1
|
Green VE, Klancher CA, Yamamoto S, Dalia AB. The molecular mechanism for carbon catabolite repression of the chitin response in Vibrio cholerae. PLoS Genet 2023; 19:e1010767. [PMID: 37172034 PMCID: PMC10208484 DOI: 10.1371/journal.pgen.1010767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 05/24/2023] [Accepted: 04/30/2023] [Indexed: 05/14/2023] Open
Abstract
Vibrio cholerae is a facultative pathogen that primarily occupies marine environments. In this niche, V. cholerae commonly interacts with the chitinous shells of crustacean zooplankton. As a chitinolytic microbe, V. cholerae degrades insoluble chitin into soluble oligosaccharides. Chitin oligosaccharides serve as both a nutrient source and an environmental cue that induces a strong transcriptional response in V. cholerae. Namely, these oligosaccharides induce the chitin sensor, ChiS, to activate the genes required for chitin utilization and horizontal gene transfer by natural transformation. Thus, interactions with chitin impact the survival of V. cholerae in marine environments. Chitin is a complex carbon source for V. cholerae to degrade and consume, and the presence of more energetically favorable carbon sources can inhibit chitin utilization. This phenomenon, known as carbon catabolite repression (CCR), is mediated by the glucose-specific Enzyme IIA (EIIAGlc) of the phosphoenolpyruvate-dependent phosphotransferase system (PTS). In the presence of glucose, EIIAGlc becomes dephosphorylated, which inhibits ChiS transcriptional activity by an unknown mechanism. Here, we show that dephosphorylated EIIAGlc interacts with ChiS. We also isolate ChiS suppressor mutants that evade EIIAGlc-dependent repression and demonstrate that these alleles no longer interact with EIIAGlc. These findings suggest that EIIAGlc must interact with ChiS to exert its repressive effect. Importantly, the ChiS suppressor mutations we isolated also relieve repression of chitin utilization and natural transformation by EIIAGlc, suggesting that CCR of these behaviors is primarily regulated through ChiS. Together, our results reveal how nutrient conditions impact the fitness of an important human pathogen in its environmental reservoir.
Collapse
Affiliation(s)
- Virginia E. Green
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Catherine A. Klancher
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Shouji Yamamoto
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ankur B. Dalia
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
2
|
Graf von Armansperg B, Koller F, Gericke N, Hellwig M, Jagtap PKA, Heermann R, Hennig J, Henle T, Lassak J. Transcriptional regulation of the N ε -fructoselysine metabolism in Escherichia coli by global and substrate-specific cues. Mol Microbiol 2020; 115:175-190. [PMID: 32979851 DOI: 10.1111/mmi.14608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 12/19/2022]
Abstract
Thermally processed food is an important part of the human diet. Heat-treatment, however, promotes the formation of so-called Amadori rearrangement products, such as fructoselysine. The gut microbiota including Escherichia coli can utilize these compounds as a nutrient source. While the degradation route for fructoselysine is well described, regulation of the corresponding pathway genes frlABCD remained poorly understood. Here, we used bioinformatics combined with molecular and biochemical analyses and show that fructoselysine metabolism in E. coli is tightly controlled at the transcriptional level. The global regulator CRP (CAP) as well as the alternative sigma factor σ32 (RpoH) contribute to promoter activation at high cAMP-levels and inside warm-blooded hosts, respectively. In addition, we identified and characterized a transcriptional regulator FrlR, encoded adjacent to frlABCD, as fructoselysine-6-phosphate specific repressor. Our study provides profound evidence that the interplay of global and substrate-specific regulation is a perfect adaptation strategy to efficiently utilize unusual substrates within the human gut environment.
Collapse
Affiliation(s)
| | - Franziska Koller
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nicola Gericke
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael Hellwig
- Chair of Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | | | - Ralf Heermann
- Institute of Molecular Physiology, Microbiology and Wine Research, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Janosch Hennig
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Thomas Henle
- Chair of Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Jürgen Lassak
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
3
|
Kurgan G, Sievert C, Flores A, Schneider A, Billings T, Panyon L, Morris C, Taylor E, Kurgan L, Cartwright R, Wang X. Parallel experimental evolution reveals a novel repressive control of GalP on xylose fermentation in Escherichia coli. Biotechnol Bioeng 2019; 116:2074-2086. [PMID: 31038200 PMCID: PMC11161036 DOI: 10.1002/bit.27004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/28/2019] [Accepted: 04/25/2019] [Indexed: 12/25/2022]
Abstract
Efficient xylose utilization will facilitate microbial conversion of lignocellulosic sugar mixtures into valuable products. In Escherichia coli, xylose catabolism is controlled by carbon catabolite repression (CCR). However, in E. coli such as the succinate-producing strain KJ122 with disrupted CCR, xylose utilization is still inhibited under fermentative conditions. To probe the underlying genetic mechanisms inhibiting xylose utilization, we evolved KJ122 to enhance its xylose fermentation abilities in parallel and characterized the potential convergent genetic changes shared by multiple independently evolved strains. Whole-genome sequencing revealed that convergent mutations occurred in the galactose regulon during adaptive laboratory evolution potentially decreasing the transcriptional level or the activity of GalP, a galactose permease. We showed that deletion of galP increased xylose utilization in both KJ122 and wild-type E. coli, demonstrating a common repressive role of GalP for xylose fermentation. Concomitantly, induced expression of galP from a plasmid repressed xylose fermentation. Transcriptome analysis using RNA sequencing indicates that galP inactivation increases transcription levels of many catabolic genes for secondary sugars including xylose and arabinose. The repressive role of GalP for fermenting secondary sugars in E. coli suggests that utilization of GalP as a substitute glucose transporter is undesirable for conversion of lignocellulosic sugar mixtures.
Collapse
Affiliation(s)
- Gavin Kurgan
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Christian Sievert
- School of Life Sciences, Arizona State University, Tempe, Arizona
- The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Andrew Flores
- Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona
| | - Aidan Schneider
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Thomas Billings
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Larry Panyon
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Chandler Morris
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Eric Taylor
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Logan Kurgan
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Reed Cartwright
- School of Life Sciences, Arizona State University, Tempe, Arizona
- The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Xuan Wang
- School of Life Sciences, Arizona State University, Tempe, Arizona
| |
Collapse
|
4
|
Glucose-Specific Enzyme IIA of the Phosphoenolpyruvate:Carbohydrate Phosphotransferase System Modulates Chitin Signaling Pathways in Vibrio cholerae. J Bacteriol 2017; 199:JB.00127-17. [PMID: 28461445 DOI: 10.1128/jb.00127-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/21/2017] [Indexed: 12/13/2022] Open
Abstract
In Vibrio cholerae, the genes required for chitin utilization and natural competence are governed by the chitin-responsive two-component system (TCS) sensor kinase ChiS. In the classical TCS paradigm, a sensor kinase specifically phosphorylates a cognate response regulator to activate gene expression. However, our previous genetic study suggested that ChiS stimulates the non-TCS transcriptional regulator TfoS by using mechanisms distinct from classical phosphorylation reactions (S. Yamamoto, J. Mitobe, T. Ishikawa, S. N. Wai, M. Ohnishi, H. Watanabe, and H. Izumiya, Mol Microbiol 91:326-347, 2014, https://doi.org/10.1111/mmi.12462). TfoS specifically activates the transcription of tfoR, encoding a small regulatory RNA essential for competence gene expression. Whether ChiS and TfoS interact directly remains unknown. To determine if other factors mediate the communication between ChiS and TfoS, we isolated transposon mutants that turned off tfoR::lacZ expression but possessed intact chiS and tfoS genes. We demonstrated an unexpected association of chitin-induced signaling pathways with the glucose-specific enzyme IIA (EIIAglc) of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) for carbohydrate uptake and catabolite control of gene expression. Genetic and physiological analyses revealed that dephosphorylated EIIAglc inactivated natural competence and tfoR transcription. Chitin-induced expression of the chb operon, which is required for chitin transport and catabolism, was also repressed by dephosphorylated EIIAglc Furthermore, the regulation of tfoR and chb expression by EIIAglc was dependent on ChiS and intracellular levels of ChiS were not affected by disruption of the gene encoding EIIAglc These results define a previously unknown connection between the PTS and chitin signaling pathways in V. cholerae and suggest a strategy whereby this bacterium can physiologically adapt to the existing nutrient status.IMPORTANCE The EIIAglc protein of the PTS coordinates a wide variety of physiological functions with carbon availability. In this report, we describe an unexpected association of chitin-activated signaling pathways in V. cholerae with EIIAglc The signaling pathways are governed by the chitin-responsive TCS sensor kinase ChiS and lead to the induction of chitin utilization and natural competence. We show that dephosphorylated EIIAglc inhibits both signaling pathways in a ChiS-dependent manner. This inhibition is different from classical catabolite repression that is caused by lowered levels of cyclic AMP. This work represents a newly identified connection between the PTS and chitin signaling pathways in V. cholerae and suggests a strategy whereby this bacterium can physiologically adapt to the existing nutrient status.
