs.biochem.7b00002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A recently discovered natural family of light-gated anion channelrhodopsins (ACRs) from cryptophyte algae provides an effective means of optogenetically silencing neurons. The most extensively studied ACR is from Guillardia theta (GtACR1). Earlier studies of GtACR1 have established a correlation between formation of a blue-shifted L-like intermediate and the anion channel "open" state. To study structural changes of GtACR1 in the K and L intermediates of the photocycle, a combination of low-temperature Fourier transform infrared (FTIR) and ultraviolet-visible absorption difference spectroscopy was used along with stable-isotope retinal labeling and site-directed mutagenesis. In contrast to bacteriorhodopsin (BR) and other microbial rhodopsins, which form only a stable red-shifted K intermediate at 80 K, GtACR1 forms both stable K and L-like intermediates. Evidence includes the appearance of positive ethylenic and fingerprint vibrational bands characteristic of the L intermediate as well as a positive visible absorption band near 485 nm. FTIR difference bands in the carboxylic acid C═O stretching region indicate that several Asp/Glu residues undergo hydrogen bonding changes at 80 K. The Glu68 → Gln and Ser97 → Glu substitutions, residues located close to the retinylidene Schiff base, altered the K:L ratio and several of the FTIR bands in the carboxylic acid region. In the case of the Ser97 → Glu substitution, a significant red-shift of the absorption wavelength of the K and L intermediates occurs. Sequence comparisons suggest that L formation in GtACR1 at 80 K is due in part to the substitution of the highly conserved Leu or Ile at position 93 in helix 3 (BR sequence) with the homologous Met105 in GtACR1.
Collapse
Affiliation(s)
- Adrian Yi
- Molecular Biophysics Laboratory, Photonics Center, and Department of Physics, Boston University , Boston, Massachusetts 02215, United States
| | - Hai Li
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, McGovern Medical School , Houston, Texas 77030, United States
| | - Natalia Mamaeva
- Molecular Biophysics Laboratory, Photonics Center, and Department of Physics, Boston University , Boston, Massachusetts 02215, United States
| | - Roberto E Fernandez De Cordoba
- Molecular Biophysics Laboratory, Photonics Center, and Department of Physics, Boston University , Boston, Massachusetts 02215, United States
| | - Johan Lugtenburg
- Department of Biophysical Organic Chemistry, Leiden Institute of Chemistry, Leiden University , 2300 AR Leiden, The Netherlands
| | - Willem J DeGrip
- Department of Biophysical Organic Chemistry, Leiden Institute of Chemistry, Leiden University , 2300 AR Leiden, The Netherlands
| | - John L Spudich
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, McGovern Medical School , Houston, Texas 77030, United States
| | - Kenneth J Rothschild
- Molecular Biophysics Laboratory, Photonics Center, and Department of Physics, Boston University , Boston, Massachusetts 02215, United States
| |
Collapse
|
11
|
Xue C, Zhu H, Xu T, Wang E, Xiao B, Liu X, Hao X, Guan G. Zeolite cage-lock strategy for in situ synthesis of highly nitrogen-doped porous carbon for selective adsorption of carbon dioxide gas. RSC Adv 2017. [DOI: 10.1039/c6ra26997d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Porous carbon structures doped with 18.14% nitrogen and prepared by a carbonizing organic template in ZSM-39 zeolitic cages show high CO2 adsorption capacity.
Collapse
Affiliation(s)
- Chunfeng Xue
- College of Chemistry and Chemical Engineering
- Taiyuan University of Technology
- Taiyuan 030024
- China
| | - Hongye Zhu
- College of Chemistry and Chemical Engineering
- Taiyuan University of Technology
- Taiyuan 030024
- China
| | - Tingting Xu
- College of Chemistry and Chemical Engineering
- Taiyuan University of Technology
- Taiyuan 030024
- China
| | - Enyang Wang
- College of Chemistry and Chemical Engineering
- Taiyuan University of Technology
- Taiyuan 030024
- China
| | - Bo Xiao
- School of Chemistry and Chemical Engineering
- Queen's University Belfast
- Belfast
- UK
| | - Xuguang Liu
- College of Chemistry and Chemical Engineering
- Taiyuan University of Technology
- Taiyuan 030024
- China
| | - Xiaogang Hao
- College of Chemistry and Chemical Engineering
- Taiyuan University of Technology
- Taiyuan 030024
- China
| | - Guoqing Guan
- North Japan Research Institute for Sustainable Energy
- Hirosaki University
- Aomori
- Japan
| |
Collapse
|
12
|
Lei C, Xu C, Nouwens A, Yu C. Ultrasensitive ELISA + enhanced by dendritic mesoporous silica nanoparticles. J Mater Chem B 2016; 4:4975-4979. [PMID: 32264024 DOI: 10.1039/c6tb01023g] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An ultrasensitive enzyme-linked immunosorbent assay (ELISA+) has been developed by using dendritic mesoporous silica nanoparticles (DMSNs) with high horseradish peroxidase (HRP) loading and easily accessible pore channels for signal amplification. A 2000 times enhancement of detection sensitivity compared to a commercial ELISA kit for insulin detection in serum is achieved.
Collapse
Affiliation(s)
- Chang Lei
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| | | | | | | |
Collapse
|
13
|
Ogren JI, Yi A, Mamaev S, Li H, Lugtenburg J, DeGrip WJ, Spudich JL, Rothschild KJ. Comparison of the structural changes occurring during the primary phototransition of two different channelrhodopsins from Chlamydomonas algae. Biochemistry 2014; 54:377-88. [PMID: 25469620 PMCID: PMC4303311 DOI: 10.1021/bi501243y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
![]()
Channelrhodopsins
(ChRs) from green flagellate algae function as
light-gated ion channels when expressed heterologously in mammalian
cells. Considerable interest has focused on understanding the molecular
mechanisms of ChRs to bioengineer their properties for specific optogenetic
applications such as elucidating the function of specific neurons
in brain circuits. While most studies have used channelrhodopsin-2
from Chlamydomonas reinhardtii (CrChR2), in this work low-temperature Fourier transform infrared-difference
spectroscopy is applied to study the conformational changes occurring
during the primary phototransition of the red-shifted ChR1 from Chlamydomonas augustae (CaChR1). Substitution
with isotope-labeled retinals or the retinal analogue A2, site-directed
mutagenesis, hydrogen–deuterium exchange, and H218O exchange were used to assign bands to the retinal
chromophore, protein, and internal water molecules. The primary phototransition
of CaChR1 at 80 K involves, in contrast to that of CrChR2, almost exclusively an all-trans to 13-cis isomerization of the retinal chromophore,
as in the primary phototransition of bacteriorhodopsin (BR). In addition,
significant differences are found for structural changes of the protein
and internal water(s) compared to those of CrChR2,
including the response of several Asp/Glu residues to retinal isomerization.
