1
|
Johansson J, Lidéus S, Höijer I, Ameur A, Gudmundsson S, Annerén G, Bondeson ML, Wilbe M. A novel quantitative targeted analysis of X-chromosome inactivation (XCI) using nanopore sequencing. Sci Rep 2023; 13:12856. [PMID: 37553382 PMCID: PMC10409790 DOI: 10.1038/s41598-023-34413-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/29/2023] [Indexed: 08/10/2023] Open
Abstract
X-chromosome inactivation (XCI) analyses often assist in diagnostics of X-linked traits, however accurate assessment remains challenging with current methods. We developed a novel strategy using amplification-free Cas9 enrichment and Oxford nanopore technologies sequencing called XCI-ONT, to investigate and rigorously quantify XCI in human androgen receptor gene (AR) and human X-linked retinitis pigmentosa 2 gene (RP2). XCI-ONT measures methylation over 116 CpGs in AR and 58 CpGs in RP2, and separate parental X-chromosomes without PCR bias. We show the usefulness of the XCI-ONT strategy over the PCR-based golden standard XCI technique that only investigates one or two CpGs per gene. The results highlight the limitations of using the golden standard technique when the XCI pattern is partially skewed and the advantages of XCI-ONT to rigorously quantify XCI. This study provides a universal XCI-method on DNA, which is highly valuable in clinical and research framework of X-linked traits.
Collapse
Affiliation(s)
- Josefin Johansson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Husargatan 3, Box 815, SE-751 08, Uppsala, Sweden
| | - Sarah Lidéus
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Husargatan 3, Box 815, SE-751 08, Uppsala, Sweden
| | - Ida Höijer
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Husargatan 3, Box 815, SE-751 08, Uppsala, Sweden
| | - Adam Ameur
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Husargatan 3, Box 815, SE-751 08, Uppsala, Sweden
| | - Sanna Gudmundsson
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Göran Annerén
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Husargatan 3, Box 815, SE-751 08, Uppsala, Sweden
| | - Marie-Louise Bondeson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Husargatan 3, Box 815, SE-751 08, Uppsala, Sweden
| | - Maria Wilbe
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Husargatan 3, Box 815, SE-751 08, Uppsala, Sweden.
| |
Collapse
|
2
|
Mattei AL, Bailly N, Meissner A. DNA methylation: a historical perspective. Trends Genet 2022; 38:676-707. [DOI: 10.1016/j.tig.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
|
3
|
The Methylome of Vertebrate Sex Chromosomes. Genes (Basel) 2018; 9:genes9050230. [PMID: 29723955 PMCID: PMC5977170 DOI: 10.3390/genes9050230] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/17/2018] [Accepted: 04/26/2018] [Indexed: 01/08/2023] Open
Abstract
DNA methylation is a key epigenetic modification in vertebrate genomes known to be involved in the regulation of gene expression, X chromosome inactivation, genomic imprinting, chromatin structure, and control of transposable elements. DNA methylation is common to all eukaryote genomes, but we still lack a complete understanding of the variation in DNA methylation patterns on sex chromosomes and between the sexes in diverse species. To better understand sex chromosome DNA methylation patterns between different amniote vertebrates, we review literature that has analyzed the genome-wide distribution of DNA methylation in mammals and birds. In each system, we focus on DNA methylation patterns on the autosomes versus the sex chromosomes.
Collapse
|
4
|
Abstract
The discovery of CpG islands (CGIs) and the study of their structure and properties run parallel to the development of molecular biology in the last two decades of the twentieth century and to the development of high-throughput genomic technologies at the turn of the millennium. First identified as discrete G + C-rich regions of unmethylated DNA in several vertebrates, CGIs were soon found to display additional distinctive chromatin features from the rest of the genome in terms of accessibility and of the epigenetic modifications of their histones. These features, together with their colocalization with promoters and with origins of DNA replication in mammals, highlighted their relevance in the regulation of genomic processes. Recent approaches have shown with unprecedented detail the dynamics and diversity of the epigenetic landscape of CGIs during normal development and under pathological conditions. Also, comparative analyses across species have started revealing how CGIs evolve and contribute to the evolution of the vertebrate genome.
Collapse
Affiliation(s)
- Francisco Antequera
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Salamanca, Spain.
| | - Adrian Bird
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Edinburgh, EH9 3BF, UK
| |
Collapse
|
5
|
Abstract
X-chromosome inactivation, which was discovered by Mary Lyon in 1961 results in random silencing of one X chromosome in female mammals. This review is dedicated to Mary Lyon, who passed away last year. She predicted many of the features of X inactivation, for e.g., the existence of an X inactivation center, the role of L1 elements in spreading of silencing and the existence of genes that escape X inactivation. Starting from her published work here we summarize advances in the field.