Collapse
|
5
|
The general PTS component HPr determines the preference for glucose over mannitol. Sci Rep 2017; 7:43431. [PMID: 28225088 PMCID: PMC5320558 DOI: 10.1038/srep43431] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/24/2017] [Indexed: 11/08/2022] Open
Abstract
Preferential sugar utilization is a widespread phenomenon in biological systems. Glucose is usually the most preferred carbon source in various organisms, especially in bacteria where it is taken up via the phosphoenolpyruvate:sugar phosphotransferase system (PTS). The currently proposed model for glucose preference over non-PTS sugars in enteric bacteria including E. coli is strictly dependent on the phosphorylation state of the glucose-specific PTS component, enzyme IIAGlc (EIIAGlc). However, the mechanism of the preference among PTS sugars is largely unknown in Gram-negative bacteria. Here, we show that glucose preference over another PTS sugar, mannitol, is absolutely dependent on the general PTS component HPr, but not on EIIAGlc, in E. coli. Dephosphorylated HPr accumulates during the transport of glucose and interacts with the mannitol operon regulator, MtlR, to augment its repressor activity. This interaction blocks the inductive effect of mannitol on the mannitol operon expression and results in the inhibition of mannitol utilization.
Collapse
|
6
|
Somavanshi R, Ghosh B, Sourjik V. Sugar Influx Sensing by the Phosphotransferase System of Escherichia coli. PLoS Biol 2016; 14:e2000074. [PMID: 27557415 PMCID: PMC4996493 DOI: 10.1371/journal.pbio.2000074] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/20/2016] [Indexed: 12/05/2022] Open
Abstract
The phosphotransferase system (PTS) plays a pivotal role in the uptake of multiple sugars in Escherichia coli and many other bacteria. In the cell, individual sugar-specific PTS branches are interconnected through a series of phosphotransfer reactions, thus creating a global network that not only phosphorylates incoming sugars but also regulates a number of cellular processes. Despite the apparent importance of the PTS network in bacterial physiology, the holistic function of the network in the cell remains unclear. Here we used Förster resonance energy transfer (FRET) to investigate the PTS network in E. coli, including the dynamics of protein interactions and the processing of different stimuli and their transmission to the chemotaxis pathway. Our results demonstrate that despite the seeming complexity of the cellular PTS network, its core part operates in a strikingly simple way, sensing the overall influx of PTS sugars irrespective of the sugar identity and distributing this information equally through all studied branches of the network. Moreover, it also integrates several other specific metabolic inputs. The integrated output of the PTS network is then transmitted linearly to the chemotaxis pathway, in stark contrast to the amplification of conventional chemotactic stimuli. Finally, we observe that default uptake through the uninduced PTS network correlates well with the quality of the carbon source, apparently representing an optimal regulatory strategy. The bacterial phosphotransferase system (PTS) mediates uptake of multiple sugars from the environment and also controls cell physiology and swimming behavior in sugar gradients. In Escherichia coli and other bacteria, the PTS consists of a number of sugar-specific branches, interconnected via shared components through a series of phosphotransfer reactions. Whereas most previous studies have focused on understanding individual PTS branches, the holistic function of the entire PTS network in the cell remained elusive. In this study we address this question by investigating the dynamics of multiple protein interactions within the cellular PTS network upon stimulation with sugars and other metabolites. We demonstrate that despite its seeming complexity, the core part of the PTS network operates in a strikingly simple way, sensing the overall influx of PTS sugars and key metabolites into the cell and utilizing this information to control bacterial behavior. We further show that the default influx of the carbon source correlates with its quality, and we use computer simulations to demonstrate that this correlation apparently represents an optimal regulatory strategy.
Collapse
Affiliation(s)
- Rahul Somavanshi
- Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Bhaswar Ghosh
- Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
- * E-mail:
| |
Collapse
|
7
|
Kuhlmann N, Petrov DP, Henrich AW, Lindner SN, Wendisch VF, Seibold GM. Transcription of malP is subject to phosphotransferase system-dependent regulation in Corynebacterium glutamicum. Microbiology (Reading) 2015; 161:1830-1843. [DOI: 10.1099/mic.0.000134] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Nora Kuhlmann
- Institute of Biochemistry, Department of Chemistry, University of Cologne, D-50674 Cologne, Germany
| | - Dimitar P. Petrov
- Institute of Biochemistry, Department of Chemistry, University of Cologne, D-50674 Cologne, Germany
| | - Alexander W. Henrich
- Institute of Biochemistry, Department of Chemistry, University of Cologne, D-50674 Cologne, Germany
| | - Steffen N. Lindner
- Faculty of Biology & CeBiTec, Bielefeld University, D-33501 Bielefeld, Germany
| | - Volker F. Wendisch
- Faculty of Biology & CeBiTec, Bielefeld University, D-33501 Bielefeld, Germany
| | - Gerd M. Seibold
- Institute of Biochemistry, Department of Chemistry, University of Cologne, D-50674 Cologne, Germany
- Institute of Microbiology and Biotechnology, Faculty of Natural Sciences, Ulm University, D-89081 Ulm, Germany
| |
Collapse
|
8
|
Saier MH, Zhang Z. Control of Transposon-Mediated Directed Mutation by the Escherichia coli Phosphoenolpyruvate:Sugar Phosphotransferase System. J Mol Microbiol Biotechnol 2015; 25:226-33. [PMID: 26159081 DOI: 10.1159/000375375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The phosphoenolpyruvate:sugar phosphotransferase system (PTS) has been shown to control transport, cell metabolism and gene expression. We here present results supporting the novel suggestion that in certain instances it also regulates the mutation rate. Directed mutations are defined as mutations that occur at higher frequencies when beneficial than when neutral or detrimental. To date, the occurrence of directed point mutations has not been documented and confirmed, but a few examples of transposon-mediated directed mutations have been reported. Here we focus on the first and best-studied example of directed mutation, which involves the regulation of insertion sequence-5 hopping into a specific site upstream of the glpFK glycerol utilization operon in Escherichia coli. This insertional event specifically activates expression of the glpFK operon, allowing the growth of wild-type cells with glycerol as a carbon source in the presence of nonmetabolizable glucose analogues which normally block glycerol utilization. The sugar-transporting PTS controls this process by regulating levels of cytoplasmic glycerol-3-phosphate and cyclic (c)AMP as established in previous publications. Direct involvement of the glycerol repressor, GlpR, and the cAMP receptor protein, Crp, in the regulation of transposon-mediated directed mutation has been demonstrated.
Collapse
Affiliation(s)
- Milton H Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, Calif., USA
| | | |
Collapse
|
9
|
The bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions. Microbiol Mol Biol Rev 2015; 78:231-56. [PMID: 24847021 DOI: 10.1128/mmbr.00001-14] [Citation(s) in RCA: 306] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The bacterial phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS) carries out both catalytic and regulatory functions. It catalyzes the transport and phosphorylation of a variety of sugars and sugar derivatives but also carries out numerous regulatory functions related to carbon, nitrogen, and phosphate metabolism, to chemotaxis, to potassium transport, and to the virulence of certain pathogens. For these different regulatory processes, the signal is provided by the phosphorylation state of the PTS components, which varies according to the availability of PTS substrates and the metabolic state of the cell. PEP acts as phosphoryl donor for enzyme I (EI), which, together with HPr and one of several EIIA and EIIB pairs, forms a phosphorylation cascade which allows phosphorylation of the cognate carbohydrate bound to the membrane-spanning EIIC. HPr of firmicutes and numerous proteobacteria is also phosphorylated in an ATP-dependent reaction catalyzed by the bifunctional HPr kinase/phosphorylase. PTS-mediated regulatory mechanisms are based either on direct phosphorylation of the target protein or on phosphorylation-dependent interactions. For regulation by PTS-mediated phosphorylation, the target proteins either acquired a PTS domain by fusing it to their N or C termini or integrated a specific, conserved PTS regulation domain (PRD) or, alternatively, developed their own specific sites for PTS-mediated phosphorylation. Protein-protein interactions can occur with either phosphorylated or unphosphorylated PTS components and can either stimulate or inhibit the function of the target proteins. This large variety of signal transduction mechanisms allows the PTS to regulate numerous proteins and to form a vast regulatory network responding to the phosphorylation state of various PTS components.