A negative amide II band is identified in the retinal ethylenic stretch
region of CaChR1, which reflects along with amide
I bands alterations in protein backbone structure early in the photocycle.
A decrease in the hydrogen bond strength of a weakly hydrogen bonded
internal water is detected in both CaChR1 and CrChR2, but the bands are much broader in CrChR2, indicating a more heterogeneous environment. Mutations involving
residues Glu169 and Asp299 (homologues of the Asp85 and Asp212 Schiff
base counterions, respectively, in BR) lead to the conclusion that
Asp299 is protonated during P1 formation and suggest that these residues
interact through a strong hydrogen bond that facilitates the transfer
of a proton from Glu169.
Collapse
Affiliation(s)
- John I Ogren
- Molecular Biophysics Laboratory, Photonics Center, and Department of Physics, Boston University , Boston, Massachusetts 02215, United States
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Maeda A. Application of FTIR Spectroscopy to the Structural Study on the Function of Bacteriorhodopsin. Isr J Chem 2013. [DOI: 10.1002/ijch.199500038] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Dioumaev AK, Petrovskaya LE, Wang JM, Balashov SP, Dolgikh DA, Kirpichnikov MP, Lanyi JK. Photocycle of Exiguobacterium sibiricum rhodopsin characterized by low-temperature trapping in the IR and time-resolved studies in the visible. J Phys Chem B 2013; 117:7235-53. [PMID: 23718558 DOI: 10.1021/jp402430w] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The photocycle of the retinal protein from Exiguobacterium sibiricum, which differs from bacteriorhodopsin in both its primary donor and acceptor, is characterized by visible and infrared spectroscopy. At pH above pKa ~6.5, we find a bacteriorhodopsin-like photocycle, which originates from excitation of the all-trans retinal chromophore with K-, L-, M-, and N-like intermediates. At pH below pKa ~6.5, the M state, which reflects Schiff base deprotonation during proton pumping, is not accumulated. However, using the infrared band at ~1760 cm(-1) as a marker for transient protonation of the primary acceptor, we find that Schiff base deprotonation must have occurred at pH not only above but also below the pKa ~6.5. Thus, the M state is formed but not accumulated for kinetic reasons. Further, chromophore reisomerization from the 13-cis to the all-trans conformation occurs very late in the photocycle. The strongly red-shifted states that dominate the second half of the cycle are produced before the reisomerization step, and by this criterion, they are not O-like but rather N-like states. The assignment of photocycle intermediates enables reevaluation of the photocycle; its specific features are discussed in relation to the general mechanism of proton transport in retinal proteins.
Collapse
Affiliation(s)
- Andrei K Dioumaev
- Department of Physiology and Biophysics, University of California, Irvine, California 92697, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Leng C, Liu Y, Jenkins C, Meredith H, Wilker JJ, Chen Z. Interfacial structure of a DOPA-inspired adhesive polymer studied by sum frequency generation vibrational spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:6659-64. [PMID: 23663073 DOI: 10.1021/la4008729] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Marine mussels deposit adhesive proteins containing 3,4-dihydroxyphenylalanine (DOPA) to attach themselves to different surfaces. Isolating such proteins from biological sources for adhesion purposes tends to be challenging. Recently, a simplified synthetic adhesive polymer, poly[(3,4-dihydroxystyrene)-co-styrene] (PDHSS), was developed to mimic DOPA-containing proteins. The pendant catechol group in this polymer provides cross-linking and adhesion much like mussel proteins do. In this work, sum frequency generation (SFG) vibrational spectroscopy was applied to reveal the structures of this DOPA-inspired polymer at air, water, and polymer interfaces. SFG spectroscopy results showed that when underwater, the catechol rings and the quinone rings were ordered, ready to adhere to surfaces. At the hydrophobic polystyrene interface, benzene π-π stacking is likely the adhesive force, whereas at the hydrophilic poly(allylamine) interface, primary amines may form hydrogen bonds with catechol or react with quinones for adhesion.
Collapse
Affiliation(s)
- Chuan Leng
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | | | | | | | | |
Collapse
|
17
|
Yabushita A, Kobayashi T, Tsuda M. Time-Resolved Spectroscopy of Ultrafast Photoisomerization of Octopus Rhodopsin under Photoexcitation. J Phys Chem B 2012; 116:1920-6. [DOI: 10.1021/jp209356s] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Atsushi Yabushita
- Department
of Electrophysics, National Chiao-Tung University, Hsinchu 300, Taiwan
| | - Takayoshi Kobayashi
- Department
of Electrophysics, National Chiao-Tung University, Hsinchu 300, Taiwan
- CREST, Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi, Saitama
332-0012, Japan
- Department
of Applied Physics
and Chemistry and Institute for Laser Science, University of Electro-Communications, 1-5-1, Chofugaoka, Chofu,
Tokyo 182-8585, Japan
- Institute
of Laser Engineering, Osaka University,
2-6 Yamada-oka, Suita, Osaka 565-0971,
Japan
| | - Motoyuki Tsuda
- Kagawa School of
Pharmaceutical
Sciences, Tokushima Bunri University, 1314-1
Shido, Sanuki, Kagawa 769-2193, Japan
| |
Collapse
|
18
|
Clair ECS, Ogren JI, Mamaev S, Kralj JM, Rothschild KJ. Conformational changes in the archaerhodopsin-3 proton pump: detection of conserved strongly hydrogen bonded water networks. J Biol Phys 2011; 38:153-68. [PMID: 23277676 DOI: 10.1007/s10867-011-9246-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 10/25/2011] [Indexed: 11/30/2022] Open
Abstract
Archaerhodopsin-3 (AR3) is a light-driven proton pump from Halorubrum sodomense, but little is known about its photocycle. Recent interest has focused on AR3 because of its ability to serve both as a high-performance, genetically-targetable optical silencer of neuronal activity and as a membrane voltage sensor. We examined light-activated structural changes of the protein, retinal chromophore, and internal water molecules during the photocycle of AR3. Low-temperature and rapid-scan time-resolved FTIR-difference spectroscopy revealed that conformational changes during formation of the K, M, and N photocycle intermediates are similar, although not identical, to bacteriorhodopsin (BR). Positive/negative bands in the region above 3,600 cm( - 1), which have previously been assigned to structural changes of weakly hydrogen bonded internal water molecules, were substantially different between AR3 and BR. This included the absence of positive bands recently associated with a chain of proton transporting water molecules in the cytoplasmic channel and a weakly hydrogen bonded water (W401), which is part of a hydrogen-bonded pentagonal cluster located near the retinal Schiff base. However, many of the broad IR continuum absorption changes below 3,000 cm( - 1) assigned to networks of water molecules involved in proton transport through cytoplasmic and extracellular portions in BR were very similar in AR3. This work and subsequent studies comparing BR and AR3 structural changes will help identify conserved elements in BR-like proton pumps as well as bioengineer AR3 to optimize neural silencing and voltage sensing.