Collapse
|
6
|
Lam P, Cheung F, Tan HY, Wang N, Yuen MF, Feng Y. Hepatoprotective Effects of Chinese Medicinal Herbs: A Focus on Anti-Inflammatory and Anti-Oxidative Activities. Int J Mol Sci 2016; 17:465. [PMID: 27043533 PMCID: PMC4848921 DOI: 10.3390/ijms17040465] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/21/2016] [Accepted: 03/21/2016] [Indexed: 12/12/2022] Open
Abstract
The liver is intimately connected to inflammation, which is the innate defense system of the body for removing harmful stimuli and participates in the hepatic wound-healing response. Sustained inflammation and the corresponding regenerative wound-healing response can induce the development of fibrosis, cirrhosis and eventually hepatocellular carcinoma. Oxidative stress is associated with the activation of inflammatory pathways, while chronic inflammation is found associated with some human cancers. Inflammation and cancer may be connected by the effect of the inflammation-fibrosis-cancer (IFC) axis. Chinese medicinal herbs display abilities in protecting the liver compared to conventional therapies, as many herbal medicines have been shown as effective anti-inflammatory and anti-oxidative agents. We review the relationship between oxidative stress and inflammation, the development of hepatic diseases, and the hepatoprotective effects of Chinese medicinal herbs via anti-inflammatory and anti-oxidative mechanisms. Moreover, several Chinese medicinal herbs and composite formulae, which have been commonly used for preventing and treating hepatic diseases, including Andrographis Herba, Glycyrrhizae Radix et Rhizoma, Ginseng Radix et Rhizoma, Lycii Fructus, Coptidis Rhizoma, curcumin, xiao-cha-hu-tang and shi-quan-da-bu-tang, were selected for reviewing their hepatoprotective effects with focus on their anti-oxidative and ant-inflammatory activities. This review aims to provide new insight into how Chinese medicinal herbs work in therapeutic strategies for liver diseases.
Collapse
Affiliation(s)
- Puiyan Lam
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Fan Cheung
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Hor Yue Tan
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Man Fung Yuen
- Division of Gastroenterology and Hepatology, Queen Mary Hospital and Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
7
|
Yara S, Lavoie JC, Levy E. Oxidative stress and DNA methylation regulation in the metabolic syndrome. Epigenomics 2015; 7:283-300. [DOI: 10.2217/epi.14.84] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
DNA methylation is implicated in tissue-specific gene expression and genomic imprinting. It is modulated by environmental factors, especially nutrition. Modified DNA methylation patterns may contribute to health problems and susceptibility to complex diseases. Current advances have suggested that the metabolic syndrome (MS) is a programmable disease, which is characterized by epigenetic modifications of vital genes when exposed to oxidative stress. Therefore, the main objective of this paper is to critically review the central context of MS while presenting the most recent knowledge related to epigenetic alterations that are promoted by oxidative stress. Potential pro-oxidant mechanisms that orchestrate changes in methylation profiling and are related to obesity, diabetes and hypertension are discussed. It is anticipated that the identification and understanding of the role of DNA methylation marks could be used to uncover early predictors and define drugs or diet-related treatments able to delay or reverse epigenetic changes, thereby combating MS burden.
Collapse
Affiliation(s)
- Sabrina Yara
- Faculty of Medicine, Research Centre, Université de Montréal, CHU-Sainte-Justine, Montreal, QC, Canada, H3T 1C5
| | - Jean-Claude Lavoie
- Faculty of Medicine, Research Centre, Université de Montréal, CHU-Sainte-Justine, Montreal, QC, Canada, H3T 1C5
- Departments of Nutrition, Université de Montréal, Montreal, Quebec, Canada, H3T 1C5
| | - Emile Levy
- Faculty of Medicine, Research Centre, Université de Montréal, CHU-Sainte-Justine, Montreal, QC, Canada, H3T 1C5
- Departments of Nutrition, Université de Montréal, Montreal, Quebec, Canada, H3T 1C5
| |
Collapse
|
8
|
Brooks WH, Renaudineau Y. Epigenetics and autoimmune diseases: the X chromosome-nucleolus nexus. Front Genet 2015; 6:22. [PMID: 25763008 PMCID: PMC4329817 DOI: 10.3389/fgene.2015.00022] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 01/16/2015] [Indexed: 12/18/2022] Open
Abstract
Autoimmune diseases occur more often in females, suggesting a key role for the X chromosome. X chromosome inactivation, a major epigenetic feature in female cells that provides dosage compensation of X-linked genes to avoid overexpression, presents special vulnerabilities that can contribute to the disease process. Disruption of X inactivation can result in loss of dosage compensation with expression from previously sequestered genes, imbalance of gene products, and altered endogenous material out of normal epigenetic context. In addition, the human X has significant differences compared to other species and these differences can contribute to the frequency and intensity of the autoimmune disease in humans as well as the types of autoantigens encountered. Here a link is demonstrated between autoimmune diseases, such as systemic lupus erythematosus, and the X chromosome by discussing cases in which typically non-autoimmune disorders complicated with X chromosome abnormalities also present lupus-like symptoms. The discussion is then extended to the reported spatial and temporal associations of the inactive X chromosome with the nucleolus. When frequent episodes of cellular stress occur, the inactive X chromosome may be disrupted and inadvertently become involved in the nucleolar stress response. Development of autoantigens, many of which are at least transiently components of the nucleolus, is then described. Polyamines, which aid in nucleoprotein complex assembly in the nucleolus, increase further during cell stress, and appear to have an important role in the autoimmune disease process. Autoantigenic endogenous material can potentially be stabilized by polyamines. This presents a new paradigm for autoimmune diseases: that many are antigen-driven and the autoantigens originate from altered endogenous material due to episodes of cellular stress that disrupt epigenetic control. This suggests that epigenetics and the X chromosome are important aspects of autoimmune diseases.