Collapse
|
10
|
Thermodynamic mechanism for inhibition of lactose permease by the phosphotransferase protein IIAGlc. Proc Natl Acad Sci U S A 2015; 112:2407-12. [PMID: 25675534 DOI: 10.1073/pnas.1500891112] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In a variety of bacteria, the phosphotransferase protein IIA(Glc) plays a key regulatory role in catabolite repression in addition to its role in the vectorial phosphorylation of glucose catalyzed by the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS). The lactose permease (LacY) of Escherichia coli catalyzes stoichiometric symport of a galactoside with an H(+), using a mechanism in which sugar- and H(+)-binding sites become alternatively accessible to either side of the membrane. Both the expression (via regulation of cAMP levels) and the activity of LacY are subject to regulation by IIA(Glc) (inducer exclusion). Here we report the thermodynamic features of the IIA(Glc)-LacY interaction as measured by isothermal titration calorimetry (ITC). The studies show that IIA(Glc) binds to LacY with a Kd of about 5 μM and a stoichiometry of unity and that binding is driven by solvation entropy and opposed by enthalpy. Upon IIA(Glc) binding, the conformational entropy of LacY is restrained, which leads to a significant decrease in sugar affinity. By suppressing conformational dynamics, IIA(Glc) blocks inducer entry into cells and favors constitutive glucose uptake and utilization. Furthermore, the studies support the notion that sugar binding involves an induced-fit mechanism that is inhibited by IIA(Glc) binding. The precise mechanism of the inhibition of LacY by IIA(Glc) elucidated by ITC differs from the inhibition of melibiose permease (MelB), supporting the idea that permeases can differ in their thermodynamic response to binding IIA(Glc).
Collapse
|
11
|
Nath A, Datta S, Chowdhury R, Bhattacharjee C. Fermentative production of intracellular β-galactosidase by Bacillus safensis (JUCHE 1) growing on lactose and glucose—Modeling and experimental. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2014. [DOI: 10.1016/j.bcab.2014.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
A role for EIIA Ntr in controlling fluxes in the central metabolism of E. coli K12. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2879-2889. [DOI: 10.1016/j.bbamcr.2013.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/04/2013] [Accepted: 07/15/2013] [Indexed: 11/21/2022]
|
13
|
Postma P, Broekhuizen C, Geerse R. The role of the PEP: carbohydrate phosphotransferase system in the regulation of bacterial metabolism. FEMS Microbiol Lett 2013. [DOI: 10.1111/j.1574-6968.1989.tb14102.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
14
|
Carbon catabolite repression of the maltose transporter revealed by X-ray crystallography. Nature 2013; 499:364-8. [PMID: 23770568 PMCID: PMC3875231 DOI: 10.1038/nature12232] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 04/29/2013] [Indexed: 02/03/2023]
Abstract
Efficient carbon utilization is critical to the survival of microorganisms in competitive environments. To optimize energy usage, bacteria have developed an integrated control system to preferentially uptake carbohydrates that support rapid growth. The availability of a preferred carbon source such as glucose represses the synthesis and activities of proteins necessary for the transport and metabolism of secondary carbon sources. This regulatory phenomenon is defined as carbon catabolite repression (CCR)1. In enteric bacteria, the key player of CCR is a component of the glucose-specific phosphotransferase system, enzyme IIA (EIIAGlc)1,2. It is known that unphosphorylated EIIAGlc binds and inhibits a variety of transporters when glucose is available1,2. However, understanding the underlying molecular mechanism has been hindered by the complete absence of structures for any EIIAGlc-transporter complexes. Here, we present the 3.9 Å crystal structure of EIIAGlc in complex with the maltose transporter, an ATP-binding cassette (ABC) transporter. The structure shows that two EIIAGlc molecules bind to the cytoplasmic ATPase subunits, stabilizing the transporter in an inward-facing conformation and preventing the structural rearrangements necessary for ATP hydrolysis. We also show that the half maximal inhibitory concentrations of the full-length EIIAGlc and an N-terminal truncation mutant differ by 60 fold, consistent with the hypothesis that the N-terminal region, disordered in the crystal structure, functions as a membrane-anchor to increase the effective EIIAGlc concentration at the membrane3,4. Together these data suggest a model of how the central regulatory protein EIIAGlc allosterically inhibits maltose uptake in E. coli.
Collapse
|
15
|
Erni B. The bacterial phosphoenolpyruvate: sugar phosphotransferase system (PTS): an interface between energy and signal transduction. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2012. [DOI: 10.1007/s13738-012-0185-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
|
17
|
A dodecapeptide (YQVTQSKVMSHR) exhibits antibacterial effect and induces cell aggregation in Escherichia coli. Appl Microbiol Biotechnol 2012; 94:755-62. [PMID: 22314514 DOI: 10.1007/s00253-011-3857-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 12/15/2011] [Accepted: 12/20/2011] [Indexed: 10/14/2022]
Abstract
Antimicrobial peptides play an important role in the innate immune response and host defense mechanism. In the present study, we employed phage display technique to screen for inhibitors which may block the phosphoenolpyruvatedependent phosphotransferase system (PTS) pathway and hence retard cell growth. The recombinant histidine-containing phosphocarrier HPr protein was prepared as the target to screen for the tight binders from the phage-displayed random peptide library Ph.D.-12. The biopanning processes were performed and the binding capabilities of the selected phage were further estimated by enzyme-linked immunosorbent assay (ELISA). The single-stranded DNAs of the 20 selected phages were isolated, sequenced, and five corresponding peptides were synthesized. Only one of the five peptides, AP1 (YQVTQSK VMSHR) was found to inhibit the growth of Escherichia coli cells efficiently (IC₅₀~50 μM). Molecular modeling reveals that AP1 may block the EI-HPr interaction and phosphotransfer. Interestingly, AP1 was also found to induce cell aggregation in a concentration-dependent manner. Since glycogen accumulation has been attributed to biofilm formation, the effects of AP1 on the intracellular glycogen levels were measured. The results strongly indicate that the cell aggregation may be caused by the binding of peptide AP1 with HPr to block the interaction of dephosphorylated HPr with glycogen phosphorylase (GP). Because glycogen phosphorylase activity can be activated by HPr-GP interaction, the binding of AP1 to HPr would cause a decreasing rate of glycogen breakdown in M9 medium and accumulation of glycogen, which may lead to eventual cell aggregation. To the best of our knowledge, this is the first study to demonstrate that an inhibitor bound to a dephosphorylated HPr can decouple its regulatory function and induce cell aggregation.
Collapse
|
18
|
Tan JS, Ramanan RN, Ling TC, Mustafa S, Ariff AB. The role of lac operon and lac repressor in the induction using lactose for the expression of periplasmic human interferon-α2b by Escherichia coli. ANN MICROBIOL 2011. [DOI: 10.1007/s13213-011-0394-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
19
|
Porcheron G, Kut E, Canepa S, Maurel MC, Schouler C. Regulation of fructooligosaccharide metabolism in an extra-intestinal pathogenic Escherichia coli strain. Mol Microbiol 2011; 81:717-33. [PMID: 21692876 DOI: 10.1111/j.1365-2958.2011.07725.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A gene cluster involved in the metabolism of prebiotic short-chain fructooligosaccharides (scFOS) has recently been identified in the extra-intestinal avian pathogenic Escherichia coli strain BEN2908. This gene cluster, called the fos locus, plays a major role in the initiation stage of chicken intestinal colonization. This locus is composed of six genes organized as an operon encoding a sugar transporter and enzymes involved in scFOS metabolism, and of a divergently transcribed gene encoding a transcriptional regulator, FosR, belonging to the LacI/GalR family. To decipher the regulation of scFOS metabolism, we monitored the fos operon promoter activity using a luciferase reporter gene assay. We demonstrated that the expression of fos genes is repressed by FosR, controlled by catabolite repression and induced in the presence of scFOS. Using electrophoretic mobility shift assays and surface plasmon resonance experiments, we showed that FosR binds to two operator sequences of the fos operon promoter region. This binding to DNA was inhibited in the presence of scFOS, especially by GF2. We then propose a model of scFOS metabolism regulation in a pathogenic bacterium, which will help to identify the environmental conditions required for fos gene expression and to understand the role of this locus in intestinal colonization.