Collapse
Affiliation(s)
- Erica C Saint Clair
- Department of Physics, Photonics Center and Molecular Biophysics Laboratory, Boston University, Boston, MA 02215 USA
| | | | | | | | | |
Collapse
|
19
|
Pardoen JA, Winkel C, Mulder PPJ, Lugtenburg J. Synthesis of retinals labelled at positions 14 and 15 (with 13C and/or 2H). ACTA ACUST UNITED AC 2010. [DOI: 10.1002/recl.19841030408] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Milder SJ. Correlation between absorption maxima and thermal isomerization rates in bacteriorhodopsin. Biophys J 2010; 60:440-6. [PMID: 19431800 DOI: 10.1016/s0006-3495(91)82070-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The reported rates of thermal 13-cis to all-trans isomerization of the protonated Schiff base of retinal (PSBR) in solution and in bacteriorhodopsin (BR) are shown to be correlated with the red shift in the absorption maximum of the chromophore, though the linear fit is different for BR and for a model PSBR in solution. Because the red shift in the absorption has been previously shown to be correlated with pi-electron delocalization in the chromophore, this suggests that the thermal isomerization rate is largely regulated by the amount of double bond character in the chromophore. Because the linear fit of isomerization rates with absorption maxima is different for BR and the model PSBR, specific interactions of the protein with the chromophore must also be a factor in determining thermal isomerization rates in BR. A model of the later steps in the photocycle of BR is presented in which the 13-cis to all-trans thermal isomerization occurs during the O intermediate.
Collapse
Affiliation(s)
- S J Milder
- Department of Chemistry, Brookhaven National Laboratory, Upton, New York 11973 USA
| |
Collapse
|
21
|
Dioumaev AK, Wang JM, Lanyi JK. Low-temperature FTIR study of multiple K intermediates in the photocycles of bacteriorhodopsin and xanthorhodopsin. J Phys Chem B 2010; 114:2920-31. [PMID: 20136108 PMCID: PMC3820168 DOI: 10.1021/jp908698f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Low-temperature FTIR spectroscopy of bacteriorhodopsin and xanthorhodopsin was used to elucidate the number of K-like bathochromic states, their sequence, and their contributions to the photoequilibrium mixtures created by illumination at 80-180 K. We conclude that in bacteriorhodopsin the photocycle includes three distinct K-like states in the sequence bR (hv)--> I* --> J --> K(0) --> K(E) --> L --> ..., and similarly in xanthorhodopsin. K(0) is the main fraction in the mixture at 77 K that is formed from J. K(0) becomes thermally unstable above approximately 50 K in both proteins. At 77 K, both J-to-K(0) and K(0)-to-K(E) transitions occur and, contrarily to long-standing belief, cryogenic trapping at 77 K does not produce a pure K state but a mixture of the two states, K(0) and K(E), with contributions from K(E) of approximately 15 and approximately 10% in the two retinal proteins, respectively. Raising the temperature leads to increasing conversion of K(0) to K(E), and the two states coexist (without contamination from non-K-like states) in the 80-140 K range in bacteriorhodopsin, and in the 80-190 K range in xanthorhodopsin. Temperature perturbation experiments in these regions of coexistence revealed that, in spite of the observation of apparently stable mixtures of K(0) and K(E), the two states are not in thermally controlled equilibrium. The K(0)-to-K(E) transition is unidirectional, and the partial transformation to K(E) is due to distributed kinetics, which governs the photocycle dynamics at temperatures below approximately 245 K (Dioumaev and Lanyi, Biochemistry 2008, 47, 11125-11133). From spectral deconvolution, we conclude that the K(E) state, which is increasingly present at higher temperatures, is the same intermediate that is detected by time-resolved FTIR prior to its decay, on a time scale of hundreds of nanoseconds at ambient temperature (Dioumaev and Braiman, J. Phys. Chem. B 1997, 101, 1655-1662), into the K(L) state. We were unable to trap the latter separately from K(E) at low temperature, due to the slow distributed kinetics and the increasingly faster overlapping formation of the L state. Formation of the two consecutive K-like states in both proteins is accompanied by distortion of two different weakly bound water molecules: one in K(0), the other in K(E). The first, well-documented in bacteriorhodopsin at 77 K where K(0) dominates, was assigned to water 401 in bacteriorhodopsin. The other water molecule, whose participation has not been described previously, is disturbed on the next step of the photocycle, in K(E), in both proteins. In bacteriorhodopsin, the most likely candidate is water 407. However, unlike bacteriorhodopsin, the crystal structure of xanthorhodopsin lacks homologous weakly bound water molecules.