Collapse
Affiliation(s)
- Wesley H Brooks
- Department of Chemistry, University of South Florida Tampa, FL, USA
| | - Yves Renaudineau
- Research Unit INSERM ERI29/EA2216, SFR ScinBios, Labex Igo "Immunotherapy Graft, Oncology", Réseau Épigénétique et Réseau Canaux Ioniques du Cancéropole Grand Ouest, European University of Brittany Brest, France ; Laboratory of Immunology and Immunotherapy, Hôpital Morvan Brest, France
| |
Collapse
|
9
|
Intragenic DNA methylation in transcriptional regulation, normal differentiation and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:1161-74. [PMID: 23938249 DOI: 10.1016/j.bbagrm.2013.08.001] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/02/2013] [Accepted: 08/05/2013] [Indexed: 02/06/2023]
Abstract
Ever since the discovery of DNA methylation at cytosine residues, the role of this so called fifth base has been extensively studied and debated. Until recently, the majority of DNA methylation studies focused on the analysis of CpG islands associated to promoter regions. However, with the upcoming possibilities to study DNA methylation in a genome-wide context, this epigenetic mark can now be studied in an unbiased manner. As a result, recent studies have shown that not only promoters but also intragenic and intergenic regions are widely modulated during physiological processes and disease. In particular, it is becoming increasingly clear that DNA methylation in the gene body is not just a passive witness of gene transcription but it seems to be actively involved in multiple gene regulation processes. In this review we discuss the potential role of intragenic DNA methylation in alternative promoter usage, regulation of short and long non-coding RNAs, alternative RNA processing, as well as enhancer activity. Furthermore, we summarize how the intragenic DNA methylome is modified both during normal cell differentiation and neoplastic transformation.
Collapse
|
10
|
Sigurdsson MI, Smith AV, Bjornsson HT, Jonsson JJ. The distribution of a germline methylation marker suggests a regional mechanism of LINE-1 silencing by the piRNA-PIWI system. BMC Genet 2012; 13:31. [PMID: 22530917 PMCID: PMC3352111 DOI: 10.1186/1471-2156-13-31] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 04/24/2012] [Indexed: 11/10/2022] Open
Abstract
Background A defense system against transposon activity in the human germline based on PIWI proteins and piRNA has recently been discovered. It represses the activity of LINE-1 elements via DNA methylation by a largely unknown mechanism. Based on the dispersed distribution of clusters of piRNA genes in a strand-specific manner on all human chromosomes, we hypothesized that this system might work preferentially on local and proximal sequences. We tested this hypothesis with a methylation-associated SNP (mSNP) marker which is based on the density of C-T transitions in CpG dinucleotides as a surrogate marker for germline methylation. Results We found significantly higher density of mSNPs flanking piRNA clusters in the human genome for flank sizes of 1-16 Mb. A dose-response relationship between number of piRNA genes and mSNP density was found for up to 16 Mb of flanking sequences. The chromosomal density of hypermethylated LINE-1 elements had a significant positive correlation with the chromosomal density of piRNA genes (r = 0.41, P = 0.05). Genome windows of 1-16 Mb containing piRNA clusters had significantly more hypermethylated LINE-1 elements than windows not containing piRNA clusters. Finally, the minimum distance to the next piRNA cluster was significantly shorter for hypermethylated LINE-1 compared to normally methylated elements (14.4 Mb vs 16.1 Mb). Conclusions Our observations support our hypothesis that the piRNA-PIWI system preferentially methylates sequences in close proximity to the piRNA clusters and perhaps physically adjacent sequences on other chromosomes. Furthermore they suggest that this proximity effect extends up to 16 Mb. This could be due to an unknown localization signal, transcription of piRNA genes near the nuclear membrane or the presence of an unknown RNA molecule that spreads across the chromosome and targets the methylation directed by the piRNA-PIWI complex. Our data suggest a region specific molecular mechanism which can be sought experimentally.