Collapse
Affiliation(s)
- Gaëlle Porcheron
- INRA, UR1282 Infectiologie Animale et Santé Publique, F-37380 Nouzilly, France
| | | | | | | | | |
Collapse
|
20
|
Lee SF, Forsberg CW, Gibbins LN. Xylanolytic Activity of Clostridium acetobutylicum. Appl Environ Microbiol 2010; 50:1068-76. [PMID: 16346904 PMCID: PMC291795 DOI: 10.1128/aem.50.4.1068-1076.1985] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Of 20 strains of Clostridium spp. screened, 17 hydrolyzed larch wood xylan. Two strains of Clostridium acetobutylicum, NRRL B527 and ATCC 824, hydrolyzed xylan but failed to grow on solid media with larch xylan as the sole carbon source; however, strain ATCC 824 was subsequently found to grow on xylan under specified conditions in a chemostat. These two strains possessed cellulolytic activity and were therefore selected for further studies. In cellobiose-limited continuous cultures, strain NRRL B527 produced maximum xylanase activity at pH 5.2. Strain ATCC 824 produced higher xylanase, xylopyranosidase, and arabinofuranosidase activities in chemostat culture with xylose than with any other soluble carbon source as the limiting nutrient. The activities of these enzymes were markedly reduced when the cells were grown in the presence of excess glucose. The xylanase showed maximum activity at pH 5.8 to 6.0 and 65 degrees C. The enzyme was stable on the alkaline side of pH 5.2 but was unstable below this pH value. The extracellular xylanolytic activity from strain ATCC 824 hydrolyzed 12% of the larch wood xylan during a 24-h incubation period, yielding xylose, xylobiose, and xylotriose as the major hydrolysis products. Strain ATCC 824, after being induced to grow in batch culture in xylan medium supplemented with a low concentration of xylose, failed to grow reproducibly in unsupplemented xylan medium. A mutant obtained by mutagenesis with ethyl methanesulfonate was able to grow reproducibly in batch culture on xylan. Both the parent strain and the mutant were able to grow with xylan as the sole source of carbohydrate in continuous culture with the pH maintained at either 5.2 or 6.0. Under these conditions, the cells utilized approximately 50% of the xylan.
Collapse
Affiliation(s)
- S F Lee
- Department of Microbiology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | |
Collapse
|
21
|
Khankal R, Chin JW, Ghosh D, Cirino PC. Transcriptional effects of CRP* expression in Escherichia coli. J Biol Eng 2009; 3:13. [PMID: 19703305 PMCID: PMC2743635 DOI: 10.1186/1754-1611-3-13] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 08/24/2009] [Indexed: 01/31/2023] Open
Abstract
Background Escherichia coli exhibits diauxic growth in sugar mixtures due to CRP-mediated catabolite repression and inducer exclusion related to phosphotransferase system enzyme activity. Replacement of the native crp gene with a catabolite repression mutant (referred to as crp*) enables co-utilization of glucose and other sugars in E. coli. While previous studies have examined the effects of expressing CRP* mutants on the expression of specific catabolic genes, little is known about the global transcriptional effects of CRP* expression. In this study, we compare the transcriptome of E. coli W3110 (expressing wild-type CRP) to that of mutant strain PC05 (expressing CRP*) in the presence and absence of glucose. Results The glucose effect is significantly suppressed in strain PC05 relative to strain W3110. The expression levels of glucose-sensitive genes are generally not altered by glucose to the same extent in strain PCO5 as compared to W3110. Only 23 of the 80 genes showing significant differential expression in the presence of glucose for strain PC05 are present among the 418 genes believed to be directly regulated by CRP. Genes involved in central carbon metabolism (including several TCA cycle genes) and amino acid biosynthesis, as well as genes encoding nutrient transport systems are among those whose transcript levels are most significantly affected by CRP* expression. We present a detailed transcription analysis and relate these results to phenotypic differences between strains expressing wild-type CRP and CRP*. Notably, CRP* expression in the presence of glucose results in an elevated intracellular NADPH concentration and reduced NADH concentration relative to wild-type CRP. Meanwhile, a more drastic decrease in the NADPH/NADP+ ratio is observed for the case of CRP* expression in strains engineered to reduce xylose to xylitol via a heterologously expressed, NADPH-dependent xylose reductase. Altered expression levels of transhydrogenase and TCA cycle genes, among others, are consistent with these observations. Conclusion While the simplest model of CRP*-mediated gene expression assumes insensitivity to glucose (or cAMP), our results show that gene expression in the context of CRP* is very different from that of wild-type in the absence of glucose, and is influenced by the presence of glucose. Most of the transcription changes in response to CRP* expression are difficult to interpret in terms of possible systematic effects on metabolism. Elevated NADPH availability resulting from CRP* expression suggests potential biocatalytic applications of crp* strains that extend beyond relief of catabolite repression.
Collapse
Affiliation(s)
- Reza Khankal
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | |
Collapse
|
22
|
A facile preparation of trehalose analogues: 1,1-thiodisaccharides. Carbohydr Res 2009; 344:1039-45. [DOI: 10.1016/j.carres.2009.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 03/03/2009] [Accepted: 03/17/2009] [Indexed: 02/02/2023]
|
23
|
Glucose and glycolysis are required for the successful infection of macrophages and mice by Salmonella enterica serovar typhimurium. Infect Immun 2009; 77:3117-26. [PMID: 19380470 DOI: 10.1128/iai.00093-09] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Salmonella is a widespread zoonotic enteropathogen that causes gastroenteritis and fatal typhoidal disease in mammals. During systemic infection of mice, Salmonella enterica serovar Typhimurium resides and replicates in macrophages within the "Salmonella-containing vacuole" (SCV). It is surprising that the substrates and metabolic pathways necessary for growth of S. Typhimurium within the SCV of macrophages have not been identified yet. To determine whether S. Typhimurium utilized sugars within the SCV, we constructed a series of S. Typhimurium mutants that lacked genes involved in sugar transport and catabolism and tested them for replication in mice and macrophages. These mutants included a mutant with a mutation in the pfkAB-encoded phosphofructokinase, which catalyzes a key committing step in glycolysis. We discovered that a pfkAB mutant is severely attenuated for replication and survival within RAW 264.7 macrophages. We also show that disruption of the phosphoenolpyruvate:carbohydrate phosphotransferase system by deletion of the ptsHI and crr genes reduces S. Typhimurium replication within RAW 264.7 macrophages. We discovered that mutants unable to catabolize glucose due to deletion of ptsHI, crr, and glk or deletion of ptsG, manXYZ, and glk showed reduced replication within RAW 264.7 macrophages. This study proves that S. Typhimurium requires glycolysis for infection of mice and macrophages and that transport of glucose is required for replication within macrophages.
Collapse
|
24
|
Bettenbrock K, Sauter T, Jahreis K, Kremling A, Lengeler JW, Gilles ED. Correlation between growth rates, EIIACrr phosphorylation, and intracellular cyclic AMP levels in Escherichia coli K-12. J Bacteriol 2007; 189:6891-900. [PMID: 17675376 PMCID: PMC2045212 DOI: 10.1128/jb.00819-07] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 07/20/2007] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli K-12, components of the phosphoenolpyruvate-dependent phosphotransferase systems (PTSs) represent a signal transduction system involved in the global control of carbon catabolism through inducer exclusion mediated by phosphoenolpyruvate-dependent protein kinase enzyme IIA(Crr) (EIIA(Crr)) (= EIIA(Glc)) and catabolite repression mediated by the global regulator cyclic AMP (cAMP)-cAMP receptor protein (CRP). We measured in a systematic way the relation between cellular growth rates and the key parameters of catabolite repression, i.e., the phosphorylated EIIA(Crr) (EIIA(Crr) approximately P) level and the cAMP level, using in vitro and in vivo assays. Different growth rates were obtained by using either various carbon sources or by growing the cells with limited concentrations of glucose, sucrose, and mannitol in continuous bioreactor experiments. The ratio of EIIA(Crr) to EIIA(Crr) approximately P and the intracellular cAMP concentrations, deduced from the activity of a cAMP-CRP-dependent promoter, correlated well with specific growth rates between 0.3 h(-1) and 0.7 h(-1), corresponding to generation times of about 138 and 60 min, respectively. Below and above this range, these parameters were increasingly uncoupled from the growth rate, which perhaps indicates an increasing role executed by other global control systems, in particular the stringent-relaxed response system.
Collapse
Affiliation(s)
- Katja Bettenbrock
- MPI für Dynamik Komplexer Technischer Systeme, Sandtorstr.1, 39106 Magdeburg, Germany.
| | | | | | | | | | | |
Collapse
|
25
|
Sutrina SL, Inniss PI, Lazarus LA, Inglis L, Maximilien J. Replacing the general energy-coupling proteins of the phospho-enol-pyruvate:sugar phosphotransferase system ofSalmonella typhimuriumwith fructose-inducible counterparts results in the inability to utilize nonphosphotransferase system sugars. Can J Microbiol 2007; 53:586-98. [PMID: 17668017 DOI: 10.1139/w07-020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A Salmonella typhimurium mutant lacking Enzyme I and HPr, general proteins of the phosphoenolpyruvate:sugar phosphotransferase system (PTS), but producing homologues EIFructoseand FPr constitutively, did not grow in minimal medium supplemented with non-PTS sugars (melibiose, glycerol, and maltose) in the absence of any trace of Luria–Bertani broth; adding cyclic AMP allowed growth. On melibiose, rapid growth began only when melibiose permease activity had reached a threshold level. Wild-type cultures reached this level within about 2 h, but the mutant only after a 12–14 h lag period, and then only when cyclic AMP had been added to the medium. On a mixture of melibiose and a PTS sugar, permease was undetectable in either the wild type or mutant until the PTS sugar had been exhausted. Permease then appeared, increasing with time, but in the mutant it never reached the threshold allowing rapid growth on melibiose unless cyclic AMP had been added. On rich medium supplemented with melibiose or glycerol, the mutant produced lower (30%) levels of melibiose permease or glycerol kinase compared with the wild type. We propose that poor phosphorylation of the regulatory protein Enzyme IIAGlucose, leading to constitutive inducer exclusion and catabolite repression in this strain, accounts for these results.