Collapse
Affiliation(s)
- Andrei K. Dioumaev
- Department of Physiology & Biophysics, University of California, Irvine, CA 92697
| | - Jennifer M. Wang
- Department of Physiology & Biophysics, University of California, Irvine, CA 92697
| | - Janos K. Lanyi
- Department of Physiology & Biophysics, University of California, Irvine, CA 92697
| |
Collapse
|
22
|
Amsden JJ, Kralj JM, Bergo VB, Spudich EN, Spudich JL, Rothschild KJ. Different structural changes occur in blue- and green-proteorhodopsins during the primary photoreaction. Biochemistry 2008; 47:11490-8. [PMID: 18842006 DOI: 10.1021/bi800945t] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We examine the structural changes during the primary photoreaction in blue-absorbing proteorhodopsin (BPR), a light-driven retinylidene proton pump, using low-temperature FTIR difference spectroscopy. Comparison of the light-induced BPR difference spectrum recorded at 80 K to that of green-absorbing proteorhodopsin (GPR) reveals that there are several differences in the BPR and GPR primary photoreactions despite the similar structure of the retinal chromophore and all-trans --> 13-cis isomerization. Strong bands near 1700 cm(-1) assigned previously to a change in hydrogen bonding of Asn230 in GPR are still present in BPR. However, additional bands in the same region are assigned on the basis of site-directed mutagenesis to changes occurring in Gln105. In the amide II region, bands are assigned on the basis of total (15)N labeling to structural changes of the protein backbone, although no such bands were previously observed for GPR. A band at 3642 cm(-1) in BPR, assigned to the OH stretching mode of a water molecule on the basis of H2(18)O substitution, appears at a different frequency than a band at 3626 cm(-1) previously assigned to a water molecule in GPR. However, the substitution of Gln105 for Leu105 in BPR leads to the appearance of both bands at 3642 and 3626 cm(-1), indicating the waters assigned in BPR and GPR exist in separate distinct locations and can coexist in the GPR-like Q105L mutant of BPR. These results indicate that there exist significant differences in the conformational changes occurring in these two types proteorhodopsin during the initial photoreaction despite their similar chromophore structures, which might reflect a different arrangement of water in the active site as well as substitution of a hydrophilic for hydrophobic residue at residue 105.
Collapse
Affiliation(s)
- Jason J Amsden
- Department of Physics, Photonics Center, and Molecular Biophysics Laboratory, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
23
|
Kralj JM, Bergo VB, Amsden JJ, Spudich EN, Spudich JL, Rothschild KJ. Protonation state of Glu142 differs in the green- and blue-absorbing variants of proteorhodopsin. Biochemistry 2008; 47:3447-53. [PMID: 18284210 DOI: 10.1021/bi7018964] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proteorhodopsins are a recently discovered class of microbial rhodopsins, ubiquitous in marine bacteria. Over 4000 variants have thus far been discovered, distributed throughout the oceans of the world. Most variants fall into one of two major groups, green- or blue-absorbing proteorhodopsin (GPR and BPR, respectively), on the basis of both the visible absorption maxima (530 versus 490 nm) and photocycle kinetics ( approximately 20 versus approximately 200 ms). For a well-studied pair, these differences appear to be largely determined by the identity of a single residue at position 105 (leucine/GPR and glutamine/BPR). We find using a combination of visible and infrared spectroscopy that a second difference is the protonation state of a glutamic acid residue located at position 142 on the extracellular side of helix D. In BPR, Glu142 (the GPR numbering system is used) is deprotonated and can act as an alternate proton acceptor, thus explaining the earlier observations that neutralization of the Schiff base counterion, Asp97, does not block the formation of the M intermediate. In contrast, Glu142 in GPR is protonated and cannot act in this state as an alternate proton acceptor for the Schiff base. On the basis of these findings, a mechanism is proposed for proton pumping in BPR. Because the pKa of Glu142 is near the pH of its native marine environment, changes in pH may act to modulate its function in the cell.
Collapse
Affiliation(s)
- Joel M Kralj
- Department of Physics, Molecular Biophysics Laboratory and Photonics Center, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
24
|
Bergo VB, Ntefidou M, Trivedi VD, Amsden JJ, Kralj JM, Rothschild KJ, Spudich JL. Conformational Changes in the Photocycle of Anabaena Sensory Rhodopsin. J Biol Chem 2006; 281:15208-14. [PMID: 16537532 DOI: 10.1074/jbc.m600033200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Anabaena sensory rhodopsin (ASR) is a novel microbial rhodopsin recently discovered in the freshwater cyanobacterium Anabaena sp. PCC7120. This protein most likely functions as a photosensory receptor as do the related haloarchaeal sensory rhodopsins. However, unlike the archaeal pigments, which are tightly bound to their cognate membrane-embedded transducers, ASR interacts with a soluble cytoplasmic protein analogous to transducers of animal vertebrate rhodopsins. In this study, infrared spectroscopy was used to examine the molecular mechanism of photoactivation in ASR. Light adaptation of the pigment leads to a phototransformation of an all-trans/15-anti to 13-cis/15-syn retinylidene-containing species very similar in chromophore structural changes to those caused by dark adaptation in bacteriorhodopsin. Following 532 nm laser-pulsed excitation, the protein exhibits predominantly an all-trans retinylidene photocycle containing a deprotonated Schiff base species similar to those of other microbial rhodopsins such as bacteriorhodopsin, sensory rhodopsin II, and Neurospora rhodopsin. However, no changes are observed in the Schiff base counterion Asp-75, which remains unprotonated throughout the photocycle. This result along with other evidence indicates that the Schiff base proton release mechanism differs significantly from that of other known microbial rhodopsins, possibly because of the absence of a second carboxylate group at the ASR photoactive site. Several conformational changes are detected during the ASR photocycle including in the transmembrane helices E and G as indicated by hydrogen-bonding alterations of their native cysteine residues. In addition, similarly to animal vertebrate rhodopsin, perturbations of the polar head groups of lipid molecules are detected.