Collapse
Affiliation(s)
- Martin I Sigurdsson
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Iceland, Reykjavík IS-101, Iceland
| | | | | | | |
Collapse
|
11
|
Cotton AM, Lam L, Affleck JG, Wilson IM, Peñaherrera MS, McFadden DE, Kobor MS, Lam WL, Robinson WP, Brown CJ. Chromosome-wide DNA methylation analysis predicts human tissue-specific X inactivation. Hum Genet 2011; 130:187-201. [PMID: 21597963 PMCID: PMC3132437 DOI: 10.1007/s00439-011-1007-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 05/06/2011] [Indexed: 12/04/2022]
Abstract
X-chromosome inactivation (XCI) results in the differential marking of the active and inactive X with epigenetic modifications including DNA methylation. Consistent with the previous studies showing that CpG island-containing promoters of genes subject to XCI are approximately 50% methylated in females and unmethylated in males while genes which escape XCI are unmethylated in both sexes; our chromosome-wide (Methylated DNA ImmunoPrecipitation) and promoter-targeted methylation analyses (Illumina Infinium HumanMethylation27 array) showed the largest methylation difference (D = 0.12, p < 2.2 E-16) between male and female blood at X-linked CpG islands promoters. We used the methylation differences between males and females to predict XCI statuses in blood and found that 81% had the same XCI status as previously determined using expression data. Most genes (83%) showed the same XCI status across tissues (blood, fetal: muscle, kidney and nerual); however, the methylation of a subset of genes predicted different XCI statuses in different tissues. Using previously published expression data the effect of transcription on gene-body methylation was investigated and while X-linked introns of highly expressed genes were more methylated than the introns of lowly expressed genes, exonic methylation did not differ based on expression level. We conclude that the XCI status predicted using methylation of X-linked promoters with CpG islands was usually the same as determined by expression analysis and that 12% of X-linked genes examined show tissue-specific XCI whereby a gene has a different XCI status in at least one of the four tissues examined.
Collapse
Affiliation(s)
- Allison M. Cotton
- Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada
- Molecular Epigenetics Group, Life Sciences Institute, Vancouver, BC Canada
| | - Lucia Lam
- Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada
- Child and Family Research Institute, Vancouver, BC Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC Canada
| | - Joslynn G. Affleck
- Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada
- Molecular Epigenetics Group, Life Sciences Institute, Vancouver, BC Canada
| | - Ian M. Wilson
- British Columbia Cancer Research Centre, Vancouver, BC Canada
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC Canada
| | - Maria S. Peñaherrera
- Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada
- Child and Family Research Institute, Vancouver, BC Canada
| | | | - Michael S. Kobor
- Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada
- Child and Family Research Institute, Vancouver, BC Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC Canada
| | - Wan L. Lam
- British Columbia Cancer Research Centre, Vancouver, BC Canada
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC Canada
| | - Wendy P. Robinson
- Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada
- Child and Family Research Institute, Vancouver, BC Canada
| | - Carolyn J. Brown
- Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada
- Molecular Epigenetics Group, Life Sciences Institute, Vancouver, BC Canada
| |
Collapse
|
12
|
Sigurdsson MI, Smith AV, Bjornsson HT, Jonsson JJ. HapMap methylation-associated SNPs, markers of germline DNA methylation, positively correlate with regional levels of human meiotic recombination. Genome Res 2009; 19:581-9. [PMID: 19158364 DOI: 10.1101/gr.086181.108] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Inter-individual and regional variability in recombination rates cannot be fully explained by the DNA sequence itself. Epigenetic mechanisms might be one additional factor affecting recombination. A biochemical approach to studying human germline methylation is difficult. We used the density of the 434,198 nonredundant methylation-associated SNPs (mSNPs) in the derived allele HapMap data set as a surrogate marker for germline DNA methylation. We validated our methodology by demonstrating that the mSNP density confirmed known patterns of genomic methylation, including the hypermutability of methylated cytosine and hypomethylation of CpG islands. Using this approach, we found a genome-wide positive correlation between germline methylation and regional recombination rate (500-kb windows: r = 0.622, P < 10(-15)). This remained significant with multiple correlations correcting for sequence features known to affect recombination, such as GC content and CpG dinucleotides (500-kb windows: r = 0.172, P < 10(-15)). Using the ENCODE data set for increased resolution, we found a positive correlation between germline DNA methylation and recombination rate (50-kb windows: r = 0.301, P = 0.002). This correlation was further strengthened when corrected for sequence features affecting recombination (50-kb windows: r = 0.445, P < 0.0001). In the Human Epigenome Project data set there was increased DNA methylation in regions within recombination hot spots in male germ cells (0.632 vs. 0.557, P = 0.007). The relationship we observed between germline DNA methylation and recombination could be explained in two ways that are not mutually exclusive: DNA methylation could indicate preferred sites for recombination, or methylation following recombination could inhibit further recombination, perhaps by being part of the enigmatic molecular pathway mediating crossover interference.
Collapse
Affiliation(s)
- Martin I Sigurdsson
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Iceland, IS-101 Reyjavik , Iceland
| | | | | | | |
Collapse
|
13
|
Abstract
The genomes of many animals, plants and fungi are tagged by methylation of DNA cytosine. To understand the biological significance of this epigenetic mark it is essential to know where in the genome it is located. New techniques are making it easier to map DNA methylation patterns on a large scale and the results have already provided surprises. In particular, the conventional view that DNA methylation functions predominantly to irreversibly silence transcription is being challenged. Not only is promoter methylation often highly dynamic during development, but many organisms also seem to target DNA methylation specifically to the bodies of active genes.