Collapse
Affiliation(s)
- Sarah L Sutrina
- Department of Biological and Chemical Sciences, The University of the West Indies, Cave Hill Campus, Barbados.
| | | | | | | | | |
Collapse
|
26
|
Deutscher J, Francke C, Postma PW. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 2007; 70:939-1031. [PMID: 17158705 PMCID: PMC1698508 DOI: 10.1128/mmbr.00024-06] [Citation(s) in RCA: 1039] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The phosphoenolpyruvate(PEP):carbohydrate phosphotransferase system (PTS) is found only in bacteria, where it catalyzes the transport and phosphorylation of numerous monosaccharides, disaccharides, amino sugars, polyols, and other sugar derivatives. To carry out its catalytic function in sugar transport and phosphorylation, the PTS uses PEP as an energy source and phosphoryl donor. The phosphoryl group of PEP is usually transferred via four distinct proteins (domains) to the transported sugar bound to the respective membrane component(s) (EIIC and EIID) of the PTS. The organization of the PTS as a four-step phosphoryl transfer system, in which all P derivatives exhibit similar energy (phosphorylation occurs at histidyl or cysteyl residues), is surprising, as a single protein (or domain) coupling energy transfer and sugar phosphorylation would be sufficient for PTS function. A possible explanation for the complexity of the PTS was provided by the discovery that the PTS also carries out numerous regulatory functions. Depending on their phosphorylation state, the four proteins (domains) forming the PTS phosphorylation cascade (EI, HPr, EIIA, and EIIB) can phosphorylate or interact with numerous non-PTS proteins and thereby regulate their activity. In addition, in certain bacteria, one of the PTS components (HPr) is phosphorylated by ATP at a seryl residue, which increases the complexity of PTS-mediated regulation. In this review, we try to summarize the known protein phosphorylation-related regulatory functions of the PTS. As we shall see, the PTS regulation network not only controls carbohydrate uptake and metabolism but also interferes with the utilization of nitrogen and phosphorus and the virulence of certain pathogens.
Collapse
Affiliation(s)
- Josef Deutscher
- Microbiologie et Génétique Moléculaire, INRA-CNRS-INA PG UMR 2585, Thiverval-Grignon, France.
| | | | | |
Collapse
|
27
|
Mackey MC, Santillán M, Yildirim N. Modeling operon dynamics: the tryptophan and lactose operons as paradigms. C R Biol 2004; 327:211-24. [PMID: 15127892 DOI: 10.1016/j.crvi.2003.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding the regulation of gene control networks and their ensuing dynamics will be a critical component in the understanding of the mountain of genomic data being currently collected. This paper reviews recent mathematical modeling work on the tryptophan and lactose operons which are, respectively, the classical paradigms for repressible and inducible operons.
Collapse
Affiliation(s)
- Michael C Mackey
- Department of Physiology, Centre for Nonlinear Dynamics, McGill University, 3655 Drummond Street, Montreal, Quebec, Canada H3G 1Y6.
| | | | | |
Collapse
|
28
|
Yildirim N, Santillan M, Horike D, Mackey MC. Dynamics and bistability in a reduced model of the lac operon. CHAOS (WOODBURY, N.Y.) 2004; 14:279-292. [PMID: 15189056 DOI: 10.1063/1.1689451] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
It is known that the lac operon regulatory pathway is capable of showing bistable behavior. This is an important complex feature, arising from the nonlinearity of the involved mechanisms, which is essential to understand the dynamic behavior of this molecular regulatory system. To find which of the mechanisms involved in the regulation of the lac operon is the origin of bistability, we take a previously published model which accounts for the dynamics of mRNA, lactose, allolactose, permease and beta-galactosidase involvement and simplify it by ignoring permease dynamics (assuming a constant permease concentration). To test the behavior of the reduced model, three existing sets of data on beta-galactosidase levels as a function of time are simulated and we obtain a reasonable agreement between the data and the model predictions. The steady states of the reduced model were numerically and analytically analyzed and it was shown that it may indeed display bistability, depending on the extracellular lactose concentration and growth rate.
Collapse
Affiliation(s)
- Necmettin Yildirim
- Centre for Nonlinear Dynamics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | |
Collapse
|
29
|
Francke C, Postma PW, Westerhoff HV, Blom JG, Peletier MA. Why the phosphotransferase system of Escherichia coli escapes diffusion limitation. Biophys J 2003; 85:612-22. [PMID: 12829515 PMCID: PMC1303116 DOI: 10.1016/s0006-3495(03)74505-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
We calculated the implications of diffusion for the phosphoenolpyruvate:glucose phosphotransferase system (glucose-PTS) of Escherichia coli in silicon cells of various magnitudes. For a cell of bacterial size, diffusion limitation of glucose influx was negligible. Nevertheless, a significant concentration gradient for one of the enzyme species, nonphosphorylated IIA(Glc), was found. This should have consequences because the phosphorylation state of IIA(Glc) is an important intracellular signal. For mammalian cell sizes we found significant diffusion limitation, as well as strong concentration gradients in many PTS components, and strong effects on glucose and energy signaling. We calculated that the PTS may sense both extracellular glucose and the intracellular free-energy state. We discuss i), that the effects of diffusion on cell function should prevent this highly effective bacterial system from functioning in eukaryotic cells, ii), that in the larger eukaryotic cell any similar chain of mobile group-transfer proteins can neither sustain the same volumetric flux as in bacteria nor transmit a signal far into the cell, and iii), that systems such as these may exhibit spatial differentiation in their sensitivity to different signals.
Collapse
Affiliation(s)
- Christof Francke
- BioCentrum Amsterdam, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
30
|
Yildirim N, Mackey MC. Feedback regulation in the lactose operon: a mathematical modeling study and comparison with experimental data. Biophys J 2003; 84:2841-51. [PMID: 12719218 PMCID: PMC1302849 DOI: 10.1016/s0006-3495(03)70013-7] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2002] [Accepted: 12/27/2002] [Indexed: 10/21/2022] Open
Abstract
A mathematical model for the regulation of induction in the lac operon in Escherichia coli is presented. This model takes into account the dynamics of the permease facilitating the internalization of external lactose; internal lactose; beta-galactosidase, which is involved in the conversion of lactose to allolactose, glucose and galactose; the allolactose interactions with the lac repressor; and mRNA. The final model consists of five nonlinear differential delay equations with delays due to the transcription and translation process. We have paid particular attention to the estimation of the parameters in the model. We have tested our model against two sets of beta-galactosidase activity versus time data, as well as a set of data on beta-galactosidase activity during periodic phosphate feeding. In all three cases we find excellent agreement between the data and the model predictions. Analytical and numerical studies also indicate that for physiologically realistic values of the external lactose and the bacterial growth rate, a regime exists where there may be bistable steady-state behavior, and that this corresponds to a cusp bifurcation in the model dynamics.
Collapse
Affiliation(s)
- Necmettin Yildirim
- Centre for Nonlinear Dynamics, McGill University, Montreal, Quebec, Canada H4X 2C1
| | | |
Collapse
|
31
|
Evidence for the phosphorylation of enzyme IIglucoseof the phosphoenolpyruvate-sugar phosphotransferase system ofEscherichia coliandSalmonella typhimurium. FEBS Lett 2001. [DOI: 10.1016/0014-5793(84)81367-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Kremling A, Bettenbrock K, Laube B, Jahreis K, Lengeler JW, Gilles ED. The organization of metabolic reaction networks. III. Application for diauxic growth on glucose and lactose. Metab Eng 2001; 3:362-79. [PMID: 11676570 DOI: 10.1006/mben.2001.0199] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A mathematical model to describe carbon catabolite repression in Escherichia coli is developed and in part validated. The model is aggregated from two functional units describing glucose and lactose transport and degradation. Both units are members of the crp modulon and are under control of a global signal transduction system which calculates the signals that turn on or off gene expression for the specific enzymes. Using isogenic mutant strains, our model is validated by a set of experiments. In these experiments, substrate composition of the preculture and of the experimental culture are varied in order to stimulate the system in different ways. With the obtained measurements (three states in the liquid phase and one intracellular component) a part of the model parameters could be estimated. Therefore all experiments could be sufficiently described with a single set of parameters.