Collapse
Affiliation(s)
- Vladislav B Bergo
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Hayashi S, Tajkhorshid E, Schulten K. Structural changes during the formation of early intermediates in the bacteriorhodopsin photocycle. Biophys J 2002; 83:1281-97. [PMID: 12202355 PMCID: PMC1302228 DOI: 10.1016/s0006-3495(02)73900-3] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Early intermediates of bacteriorhodopsin's photocycle were modeled by means of ab initio quantum mechanical/molecular mechanical and molecular dynamics simulations. The photoisomerization of the retinal chromophore and the formation of photoproducts corresponding to the early intermediates were simulated by molecular dynamics simulations. By means of the quantum mechanical/molecular mechanical method, the resulting structures were refined and the respective excitation energies were calculated. Two sequential intermediates were found with absorption maxima that exhibit red shifts from the resting state. The intermediates were therefore assigned to the K and KL states. In K, the conformation of the retinal chromophore is strongly deformed, and the N--H bond of the Schiff base points almost perpendicular to the membrane normal toward Asp-212. The strongly deformed conformation of the chromophore and weakened interaction of the Schiff base with the surrounding polar groups are the means by which the absorbed energy is stored. During the K-to-KL transition, the chromophore undergoes further conformational changes that result in the formation of a hydrogen bond between the N--H group of the Schiff base and Thr-89 as well as other rearrangements of the hydrogen-bond network in the vicinity of the Schiff base, which are suggested to play a key role in the proton transfer process in the later phase of the photocycle.
Collapse
Affiliation(s)
- Shigehiko Hayashi
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 USA
| | | | | |
Collapse
|
26
|
|
27
|
Affiliation(s)
- L M Ng
- Chemistry Department, Cleveland State University, Ohio 44115, USA
| | | |
Collapse
|
28
|
Bullough PA, Henderson R. The projection structure of the low temperature K intermediate of the bacteriorhodopsin photocycle determined by electron diffraction. J Mol Biol 1999; 286:1663-71. [PMID: 10064722 DOI: 10.1006/jmbi.1999.2570] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacteriorhodopsin (bR) is an integral membrane protein which absorbs visible light and pumps protons across the cell membrane of Halobacterium salinarium. bR is one of the few membrane-bound pumps whose structure is known at atomic resolution. Changes in the protein structure of bR are a crucial element in the mechanism of proton pumping and can be followed by a variety of spectroscopic, and diffraction methods. A number of intermediates in the photocycle have been identified spectroscopically and a number of laboratories have been successful in reporting the structural changes taking place in the later stages of the photocycle over the millisecond time-scale using diffraction techniques. These studies have revealed significant changes in the protein structure, possibly involving changes in flexibility and/or movement of helices. Earlier intermediates which arise and decay on the picosecond to microsecond time-scale have proven more difficult to trap. Here, we report for the first time the successful trapping and diffraction analysis of bR in a low temperature state resembling the very early intermediate, K. We have calculated a projection difference map to 3.5 A resolution. The map reveals no significant structural changes in the molecule, despite having a very low background noise level. This does not rule out the possibility of movements in a direction perpendicular to the plane of the membrane. However, the data are consistent with other evidence that significant structural changes do not occur in the protein itself.
Collapse
Affiliation(s)
- P A Bullough
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2UH, UK.
| | | |
Collapse
|
29
|
Kandori H, Kinoshita N, Shichida Y, Maeda A. Protein Structural Changes in Bacteriorhodopsin upon Photoisomerization As Revealed by Polarized FTIR Spectroscopy. J Phys Chem B 1998. [DOI: 10.1021/jp981949z] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hideki Kandori
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Norimichi Kinoshita
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yoshinori Shichida
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Akio Maeda
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
30
|
Weidlich O, Ujj L, Jäger F, Atkinson GH. Nanosecond retinal structure changes in K-590 during the room-temperature bacteriorhodopsin photocycle: picosecond time-resolved coherent anti-stokes Raman spectroscopy. Biophys J 1997; 72:2329-41. [PMID: 9129836 PMCID: PMC1184428 DOI: 10.1016/s0006-3495(97)78877-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Time-resolved vibrational spectra are used to elucidate the structural changes in the retinal chromophore within the K-590 intermediate that precedes the formation of the L-550 intermediate in the room-temperature (RT) bacteriorhodopsin (BR) photocycle. Measured by picosecond time-resolved coherent anti-Stokes Raman scattering (PTR/CARS), these vibrational data are recorded within the 750 cm-1 to 1720 cm-1 spectral region and with time delays of 50-260 ns after the RT/BR photocycle is optically initiated by pulsed (< 3 ps, 1.75 nJ) excitation. Although K-590 remains structurally unchanged throughout the 50-ps to 1-ns time interval, distinct structural changes do appear over the 1-ns to 260-ns period. Specifically, comparisons of the 50-ps PTR/CARS spectra with those recorded with time delays of 1 ns to 260 ns reveal 1) three types of changes in the hydrogen-out-of-plane (HOOP) region: the appearance of a strong, new feature at 984 cm-1; intensity decreases for the bands at 957 cm-1, 952 cm-1, and 939 cm-1; and small changes intensity and/or frequency of bands at 855 cm-1 and 805 cm-1; and 2) two types of changes in the C-C stretching region: the intensity increase in the band at 1196 cm-1 and small intensity changes and/or frequency shifts for bands at 1300 cm-1 and 1362 cm-1. No changes are observed in the C = C stretching region, and no bands assignable to the Schiff base stretching mode (C = NH+) mode are found in any of the PTR/CARS spectra assignable to K-590. These PTR/CARS data are used, together with vibrational mode assignments derived from previous work, to characterize the retinal structural changes in K-590 as it evolves from its 3.5-ps formation (ps/K-590) through the nanosecond time regime (ns/K-590) that precedes the formation of L-550. The PTR/CARS data suggest that changes in the torsional modes near the C14-C15 = N bonds are directly associated with the appearance of ns/K-590, and perhaps with the KL intermediate proposed in earlier studies. These vibrational data can be primarily interpreted in terms of the degree of twisting of the C14-C15 retinal bond. Such twisting may be accompanied by changes in the adjacent protein. Other smaller, but nonetheless clear, spectral changes indicate that alterations along the retinal polyene chain also occur. The changes in the retinal structure are preliminary to the deprotonation of the Schiff base nitrogen during the formation of M-412. The time constant for the ps/ns K-590 transformation is estimated from the amplitude change of four vibrational bands in the HOOP region to be 40-70 ns.