Collapse
|
14
|
Affiliation(s)
- Frederick E Domann
- Department of Radiation Oncology, Carver College of Medicine and Holden Cancer Center, The University of Iowa, Iowa City, Iowa 52242, USA.
| | | |
Collapse
|
15
|
Futscher BW, Oshiro MM, Wozniak RJ, Holtan N, Hanigan CL, Duan H, Domann FE. Role for DNA methylation in the control of cell type specific maspin expression. Nat Genet 2002; 31:175-9. [PMID: 12021783 DOI: 10.1038/ng886] [Citation(s) in RCA: 326] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The nucleotide 5-methylcytosine is involved in processes crucial in mammalian development, such as X-chromosome inactivation and gene imprinting. In addition, cytosine methylation has long been speculated to be involved in the establishment and maintenance of cell type specific expression of developmentally regulated genes; however, it has been difficult to identify clear examples of such genes, particularly in humans. Here we provide evidence that cytosine methylation of the maspin gene (SERPINB5) promoter controls, in part, normal cell type specific SERPINB5 expression. In normal cells expressing SERPINB5, the SERPINB5 promoter is unmethylated and the promoter region has acetylated histones and an accessible chromatin structure. By contrast, normal cells that do not express SERPINB5 have a completely methylated SERPINB5 promoter with hypoacetylated histones, an inaccessible chromatin structure and a transcriptional repression that is relieved by inhibition of DNA methylation. These findings indicate that cytosine methylation is important in the establishment and maintenance of cell type restricted gene expression.
Collapse
Affiliation(s)
- Bernard W Futscher
- Department of Pharmacology and Toxicology, Bone Marrow Transplant Program, Arizona Cancer Center, The University of Arizona, Tucson, Arizona 85724, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Affiliation(s)
- Adrian Bird
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK.
| |
Collapse
|
17
|
Delgado S, Gómez M, Bird A, Antequera F. Initiation of DNA replication at CpG islands in mammalian chromosomes. EMBO J 1998; 17:2426-35. [PMID: 9545253 PMCID: PMC1170585 DOI: 10.1093/emboj/17.8.2426] [Citation(s) in RCA: 181] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
CpG islands are G+C-rich regions approximately 1 kb long that are free of methylation and contain the promoters of many mammalian genes. Analysis of in vivo replication intermediates at three hamster genes and one human gene showed that the CpG island regions, but not their flanks, were present in very short nascent strands, suggesting that they are replication origins (ORIs). CpG island-like fragments were enriched in a population of short nascent strands from human erythroleukaemic cells, suggesting that islands constitute a significant fraction of endogenous ORIs. Correspondingly, bulk CpG islands were found to replicate coordinately early in S phase. Our results imply that CpG islands are initiation sites for both transcription and DNA replication, and may represent genomic footprints of replication initiation.
Collapse
Affiliation(s)
- S Delgado
- Instituto de Microbiología Bioquímica, CSIC/Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, 37007-Salamanca, Spain
| | | | | | | |
Collapse
|
18
|
Litt MD, Hansen RS, Hornstra IK, Gartler SM, Yang TP. 5-Azadeoxycytidine-induced chromatin remodeling of the inactive X-linked HPRT gene promoter occurs prior to transcription factor binding and gene reactivation. J Biol Chem 1997; 272:14921-6. [PMID: 9169463 DOI: 10.1074/jbc.272.23.14921] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
During the process of 5-aza-2'-deoxycytidine (5aCdr)-induced reactivation of the X-linked human hypoxanthine phosphoribosyltransferase (HPRT) gene on the inactive X chromosome, acquisition of a nuclease-sensitive chromatin conformation in the 5' region occurs before the appearance of HPRT mRNA. In vivo footprinting experiments reported here show that the 5aCdr-induced change in HPRT chromatin structure precedes the appearance of three footprints in the immediate 5' flanking region that are characteristic of the active HPRT allele. These and other data suggest the following sequence of events that lead to the reactivation of the HPRT gene after 5aCdr treatment: (a) hemi-demethylation of the promoter, (b) an "opening" of chromatin structure detectable as increased nuclease sensitivity, (c) transcription factor binding to the promoter, (d) assembly of the transcription complex, and (e) synthesis of HPRT RNA. This sequence of events supports the view that inactive X-linked genes are silenced by a repressive chromatin structure that prevents the binding of transcriptional activators to the promoter.