Collapse
Affiliation(s)
- A Kremling
- Max-Planck-Institut für Dynamik komplexer technischer Systeme, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Meyer M, Dimroth P, Bott M. Catabolite repression of the citrate fermentation genes in Klebsiella pneumoniae: evidence for involvement of the cyclic AMP receptor protein. J Bacteriol 2001; 183:5248-56. [PMID: 11514506 PMCID: PMC95405 DOI: 10.1128/jb.183.18.5248-5256.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Klebsiella pneumoniae is able to grow anaerobically with citrate as a sole carbon and energy source by a fermentative pathway involving the Na(+)-dependent citrate carrier CitS, citrate lyase, and oxaloacetate decarboxylase. The corresponding genes are organized in the divergent citC and citS operons, whose expression is strictly dependent on the citrate-sensing CitA-CitB two-component system. Evidence is provided here that the citrate fermentation genes are subject to catabolite repression, since anaerobic cultivation with a mixture of citrate and glucose or citrate and gluconate resulted in diauxic growth. Glucose, gluconate, and also glycerol decreased the expression of a chromosomal citS-lacZ fusion by 60 to 75%, whereas a direct inhibition of the citrate fermentation enzymes was not observed. The purified cyclic AMP (cAMP) receptor protein (CRP) of K. pneumoniae bound to two sites in the citC-citS intergenic region, which were centered at position -41.5 upstream of the citC and citS transcriptional start sites. Binding was apparently stimulated by the response regulator CitB. These data indicate that catabolite repression of the citrate fermentation genes is exerted by CRP and that in the absence of repressing carbon sources the cAMP-CRP complex serves to enhance the basal, CitB-dependent transcription level.
Collapse
Affiliation(s)
- M Meyer
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule Zürich, 8092 Zürich, Switzerland
| | | | | |
Collapse
|
34
|
Gunnewijk MG, Poolman B. HPr(His approximately P)-mediated phosphorylation differently affects counterflow and proton motive force-driven uptake via the lactose transport protein of Streptococcus thermophilus. J Biol Chem 2000; 275:34080-5. [PMID: 10842178 DOI: 10.1074/jbc.m003513200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The lactose transport protein (LacS) of Streptococcus thermophilus has a C-terminal hydrophilic domain that is homologous to IIA protein and protein domains of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS). The IIA domain of LacS is phosphorylated on His-552 by the general energy coupling proteins of the PTS, which are Enzyme I and HPr. To study the effect of phosphorylation on transport, the LacS protein was purified and incorporated into liposomes with the IIA domain facing outwards. This allowed the phosphorylation of the membrane-reconstituted protein by purified HPr(His approximately P) of S. thermophilus. Phosphorylation of LacS increased the V(max) of counterflow transport, whereas the V(max) of the proton motive force (delta p)-driven lactose uptake was not affected. In line with a range of kinetic studies, we propose that phosphorylation affects the rate constants for the reorientation of the ternary complex (LacS with bound lactose plus proton), which is rate-determining for counterflow but not for delta p-driven transport.
Collapse
Affiliation(s)
- M G Gunnewijk
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | |
Collapse
|
35
|
Sondej M, Sun J, Seok YJ, Kaback HR, Peterkofsky A. Deduction of consensus binding sequences on proteins that bind IIAGlc of the phosphoenolpyruvate:sugar phosphotransferase system by cysteine scanning mutagenesis of Escherichia coli lactose permease. Proc Natl Acad Sci U S A 1999; 96:3525-30. [PMID: 10097069 PMCID: PMC22326 DOI: 10.1073/pnas.96.7.3525] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mediated by the protein IIAGlc, the phosphoenolpyruvate:sugar phosphotransferase system plays a role in the regulation of activity of other sugar transport systems in Escherichia coli. By using a direct binding assay, a collection of single-Cys replacement mutants in cytoplasmic loops of lactose permease were evaluated for their capacity to bind IIAGlc. Selected Cys replacements in loops IV/V or VI/VII result in loss of binding activity. Analysis of the mutagenesis results together with multiple sequence alignments of a family of proteins that interacts with IIAGlc provides the basis for developing two regions of consensus sequence in those partner proteins necessary for binding to IIAGlc. The requirement for two interaction regions is interpreted in the regulatory framework of a substrate-dependent conformational change that brings those two regions into an orientation optimal for binding IIAGlc.
Collapse
Affiliation(s)
- M Sondej
- Laboratory of Biochemical Genetics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
36
|
Gutknecht R, Flükiger K, Lanz R, Erni B. Mechanism of phosphoryl transfer in the dimeric IIABMan subunit of the Escherichia coli mannose transporter. J Biol Chem 1999; 274:6091-6. [PMID: 10037691 DOI: 10.1074/jbc.274.10.6091] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mannose transporter of bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS) mediates uptake of mannose, glucose, and related hexoses by a mechanism that couples translocation with phosphorylation of the substrate. It consists of the transmembrane IICMan.IIDMan complex and the cytoplasmic IIABMan subunit. IIABMan has two domains (IIA and IIB) that are linked by a 60-A long alanine-proline-rich linker. IIABMan transfers phosphoryl groups from the phospho-histidine-containing phospho-carrier protein of the PTS to His-10 on IIA, hence to His-175 on IIB, and finally to the 6'-OH of the transported hexose. IIABMan occurs as a stable homodimer. The subunit contact is mediated by a swap of beta-strands and an extensive contact area between the IIA domains. The H10C and H175C single and the H10C/H175C double mutants were used to characterize the phosphoryl transfer between IIA to IIB. Subunits do not exchange between dimers under physiological conditions, but slow phosphoryl transfer can take place between subunits from different dimers. Heterodimers of different subunits were produced in vitro by GuHCl-induced unfolding and refolding of mixtures of two different homodimers. With respect to wild-type homodimers, the heterodimers have the following activities: wild-type.H10C, 50%; wild-type.H175C 45%; H10C.H175C, 37%; and wild-type.H10C/H175C (double mutant), 29%. Taken together, this indicates that both cis and trans pathways contribute to the maximal phosphotransferase activity of IIABMan. A phosphoryl group on a IIA domain can be transferred either to the IIB domain on the same or on the second subunit in the dimer, and interruption of one of the two pathways results in a reduction of the activity to 70-80% of the control.
Collapse
Affiliation(s)
- R Gutknecht
- Departement für Chemie und Biochemie, Universität Bern, Freiestrasse 3, CH-3012, Bern, Switzerland
| | | | | | | |
Collapse
|
37
|
Hogema BM, Arents JC, Bader R, Postma PW. Autoregulation of lactose uptake through the LacY permease by enzyme IIAGlc of the PTS in Escherichia coli K-12. Mol Microbiol 1999; 31:1825-33. [PMID: 10209753 DOI: 10.1046/j.1365-2958.1999.01319.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bacterial growth on one or more carbon sources requires careful control of the uptake and metabolism of these carbon sources. In Escherichia coli, the phosphorylation state of enzyme IIAGlc of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) is involved in this control in two ways. The unphosphorylated form of IIAGlc causes 'inducer exclusion', the inhibition of uptake of a number of non-PTS carbon sources, including lactose uptake by the lactose permease. The phosphorylated form of enzyme IIAGlc probably activates adenylate cyclase. In cells growing on lactose, enzyme IIAGlc was approximately 50% dephosphorylated, suggesting that lactose could inhibit its own uptake. This inhibition could be demonstrated by comparing lactose uptake rates in the wild-type strain and in a mutant in which the lactose carrier was insensitive to inducer exclusion. In this deregulated mutant strain, lactose was consumed much faster, and large amounts of glucose were excreted. It was shown that enzyme IIAGlc was dephosphorylated more strongly and that the cAMP level was lower in the mutant, most probably causing the observed decrease in lac expression level. When the lac expression level in the mutant strain was increased to that of the parent strain by adding exogenous cAMP, growth on lactose was slower, suggesting that enzyme IIAGlc-mediated inhibition of lactose uptake and downregulation of the lac expression level protected the cells against excessive lactose influx. An even stronger increase in the lac expression level in a mutant lacking enzyme IIAGlc caused complete growth arrest. We conclude that the autoregulatory mechanism that controls lactose uptake is an important mechanism for the cells in adjusting the uptake rate to their metabolic capacity.