Collapse
Affiliation(s)
- O Weidlich
- Department of Chemistry, University of Arizona, Tucson 85721, USA
| | | | | | | |
Collapse
|
31
|
Dioumaev AK, Braiman MS. Two Bathointermediates of the Bacteriorhodopsin Photocycle, Distinguished by Nanosecond Time-Resolved FTIR Spectroscopy at Room Temperature. J Phys Chem B 1997. [DOI: 10.1021/jp961512w] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Andrei K. Dioumaev
- Department of Biochemistry, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908
| | - Mark S. Braiman
- Department of Biochemistry, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908
| |
Collapse
|
32
|
Elia GR, Childs RF, Britten JF, Yang DS, Santarsiero BD. Structure and wavelength modification in retinylidene iminium salts. CAN J CHEM 1996. [DOI: 10.1139/v96-063] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The spectroscopic and structural properties of the perchlorate and triflate salts of N-n-butyl-retinylidene imine, 2 and 3, have been examined in solution and solid phases. In solution these salts were found to exhibit very similar UV and NMR spectroscopic properties. However, in the solid state marked differences in their absorption spectra (2, λmax = 504 nm; 3, λmax = 445 nm) and13C NMR spectra were found. The structures of the two salts were determined by X-ray crystallography. The cations in each of the salts were shown to have very similar conformations, detailed structures, and packing in their crystal lattices. The differences in the spectroscopic properties of the salts in the solid state could not be accounted for on the basis of any structural differences in the cations themselves. In terms of cation–anion interactions, a strong hydrogen bonding interaction was found in each case between the N-H proton and an oxygen atom of the counterion. However, there were significant differences between the two salts in terms of the [Formula: see text] internuclear distances (2, [Formula: see text] and in 3, 2.85(1) Å). The results are strongly suggestive that the wavelength and positive charge delocalization in retinylidène iminium salts are controlled by variation of the distance between the anion and the proton bonded to the Schiff base nitrogen atom. The work reported here represents the first examples of secondary retinylidene iminium salts containing an N-alkyl substituent to be successfully analyzed by X-ray crystallography. The relationship of these observations in the solid state to the spectroscopic properties of the natural visual pigments is explored. Key words: retinylidène iminium salts, iminium salts, cation–anion interactions.
Collapse
|
33
|
Sasaki J, Yuzawa T, Kandori H, Maeda A, Hamaguchi H. Nanosecond time-resolved infrared spectroscopy distinguishes two K species in the bacteriorhodopsin photocycle. Biophys J 1995; 68:2073-80. [PMID: 7612850 PMCID: PMC1282111 DOI: 10.1016/s0006-3495(95)80386-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The photochemical reaction process of bacteriorhodopsin in the nanosecond time range (-120-860 ns) was measured in the 1400-900 cm-1 region with an improved time resolved dispersive-type infrared spectrometer. The system is equipped with a newly developed detection unit whose instrumental response to a 5-ns laser pulse has a full width of the half-maximum of 60 ns. It provides highly accurate data that enabled us to extract a kinetic process one order of magnitude faster than the instrumental response. The spectral changes in the 1400-900 cm-1 region were analyzed by singular value decomposition and resolved into three components. These components were separated by fitting with 10- and 1000-ns exponential functions and a step function, which were convoluted with the instrumental response function. The components with decay time constants of 10 and 1000 ns are named K and KL, respectively, on the basis of previous visible spectroscopy. The spectral shapes of K and KL are distinguishable by their hydrogen-out-of-plane (HOOP) modes, at 958 and 984 cm-1, respectively. The former corresponds to the K intermediate recorded at 77 K and the latter to a K-like photoproduct at 135 K. On the basis of published data, these bands are assigned to the 15-HOOP mode, indicating that the K and KL differ in a twist around the C14-C15 bond.
Collapse
Affiliation(s)
- J Sasaki
- Department of Biophysics, Faculty of Science, Kyoto University, Japan
| | | | | | | | | |
Collapse
|
34
|
Sonar S, Marti T, Rath P, Fischer W, Coleman M, Nilsson A, Khorana H, Rothschild K. A redirected proton pathway in the bacteriorhodopsin mutant Tyr-57–>Asp. Evidence for proton translocation without Schiff base deprotonation. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)61985-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
35
|
Száraz S, Oesterhelt D, Ormos P. pH-induced structural changes in bacteriorhodopsin studied by Fourier transform infrared spectroscopy. Biophys J 1994; 67:1706-12. [PMID: 7819502 PMCID: PMC1225532 DOI: 10.1016/s0006-3495(94)80644-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Previous C13-NMR studies showed that two of the four internal aspartic acid residues (Asp-96 and Asp-115) of bacteriorhodopsin (bR) are protonated up to pH = 10, but no accurate pKa of these residues has been determined. In this work, infrared spectroscopy with the attenuated total reflection technique was used to characterize pH-dependent structural changes of ground-state, dark-adapted wild-type bacteriorhodopsin and its mutant (D96N) with aspartic acid-96 replaced by asparagine. Data indicated deprotonation of Asp-96 at high pH (pKa = 11.4 +/- 0.1), but no Asp-115 titration was observed. The analysis of the whole spectral region characteristic to complex conformational changes in the protein showed a more complicated titration with an additional pKa value (pKa1 = 9.3 +/- 0.3 and pKa2 = 11.5 +/- 0.2). Comparison of results obtained for bR and the D96N mutant of bR shows that the pKa approximately 11.5 characterizes not a direct titration of Asp-96 but a protein conformational change that makes Asp-96 accessible to the external medium.