Collapse
Affiliation(s)
- M D Litt
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| | | | | | | | | |
Collapse
|
19
|
Litt MD, Hornstra IK, Yang TP. In vivo footprinting and high-resolution methylation analysis of the mouse hypoxanthine phosphoribosyltransferase gene 5' region on the active and inactive X chromosomes. Mol Cell Biol 1996; 16:6190-9. [PMID: 8887649 PMCID: PMC231622 DOI: 10.1128/mcb.16.11.6190] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
To investigate potential mechanisms regulating the hypoxanthine phosphoribosyltransferase (HPRT) gene by X-chromosome inactivation, we performed in vivo footprinting and high-resolution DNA methylation analysis on the 5' region of the active and inactive mouse HPRT alleles and compared these results with those from the human HPRT gene. We found multiple footprinted sites on the active mouse HPRT allele and no footprints on the inactive allele. Comparison of the footprint patterns of the mouse and human HPRT genes demonstrated that the in vivo binding of regulatory proteins between these species is generally conserved but not identical. Detailed nucleotide sequence comparison of footprinted regions in the mouse and human genes revealed a novel 9-bp sequence associated with transcription factor binding near the transcription sites of both genes, suggesting the identification of a new conserved initiator element. Ligation-mediated PCR genomic sequencing showed that all CpG dinucleotides examined on the active allele are unmethylated, while the majority of CpGs on the inactive allele are methylated and interspersed with a few hypomethylated sites. This pattern of methylation on the inactive mouse allele is notably different from the unusual methylation pattern of the inactive human gene, which exhibited strong hypomethylation specifically at GC boxes. These studies, in conjunction with other genomic sequencing studies of X-linked genes, demonstrate that (i) the active alleles are essentially unmethylated, (ii) the inactive alleles are hypermethylated, and (iii) the high-resolution methylation patterns of the hypermethylated inactive alleles are not strictly conserved. There is no obvious correlation between the pattern of methylated sites on the inactive alleles and the pattern of binding sites for transcription factors on the active alleles. These results are discussed in relationship to potential mechanisms of transcriptional regulation by X-chromosome inactivation.
Collapse
Affiliation(s)
- M D Litt
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville 32610, USA
| | | | | |
Collapse
|
20
|
Abstract
The mouse genome experiences a large decrease in net 5-methylcytosine between fertilization and implantation; de novo methylation brings 5-methylcytosine to adult somatic cell levels between implantation and gastrulation. Very little is known of the regulation of demethylation or de novo methylation. Levels of the one known form of DNA methyltransferase are very high in early embryos, but the enzyme is localized to the cytoplasm during most of preimplantation development. We show here that DNA methyltransferase is found exclusively in nuclei of the conceptus after implantation, and that nuclei of proximal decidual cells are free of detectable DNA methyltransferase. High levels of DNA methyltransferase were seen in all tissues, including the developing nervous system, of 9.5- to 12.5-day embryos. The large maternal stores of DNA methyltransferase become limiting prior to embryonic day 9.5, as shown by barely detectable immunostaining in 9.5-day embryos homozygous for a loss-of-function mutation (Dnmtn) in the DNA methyltransferase gene. These mutant embryos failed to develop past the 25-somite stage and showed evidence of developmental delay and some developmental asynchrony. Normal embryonic and extraembryonic tissues contained similar levels of DNA methyltransferase, even though severely reduced methylation levels and a loss of imprinting have previously been observed in extraembryonic tissues. These findings suggest that methylation patterns are not a simple function of the concentration of DNA methyltransferase, and that unidentified factors must be involved in the regulation of de novo methylation during early development of the mouse.
Collapse
Affiliation(s)
- J M Trasler
- Department of Pediatrics, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
21
|
Pillet N, Bonny C, Schorderet DF. Characterization of the promoter region of the mouse Xist gene. Proc Natl Acad Sci U S A 1995; 92:12515-9. [PMID: 8618932 PMCID: PMC40388 DOI: 10.1073/pnas.92.26.12515] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The mouse Xist gene is expressed exclusively from the inactive X chromosome and may be implicated in initiating X inactivation. To better understand the mechanisms underlying the control of Xist expression, we investigated the upstream regulatory region of the mouse Xist promoter. A 1.2-kb upstream region of the Xist gene was sequenced and promoter activity was studied by chloramphenicol acetyltransferase (CAT) assays after transfection in murine XX and XY cell lines. The region analyzed (-1157 to +917 showed no in vitro sex-specific promoter activity. However, a minimal constitutional promoter was assigned to a region from -81 to +1, and a cis element from -41 to -15 regulates promoter activity. We showed that a nuclear factor binds to an element located at -30 to -25 (TTAAAG). A second sequence at -41 to -15 does not act as an enhancer and is unable to confer transcriptional activity to the Xist gene on its own. A third region from -82 to -41 is needed for correct expression. Deletion of the segment -441 to -231 is associated with an increase in CAT activity and may represent a silencer element.