Collapse
Affiliation(s)
- B M Hogema
- E. C. Slater Institute, BioCentrum, University of Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
38
|
Rohwer JM, Bader R, Westerhoff HV, Postma PW. Limits to inducer exclusion: inhibition of the bacterial phosphotransferase system by glycerol kinase. Mol Microbiol 1998; 29:641-52. [PMID: 9720879 DOI: 10.1046/j.1365-2958.1998.00963.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The uptake of methyl alpha-D-glucopyranoside by the phosphoenolpyruvate-dependent phosphotransferase system of Salmonella typhimurium could be inhibited by prior incubation of the cells with glycerol. Inhibition was only observed for glycerol preincubation times longer than 45 s and required the preinduction of both the glucose and the glycerol-catabolizing systems. Larger extents of inhibition by glycerol correlated with higher intracellular levels of glycerol kinase when the glp regulon had been induced to different extents. Preincubation with lactate did not inhibit methyl alpha-D-glucopyranoside uptake significantly, although both lactate and glycerol were oxidized by the cells. The cellular free-energy state of the cells (intracellular [ATP]/[ADP] ratio) was virtually identical for lactate and glycerol preincubation, suggesting that the inhibition of phosphotransferase-mediated uptake was not a metabolic effect. In vitro, phosphotransferase activity was inhibited to a maximal extent of 32% upon titrating cell-free extracts with high concentrations of commercial glycerol kinase. The results show that uptake systems that have hitherto been regarded merely as targets of the phosphotransferase system component IIA(Glc) also have the capacity themselves to retroinhibit the phosphotransferase system flux, presumably by sequestration of the available IIA(Glc), provided that these systems are induced to appropriate levels.
Collapse
Affiliation(s)
- J M Rohwer
- E.C. Slater Institute, BioCentrum Amsterdam, University of Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
39
|
|
40
|
Seok YJ, Sun J, Kaback HR, Peterkofsky A. Topology of allosteric regulation of lactose permease. Proc Natl Acad Sci U S A 1997; 94:13515-9. [PMID: 9391057 PMCID: PMC28337 DOI: 10.1073/pnas.94.25.13515] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Sugar transport by some permeases in Escherichia coli is allosterically regulated by the phosphorylation state of the intracellular regulatory protein, enzyme IIAglc of the phosphoenolpyruvate:sugar phosphotransferase system. A sensitive radiochemical assay for the interaction of enzyme IIAglc with membrane-associated lactose permease was used to characterize the binding reaction. The binding is stimulated by transportable substrates such as lactose, melibiose, and raffinose, but not by sugars that are not transported (maltose and sucrose). Treatment of lactose permease with N-ethylmaleimide, which blocks ligand binding and transport by alkylating Cys-148, also blocks enzyme IIAglc binding. Preincubation with the substrate analog beta-D-galactopyranosyl 1-thio-beta-D-galactopyranoside protects both lactose transport and enzyme IIAglc binding against inhibition by N-ethylmaleimide. A collection of lactose permease replacement mutants at Cys-148 showed, with the exception of C148V, a good correlation of relative transport activity and enzyme IIAglc binding. The nature of the interaction of enzyme IIAglc with the cytoplasmic face of lactose permease was explored. The N- and C-termini, as well as five hydrophilic loops in the permease, are exposed on the cytoplasmic surface of the membrane and it has been proposed that the central cytoplasmic loop of lactose permease is the major determinant for interaction with enzyme IIAglc. Lactose permease mutants with polyhistidine insertions in cytoplasmic loops IV/V and VI/VII and periplasmic loop VII/VIII retain transport activity and therefore substrate binding, but do not bind enzyme IIAglc, indicating that these regions of lactose permease may be involved in recognition of enzyme IIAglc. Taken together, these results suggest that interaction of lactose permease with substrate promotes a conformational change that brings several cytoplasmic loops into an arrangement optimal for interaction with the regulatory protein, enzyme IIAglc. A topological map of the proposed interaction is presented.
Collapse
Affiliation(s)
- Y J Seok
- Laboratory of Biochemical Genetics, National Heart, Lung and Blood Institute, Bethesda, MD 20892-4036, USA
| | | | | | | |
Collapse
|
41
|
Crasnier-Mednansky M, Park MC, Studley WK, Saier MH. Cra-mediated regulation of Escherichia coli adenylate cyclase. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 3):785-792. [PMID: 9084162 DOI: 10.1099/00221287-143-3-785] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In Escherichia coli, expression of certain genes and operons, including the fructose operon, is controlled by Cra, the pleiotropic catabolite repressor/activator protein formerly known as FruR. In this study we have demonstrated that cra mutant strains synthesize 10-fold less cAMP than isogenic wild-type strains, specifically when grown in fructose-containing minimal media. The glucose-specific IIA protein (IIAglc) of the phosphotransferase system, which activates adenylate cyclase when phosphorylated, is largely dephosphorylated in cra but not wild-type strains growing under these conditions. Dephosphorylation of IIAglc in cra strains apparently results from enhanced fructose operon transcription and fructose uptake. These conclusions were supported by showing that fructose-grown cra strains possess 2.5-fold higher fructose-1-phosphate kinase activity than fructose-grown wild-type strains. Moreover, artificially increasing fructose operon expression in cells transporting fructose dramatically decreased the activity of adenylate cyclase. The results establish that Cra indirectly regulates the activity of adenylate cyclase by controlling the expression of the fructose operon in cells growing with fructose as the sole carbon source.
Collapse
Affiliation(s)
| | - Maxwell C Park
- University of California at San Diego, Department of Biology, La Jolla, CA 92093-0116, USA
| | - William K Studley
- University of California at San Diego, Department of Biology, La Jolla, CA 92093-0116, USA
| | - Milton H Saier
- University of California at San Diego, Department of Biology, La Jolla, CA 92093-0116, USA
| |
Collapse
|
42
|
Hoischen C, Levin J, Pitaknarongphorn S, Reizer J, Saier MH. Involvement of the central loop of the lactose permease of Escherichia coli in its allosteric regulation by the glucose-specific enzyme IIA of the phosphoenolpyruvate-dependent phosphotransferase system. J Bacteriol 1996; 178:6082-6. [PMID: 8830713 PMCID: PMC178473 DOI: 10.1128/jb.178.20.6082-6086.1996] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Allosteric regulation of several sugar transport systems such as those specific for lactose, maltose and melibiose in Escherichia coli (inducer exclusion) is mediated by the glucose-specific enzyme IIA (IIAGlc) of the phosphoenolpyruvate:sugar phosphotransferase system (PTS). Deletion mutations in the cytoplasmic N and C termini of the lactose permease protein, LacY, and replacement of all cysteine residues in LacY with other residues did not prevent IIAGlc-mediated inhibition of lactose uptake, but several point and insertional mutations in the central cytoplasmic loop of this permease abolished transport regulation and IIAGlc binding. The results substantiate the conclusion that regulation of the lactose permease in E. coli by the PTS is mediated by a primary interaction of IIAGlc with the central cytoplasmic loop of the permease.
Collapse
Affiliation(s)
- C Hoischen
- Department of Biology, University of California at San Diego, La Jolla 92093-0116, USA
| | | | | | | | | |
Collapse
|
43
|
Chapter 25 Phosphotransferase systems or PTSs as carbohydrate transport and as signal transduction systems. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1383-8121(96)80066-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
44
|
Ye JJ, Saier MH. Cooperative binding of lactose and the phosphorylated phosphocarrier protein HPr(Ser-P) to the lactose/H+ symport permease of Lactobacillus brevis. Proc Natl Acad Sci U S A 1995; 92:417-21. [PMID: 7831302 PMCID: PMC42751 DOI: 10.1073/pnas.92.2.417] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Lactobacillus brevis accumulates lactose and nonmetabolizable lactose analogues via sugar/H+ symport, but addition of glucose to the extracellular medium results in rapid efflux of the free sugar from the cells due to the uncoupling of sugar transport from proton transport. By using vesicles of L. brevis cells, we recently showed that these regulatory/effects could be attributed to the metabolite-activated ATP-dependent protein kinase-catalyzed phosphorylation of serine-46 in the phosphocarrier protein HPr [HPr(Ser-P)] of the phosphotransferase system and that a mutant form of HPr with the serine-46-->aspartate replacement ([S46D]HPr) is apparently locked in the seryl phosphorylated conformation. We here demonstrate that [S46D]HPr binds directly to inside-out membrane vesicles of L. brevis that contain the lactose permease. Sugar substrates of the permease markedly and specifically stimulate binding of [S46D]HPr to the membranes while certain transport inhibitors such as N-ethylmaleimide block binding. The pH dependency for binding follows that for transport. Wild-type HPr and the [S46A]HPr mutant protein did not appreciably compete with [S46D]HPr for binding to the permease. These results provide evidence for the direct interaction of HPr(Ser-P) with an allosteric site on the lactose/proton symporter of L. brevis for the purpose of regulating sugar accumulation in response to the metabolic needs of the cell.