Collapse
Affiliation(s)
- S Száraz
- Institute of Biophysics, Hungarian Academy of Sciences, Szeged
| | | | | |
Collapse
|
36
|
|
37
|
Rothschild KJ, Marti T, Sonar S, He YW, Rath P, Fischer W, Khorana HG. Asp96 deprotonation and transmembrane alpha-helical structural changes in bacteriorhodopsin. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74216-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
38
|
He Y, Krebs MP, Fischer WB, Khorana HG, Rothschild KJ. FTIR difference spectroscopy of the bacteriorhodopsin mutant Tyr-185-->Phe: detection of a stable O-like species and characterization of its photocycle at low temperature. Biochemistry 1993; 32:2282-90. [PMID: 8443171 DOI: 10.1021/bi00060a021] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Fourier transform infrared difference spectroscopy has been used to study the photocycle of the mutant Tyr-185-->Phe expressed in native Halobacterium halobium and isolated as intact purple membrane fragments. We find several changes in the low-temperature bR-->K, bR-->L, and bR-->M FTIR difference spectra of Y185F relative to wild-type bR which are not directly related to the absorption bands associated with Tyr-185. We show that these features arise from the photoreaction of a stable red-shifted species (OY185F) with a vibrational spectrum similar to the O intermediate. By using photoselection and FTIR spectroscopy, we have been able to characterize the photoproducts of this OY185F species. A K-like photoproduct is formed at 80 K which has a 13-cis structure. However, it differs from K630, exhibiting an intense band at 990 cm-1 most likely due to a hydrogen-out-of-plane vibrational mode of the chromophore. At 170 and 250 K, photoexcitation of OY185F produces an intermediate with vibrational features similar to the N intermediate in the wild-type bR photocycle. However, no evidence for an M-like intermediate is found. Although Asp-96 undergoes a change in its environment/protonation state during the OY185F photocycle, no protonation changes involving Asp-85 and Asp-212 were detected. These results provide strong evidence that light adaptation of Y185F produces two species similar to bR570 and the O intermediate. Differences in their respective photocycles can be explained on the basis of differences in the protonation states of the residues Asp-85 and Asp-212 which are ionized in bR570 and undergo net protonation upon OY185F formation.
Collapse
Affiliation(s)
- Y He
- Physics Department, Boston University, Massachusetts 02215
| | | | | | | | | |
Collapse
|
39
|
Olejnik J, Brzezinski B, Zundel G. A proton pathway with large proton polarizability and the proton pumping mechanism in bacteriorhodopsin — Fourier transform difference spectra of photoproducts of bacteriorhodopsin and of its pentademethyl analogue. J Mol Struct 1992. [DOI: 10.1016/0022-2860(92)80123-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
40
|
Rothschild KJ. FTIR difference spectroscopy of bacteriorhodopsin: toward a molecular model. J Bioenerg Biomembr 1992; 24:147-67. [PMID: 1526959 DOI: 10.1007/bf00762674] [Citation(s) in RCA: 228] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Bacteriorhodopsin (bR) is a light-driven proton pump whose function includes two key membrane-based processes, active transport and energy transduction. Despite extensive research on bR and other membrane proteins, these processes are not fully understood on the molecular level. In the past ten years, the introduction of Fourier transform infrared (FTIR) difference spectroscopy along with related techniques including time-resolved FTIR difference spectroscopy, polarized FTIR, and attenuated total reflection FTIR has provided a new approach for studying these processes. A key step has been the utilization of site-directed mutagenesis to assign bands in the FTIR difference spectrum to the vibrations of individual amino acid residues. On this basis, detailed information has been obtained about structural changes involving the retinylidene chromophore and protein during the bR photocycle. This includes a determination of the protonation state of the four membrane-embedded Asp residues, identification of specific structurally active amino acid residues, and the detection of protein secondary structural changes. This information is being used to develop an increasingly detailed picture of the bR proton pump mechanism.
Collapse
Affiliation(s)
- K J Rothschild
- Department of Physics, Boston University, Massachusetts 02215
| |
Collapse
|
41
|
Vibrational spectroscopy of bacteriorhodopsin mutants. Evidence that Thr-46 and Thr-89 form part of a transient network of hydrogen bonds. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)45990-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
42
|
Maeda A, Sasaki J, Pfefferlé JM, Shichida Y, Yoshizawa T. FOURIER TRANSFORM INFRARED SPECTRAL STUDIES ON THE SCHIFF BASE MODE OF ALL-trans BACTERIORHODOPSIN and ITS PHOTOINTERMEDIATES, K and L. Photochem Photobiol 1991. [DOI: 10.1111/j.1751-1097.1991.tb02111.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Bousché O, Braiman M, He Y, Marti T, Khorana H, Rothschild K. Vibrational spectroscopy of bacteriorhodopsin mutants. Evidence that ASP-96 deprotonates during the M—-N transition. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)99128-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
44
|
Braiman MS, Bousché O, Rothschild KJ. Protein dynamics in the bacteriorhodopsin photocycle: submillisecond Fourier transform infrared spectra of the L, M, and N photointermediates. Proc Natl Acad Sci U S A 1991; 88:2388-92. [PMID: 2006176 PMCID: PMC51237 DOI: 10.1073/pnas.88.6.2388] [Citation(s) in RCA: 142] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The usefulness of stroboscopic time-resolved Fourier transform IR spectroscopy for studying the dynamics of biological systems is demonstrated. By using this technique, we have obtained broadband IR absorbance difference spectra after photolysis of bacteriorhodospin with a time resolution of approximately 50 microseconds, spectral resolution of 4 cm-1, and a detection limit of delta A less than or equal to 10(-4). These capabilities permit observation of detailed structural changes in individual residues as bacteriorhodopsin passes through its L, M, and N intermediate states near physiological temperatures. When combined with band assignments based on isotope labeling and site-directed mutagenesis, the stroboscopic Fourier transform IR difference spectra show that on the time scale of the L intermediate, Asp-96 has an altered environment that may be accompanied by change in its protonation state. On the time scale of the L----M transition, this Asp-96 perturbation/deprotonation is largely reversed, and Asp-85 becomes protonated. During the M----N transition, Asp-85 appears to remain protonated but undergoes a change in its environment as evidenced by a shift of vC = O from 1761 to 1755 cm-1. The retention of a proton on Asp-85 in the N state indicates that the proton transferred from the Schiff base to this residue in the L----M step is not released to the extracellular medium during the same photocycle, but rather during a subsequent one. Also during the M----N transition, Asp-96 undergoes a deprotonation (possibly for the second time in a single photocycle). Bands in the amide I and amide II spectral regions in the M----N difference spectrum indicate the occurrence of a conformational change involving one or more peptide groups in the protein backbone.