Collapse
Affiliation(s)
- N Pillet
- Unit of Molecular Genetics, University of Lausanne, Switzerland
| | | | | |
Collapse
|
22
|
Mangues R, Schwartz S, Seidman I, Pellicer A. Promoter demethylation in MMTV/N-rasN transgenic mice required for transgene expression and tumorigenesis. Mol Carcinog 1995; 14:94-102. [PMID: 7576104 DOI: 10.1002/mc.2940140205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We studied demethylation within the transgene promoter in transgenic mice carrying the N-ras proto-oncogene driven by the mouse mammary tumor long terminal repeat (MMTV/N-rasN) and the relationship of demethylation to transgene overexpression and tumorigenesis. Demethylation at Fspl or Clal sites correlated with age of the animal and transgene expression in nontumorous mammary gland. Demethylation preceded expression in this tissue. In lymphomas and mammary tumors, the promoter Fspl and Clal sites were significantly more demethylated than in nontumorous control tissues. The Aval, Cfol, and Hpall sites were also found to be undermethylated in older animals and showed differences between tumor and control tissues. Two additional sites (Eagl and Narl) remained fully methylated in all tissues. In contrast with normal tissue, demethylation at the Fspl and Clal sites and expression were not correlated in tumor tissue. An increase in expression in normal tissue initially occurred and was correlated with the level of promoter demethylation; this increase was followed by a further increment in transgene expression when tumors developed. Thus, promoter demethylation leading to transgene overexpression was associated with long-latency tumorigenesis in MMTV/N-rasN transgenic mice. Demethylation of proto-oncogene promoters may therefore be a mechanism of carcinogenesis that requires further investigation in human tumors.
Collapse
Affiliation(s)
- R Mangues
- Department of Pathology, New York University Medical Center, New York 10016, USA
| | | | | | | |
Collapse
|
23
|
Denamur E, Chehab FF. Methylation status of CpG sites in the mouse and human CFTR promoters. DNA Cell Biol 1995; 14:811-5. [PMID: 7545404 DOI: 10.1089/dna.1995.14.811] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
To determine whether a relationship exists between DNA methylation and CFTR gene expression, we investigated the methylation status of CpG sites in the mouse and human CFTR promoters. Tissues and previously characterized cell lines that vary with respect to CFTR expression were selected for analysis using the methylation sensitive restriction endonuclease Hha I. We find that CpG sites are not methylated in high and low CFTR-expressing cell lines, whereas in the very low or non-CFTR-expressing cell lines, the CpG sites are partially or completely methylated. However, none of these sites were methylated in any of the tissues examined irrespective of the state of CFTR expression. Therefore, we conclude that the CFTR promoter belongs to the class of CpG-rich promoters in which the associated CpG sites are not methylated in tissues and that an inverse correlation between methylation and CFTR expression can only be found in cell lines.
Collapse
Affiliation(s)
- E Denamur
- Department of Laboratory Medicine, University of California, San Francisco 94143-0134, USA
| | | |
Collapse
|
24
|
Zrihan-Licht S, Weiss M, Keydar I, Wreschner DH. DNA methylation status of the MUC1 gene coding for a breast-cancer-associated protein. Int J Cancer 1995; 62:245-51. [PMID: 7628867 DOI: 10.1002/ijc.2910620303] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The MUC1 gene codes for protein products that are highly expressed in human breast-cancer tissue and that serve as tumor markers for disease progression. The factors contributing to the disease-specific over-expression of the MUC1 gene are under intensive investigation and are yet to be determined. A large transcribed region of the human MUC1 gene is a CpG island that consists of 60-bp tandemly repeating units, each of which contains one SmaI restriction site. The methylation status of regulatory regions, upstream to the transcriptional start site, is essential for the regulation of gene expression. We therefore evaluated whether the methylation status of the various regions of the MUC1 gene may affect its expression. Using SmaI, and its isoschizomer XmaI endonucleases, we demonstrated that in peripheral-blood leukocytes (PBL-DNA) that do not express the MUC1 gene, the repeat array is completely methylated, whereas the same sequences are entirely non-methylated in breast-tumor-tissue DNA (BT-DNA). In contrast, sequences upstream and downstream to the repeat array showed no difference in the methylation pattern in PBL-DNA and BT-DNA. Hypomethylation within the repeat array was also observed in other epithelial tissues that express the MUC1 gene at much lower levels to those seen in breast-cancer tissue. These studies demonstrate that hypomethylation of the tandem repeat array is an absolute requirement for MUC1 gene expression in epithelial tissues, although in breast-cancer tissue additional regulatory mechanisms must pertain for its over-expression.