Collapse
Affiliation(s)
- J J Ye
- Department of Biology, University of California at San Diego, La Jolla 92093-0116
| | | |
Collapse
|
45
|
van der Vlag J, van Dam K, Postma PW. Quantification of the regulation of glycerol and maltose metabolism by IIAGlc of the phosphoenolpyruvate-dependent glucose phosphotransferase system in Salmonella typhimurium. J Bacteriol 1994; 176:3518-26. [PMID: 8206828 PMCID: PMC205539 DOI: 10.1128/jb.176.12.3518-3526.1994] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The amount of IIAGlc, one of the proteins of the phosphoenolpyruvate:glucose phosphotransferase system (PTS), was modulated over a broad range with the help of inducible expression plasmids in Salmonella typhimurium. The in vivo effects of different levels of IIAGlc on glycerol and maltose metabolism were studied. The inhibition of glycerol uptake, by the addition of a PTS sugar, was sigmoidally related to the amount of IIAGlc. For complete inhibition of glycerol uptake, a minimal ratio of about 3.6 mol of IIAGlc to 1 mol of glycerol kinase (tetramer) was required. Varying the level of IIAGlc (from 0 to 1,000% of the wild-type level) did not affect the growth rate on glycerol, the rate of glycerol uptake, or the synthesis of glycerol kinase. In contrast, the growth rate on maltose, the rate of maltose uptake, and the synthesis of the maltose-binding protein increased two- to fivefold with increasing levels of IIAGlc. In the presence of cyclic AMP, the maximal levels were obtained at all IIAGlc concentrations. The synthesis of the MalK protein, the target of IIAGlc, was not affected by varying the levels of IIAGlc. The inhibition of maltose uptake was sigmoidally related to the amount of IIAGlc. For complete inhibition of maltose uptake by a PTS sugar, a ratio of about 18 mol of IIAGlc to 1 mol of MalK protein (taken as a dimer) was required.
Collapse
Affiliation(s)
- J van der Vlag
- E. C. Slater Institute, University of Amsterdam, The Netherlands
| | | | | |
Collapse
|
46
|
Postma PW, Lengeler JW, Jacobson GR. Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 1993; 57:543-94. [PMID: 8246840 PMCID: PMC372926 DOI: 10.1128/mr.57.3.543-594.1993] [Citation(s) in RCA: 866] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Numerous gram-negative and gram-positive bacteria take up carbohydrates through the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS). This system transports and phosphorylates carbohydrates at the expense of PEP and is the subject of this review. The PTS consists of two general proteins, enzyme I and HPr, and a number of carbohydrate-specific enzymes, the enzymes II. PTS proteins are phosphoproteins in which the phospho group is attached to either a histidine residue or, in a number of cases, a cysteine residue. After phosphorylation of enzyme I by PEP, the phospho group is transferred to HPr. The enzymes II are required for the transport of the carbohydrates across the membrane and the transfer of the phospho group from phospho-HPr to the carbohydrates. Biochemical, structural, and molecular genetic studies have shown that the various enzymes II have the same basic structure. Each enzyme II consists of domains for specific functions, e.g., binding of the carbohydrate or phosphorylation. Each enzyme II complex can consist of one to four different polypeptides. The enzymes II can be placed into at least four classes on the basis of sequence similarity. The genetics of the PTS is complex, and the expression of PTS proteins is intricately regulated because of the central roles of these proteins in nutrient acquisition. In addition to classical induction-repression mechanisms involving repressor and activator proteins, other types of regulation, such as antitermination, have been observed in some PTSs. Apart from their role in carbohydrate transport, PTS proteins are involved in chemotaxis toward PTS carbohydrates. Furthermore, the IIAGlc protein, part of the glucose-specific PTS, is a central regulatory protein which in its nonphosphorylated form can bind to and inhibit several non-PTS uptake systems and thus prevent entry of inducers. In its phosphorylated form, P-IIAGlc is involved in the activation of adenylate cyclase and thus in the regulation of gene expression. By sensing the presence of PTS carbohydrates in the medium and adjusting the phosphorylation state of IIAGlc, cells can adapt quickly to changing conditions in the environment. In gram-positive bacteria, it has been demonstrated that HPr can be phosphorylated by ATP on a serine residue and this modification may perform a regulatory function.
Collapse
Affiliation(s)
- P W Postma
- E. C. Slater Institute, University of Amsterdam, The Netherlands
| | | | | |
Collapse
|
47
|
Deutscher J, Bauer B, Sauerwald H. Regulation of glycerol metabolism in Enterococcus faecalis by phosphoenolpyruvate-dependent phosphorylation of glycerol kinase catalyzed by enzyme I and HPr of the phosphotransferase system. J Bacteriol 1993; 175:3730-3. [PMID: 8509327 PMCID: PMC204788 DOI: 10.1128/jb.175.12.3730-3733.1993] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Using a polyclonal antibody against glycerol kinase from Enterococcus faecalis, we could demonstrate that glycerol kinase is inducible by growth on glycerol-containing medium and that during growth on glycerol the enzyme is mainly phosphorylated. Glucose and other sugars metabolized via the Embden-Meyerhof pathway strongly repressed the synthesis of glycerol kinase, while if glycerol was also present during growth, low activity, reflecting partial induction and the presence of mainly unphosphorylated, less active enzyme, was found. With gluconate, which is also a substrate of the phosphotransferase system, repression of glycerol kinase was less severe, but the enzyme was mainly present in the less active, unphosphorylated form. Effects of growth on different carbon sources on glycerol uptake are also reported.
Collapse
Affiliation(s)
- J Deutscher
- Max Planck Institute for Molecular Physiology, Dortmund, Germany
| | | | | |
Collapse
|
48
|
Saier MH. Regulatory interactions involving the proteins of the phosphotransferase system in enteric bacteria. J Cell Biochem 1993; 51:62-8. [PMID: 8432744 DOI: 10.1002/jcb.240510112] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Sugar uptake and cytoplasmic inducer generation as well as cyclic AMP synthesis are regulated by the phosphoenolpyruvate:sugar phosphotransferase system (PTS) in Gram-negative enteric bacteria. In these organisms, the free form of the glucose-specific Enzyme IIA (IIAglc) of the PTS, which can be phosphorylated on a histidyl residue by PEP and the PTS energy coupling proteins, inhibits the activities of non-PTS carbohydrate permeases and catabolic enzymes. By contrast, the phosphorylated form of IIAglc appears to activate adenylate cyclase, the cyclic AMP biosynthetic enzyme. What is known of the molecular details of these regulatory interactions will be summarized, and a novel regulatory mechanism involving the fructose repressor, FruR, which controls the transcription of genes encoding enzymes which catalyze reactions in central pathways of carbon metabolism, will be presented.
Collapse
Affiliation(s)
- M H Saier
- Department of Biology, University of California, San Diego, La Jolla 92093-0116
| |
Collapse
|
49
|
Resistance of the melibiose carrier to inhibition by the phosphotransferase system due to substitutions of amino acid residues in the carrier of Salmonella typhimurium. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)36965-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
50
|
Stone MJ, Fairbrother WJ, Palmer AG, Reizer J, Saier MH, Wright PE. Backbone dynamics of the Bacillus subtilis glucose permease IIA domain determined from 15N NMR relaxation measurements. Biochemistry 1992; 31:4394-406. [PMID: 1316146 DOI: 10.1021/bi00133a003] [Citation(s) in RCA: 139] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The backbone dynamics of the uniformly 15N-labeled IIA domain of the glucose permease of Bacillus subtilis have been characterized using inverse-detected two-dimensional 1H-15N NMR spectroscopy. Longitudinal (T1) and transverse (T2) 15N relaxation time constants and steady-state (1H)-15N NOEs were measured, at a spectrometer proton frequency of 500 MHz, for 137 (91%) of the 151 protonated backbone nitrogens. These data were analyzed by using a model-free dynamics formalism to determine the generalized order parameter (S2), the effective correlation time for internal motions (tau e), and 15N exchange broadening contributions (Rex) for each residue, as well as the overall molecular rotational correlation time (tau m). The T1 and T2 values for most residues were in the ranges 0.45-0.55 and 0.11-0.15 s, respectively; however, a small number of residues exhibited significantly slower relaxation. Similarly, (1H)-15N NOE values for most residues were in the range 0.72-0.80, but a few residues had much smaller positive NOEs and some exhibited negative NOEs. The molecular rotational correlation time was 6.24 +/- 0.01 ns; most residues had order parameters in the range 0.75-0.90 and tau e values of less than ca. 25 ps. Residues found to be more mobile than the average were concentrated in three areas: the N-terminal residues (1-13), which were observed to be highly disordered; the loop from P25 to D41, the apex of which is situated adjacent to the active site and may have a role in binding to other proteins; and the region from A146 to S149. All mobile residues occurred in regions close to termini, in loops, or in irregular secondary structure.
Collapse
Affiliation(s)
- M J Stone
- Department of Molecular Biology, Scripps Research Institute, La Jolla, California 92037
| | | | | | | | | | | |
Collapse
|