Collapse
Affiliation(s)
- M S Braiman
- Department of Biochemistry, University of Virginia Health Sciences Center, Charlottesville 22908
| | | | | |
Collapse
|
45
|
Singh AK, Roy M. Fluorescence studies on anthryl bacteriorhodopsins. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 1991. [DOI: 10.1016/1011-1344(91)80089-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
Siebert F, Grimm R, Rüdiger W, Schmidt G, Scheer H. Infrared spectroscopy of phytochrome and model pigments. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 194:921-8. [PMID: 2269310 DOI: 10.1111/j.1432-1033.1990.tb19487.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fourier-transform infrared difference spectra between the red-absorbing and far-red-absorbing forms of oat phytochrome have been measured in H2O and 2H2O. The difference spectra are compared with infrared spectra of model compounds, i.e. the (5Z,10Z,15Z)- and (5Z,10Z,15E)-isomers of 2,3,7,8,12,13,17,18-octaethyl-bilindion (Et8-bilindion), 2,3-dihydro-2,3,7,8,12,13,17,18-octaethyl-bilindion (H2Et8-bilindion), and protonated H2Et8-bilindion in various solvents. The spectra of the model compounds show that only for the protonated forms can clear differences between the two isomers be detected. Since considerable differences are present between the spectra of Et8-bilindion and H2Et8-bilindion, it is concluded that only the latter compound can serve as a model system of phytochrome. The 2H2O effect on the difference spectrum of phytochrome supports the view that the chromophore in red-absorbing phytochrome is protonated and suggests, in addition, that it is also protonated in far-red-absorbing phytochrome. The spectra show that protonated carboxyl groups are influenced. The small amplitudes in the difference spectra exclude major changes of protein secondary structure.
Collapse
Affiliation(s)
- F Siebert
- Albert-Ludwigs-Universität, Institut für Biophysik und Strahlenbiologie, Freiburg, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
47
|
Duñach M, Berkowitz S, Marti T, He YW, Subramaniam S, Khorana HG, Rothschild KJ. Ultraviolet-visible transient spectroscopy of bacteriorhodopsin mutants. Evidence for two forms of tyrosine-185—-phenylalanine. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)44856-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
48
|
de Groot HJ, Smith SO, Courtin J, van den Berg E, Winkel C, Lugtenburg J, Griffin RG, Herzfeld J. Solid-state 13C and 15N NMR study of the low pH forms of bacteriorhodopsin. Biochemistry 1990; 29:6873-83. [PMID: 2168744 DOI: 10.1021/bi00481a017] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The visible absorption of bacteriorhodopsin (bR) is highly sensitive to pH, the maximum shifting from 568 nm (pH 7) to approximately 600 nm (pH 2) and back to 565 nm (pH 0) as the pH is decreased further with HCl. Blue membrane (lambda max greater than 600 nm) is also formed by deionization of neutral purple membrane suspensions. Low-temperature, magic angle spinning 13C and 15N NMR was used to investigate the transitions to the blue and acid purple states. The 15N NMR studies involved [epsilon-15N]lysine bR, allowing a detailed investigation of effects at the Schiff base nitrogen. The 15N resonance shifts approximately 16 ppm upfield in the neutral purple to blue transition and returns to its original value in the blue to acid purple transition. Thus, the 15N shift correlates directly with the color changes, suggesting an important contribution of the Schiff base counterion to the "opsin shift". The results indicate weaker hydrogen bonding in the blue form than in the two purple forms and permit a determination of the contribution of the weak hydrogen bonding to the opsin shift at a neutral pH of approximately 2000 cm-1. An explanation of the mechanism of the purple to blue to purple transition is given in terms of the complex counterion model. The 13C NMR experiments were performed on samples specifically 13C labeled at the C-5, C-12, C-13, C-14, or C-15 positions in the retinylidene chromophore. The effects of the purple to blue to purple transitions on the isotropic chemical shifts for the various 13C resonances are relatively small. It appears that bR600 consists of at least four different species. The data confirm the presence of 13-cis- and all-trans-retinal in the blue form, as in neutral purple dark-adapted bR. All spectra of the blue and acid purple bR show substantial inhomogeneous broadening which indicates additional irregular distortions of the protein lattice. The amount of distortion correlates with the variation of the pH, and not with the color change.
Collapse
Affiliation(s)
- H J de Groot
- Francis Bitter National Magnet Laboratory, Massachusetts Institute of Technology, Cambridge 02139
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Moss D, Nabedryk E, Breton J, Mäntele W. Redox-linked conformational changes in proteins detected by a combination of infrared spectroscopy and protein electrochemistry. Evaluation of the technique with cytochrome c. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 187:565-72. [PMID: 2154376 DOI: 10.1111/j.1432-1033.1990.tb15338.x] [Citation(s) in RCA: 229] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have developed a new technique for the study of redox-linked conformational changes in proteins, by the combination of two established techniques. Fourier-transform infrared spectroscopy has been used together with direct electrochemistry of the protein at a modified metal electrode surface. The technique has been evaluated with cytochrome c, because of its well-characterized electrochemistry and because the availability of X-ray crystallographic and NMR studies of both redox states of the protein provides a reference against which our data can be compared. In electrochemical control experiments, it was confirmed that the spectroelectrochemical cell design allows fast, accurate and reproducible control of the redox poise of the protein. The resulting reduced-minus-oxidized infrared difference spectra show the changes in the frequencies and intensities of molecular vibrations which arise from the redox-linked conformational change. In contrast to the absolute infrared spectra of proteins, such difference spectra can be sufficiently straightforward to allow interpretation at the level of individual bonds. A complete interpretation of the spectra is beyond the scope of the present paper: however, on the basis of the data presented, we are able to suggest assignments for all except one of the major bands between 1500 cm-1 and 1800 cm-1.
Collapse
Affiliation(s)
- D Moss
- Institut für Biophysik und Strahlenbiologie, Universität Freiburg, Federal Republic of Germany
| | | | | | | |
Collapse
|
50
|
Ottolenghi M, Sheves M. Synthetic retinals as probes for the binding site and photoreactions in rhodopsins. J Membr Biol 1989; 112:193-212. [PMID: 2693733 DOI: 10.1007/bf01870951] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- M Ottolenghi
- Department of Physical Chemistry, Hebrew University of Jerusalem, Israel
| | | |
Collapse
|