Collapse
Affiliation(s)
- S Zrihan-Licht
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv, Israel
| | | | | | | |
Collapse
|
25
|
Condorelli DF, Nicoletti VG, Barresi V, Caruso A, Conticello S, de Vellis J, Giuffrida Stella AM. Tissue-specific DNA methylation patterns of the rat glial fibrillary acidic protein gene. J Neurosci Res 1994; 39:694-707. [PMID: 7897704 DOI: 10.1002/jnr.490390610] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The glial fibrillary acidic protein (GFAP) is an intermediate filament protein, specific of the cytoskeleton of astrocytes in the central nervous system. In the present work, as a preliminary step to the study of glial-specific gene expression, we cloned the rat GFAP gene, and we report the sequence of 1.9 kb of the 5' flanking region, exon 1, and the majority of the first intron. By digestion with methylation-sensitive restriction enzymes followed by Southern blot analysis, the methylation status of various CpG sites was examined in this genomic segment. We tested whether structural modification of the GFAP gene, such as DNA methylation, could be related to its tissue-specific transcriptional activity. Therefore, we compared a GFAP-expressing cell population (primary culture of astroglial cells), a mixed population of GFAP-expressing and -nonexpressing cells (adult rat cerebral hemispheres), and a GFAP-nonexpressing tissue (liver). In the 5' flanking region we identified a CpG site at position -1176 whose level of methylation is inversely correlated to GFAP expression. In primary cultured astrocytes, 75% of the GFAP gene alleles were demethylated at this site, while the corresponding value obtained for the cerebral hemispheres was 45%, and for liver only 9%. On the basis of the sequence data, a CpG-rich region (putative CpG island) was identified extending from -38 to +347 and overlapping 80% of the first exon. HhaI and HpaII sites located in the putative CpG island showed a relatively high level of methylation in all the cell populations examined, and did not show any clear correlation with the level of GFAP gene expression or with the methylation status of the -1176 site. Further in vivo developmental studies and in vitro differentiation studies are necessary to better understand the functional differences of the various methylatable CpG sites in the 5' end of the GFAP gene.
Collapse
Affiliation(s)
- D F Condorelli
- Institute of Biochemistry, Faculty of Medicine, University of Catania, Italy
| | | | | | | | | | | | | |
Collapse
|
26
|
High-resolution methylation analysis of the human hypoxanthine phosphoribosyltransferase gene 5' region on the active and inactive X chromosomes: correlation with binding sites for transcription factors. Mol Cell Biol 1994. [PMID: 8289817 DOI: 10.1128/mcb.14.2.1419] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA methylation within GC-rich promoters of constitutively expressed X-linked genes is correlated with transcriptional silencing on the inactive X chromosome in female mammals. For most X-linked genes, X chromosome inactivation results in transcriptionally active and inactive alleles occupying each female nucleus. To examine mechanisms responsible for maintaining this unique system of differential gene expression, we have analyzed the methylation of individual cytosine residues in the 5' CpG island of the human hypoxanthine phosphoribosyltransferase (HPRT) gene on the active and inactive X chromosomes. Methylation analysis of 142 CpG dinucleotides by genomic sequencing was carried out on purified DNA using the cytosine-specific Maxam and Gilbert DNA sequencing reaction in conjunction with ligation-mediated PCR. These studies demonstrate the 5' CpG islands of active and 5-azacytidine-reactivated alleles are essentially unmethylated while the inactive allele is hypermethylated. The inactive allele is completely methylated at nearly all CpG dinucleotides except in a 68-bp region containing four adjacent GC boxes where most CpG dinucleotides are either unmethylated or partially methylated. Curiously, these GC boxes exhibit in vivo footprints only on the active X chromosome, not on the inactive X. The methylation pattern of the inactive HPRT gene is strikingly different from that reported for the inactive X-linked human phosphoglycerate kinase gene which exhibits methylation at all CpG sites in the 5' CpG island. These results suggest that the position of methylated CpG dinucleotides, the density of methylated CpGs, the length of methylated regions, and/or chromatin structure associated with methylated DNA may have a role in repressing the activity of housekeeping promoters on the inactive X chromosome. The pattern of DNA methylation on the inactive human HPRT gene may also provide insight into the process of inactivating the gene early in female embryogenesis.
Collapse
|
27
|
Hornstra IK, Yang TP. High-resolution methylation analysis of the human hypoxanthine phosphoribosyltransferase gene 5' region on the active and inactive X chromosomes: correlation with binding sites for transcription factors. Mol Cell Biol 1994; 14:1419-30. [PMID: 8289817 PMCID: PMC358497 DOI: 10.1128/mcb.14.2.1419-1430.1994] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
DNA methylation within GC-rich promoters of constitutively expressed X-linked genes is correlated with transcriptional silencing on the inactive X chromosome in female mammals. For most X-linked genes, X chromosome inactivation results in transcriptionally active and inactive alleles occupying each female nucleus. To examine mechanisms responsible for maintaining this unique system of differential gene expression, we have analyzed the methylation of individual cytosine residues in the 5' CpG island of the human hypoxanthine phosphoribosyltransferase (HPRT) gene on the active and inactive X chromosomes. Methylation analysis of 142 CpG dinucleotides by genomic sequencing was carried out on purified DNA using the cytosine-specific Maxam and Gilbert DNA sequencing reaction in conjunction with ligation-mediated PCR. These studies demonstrate the 5' CpG islands of active and 5-azacytidine-reactivated alleles are essentially unmethylated while the inactive allele is hypermethylated. The inactive allele is completely methylated at nearly all CpG dinucleotides except in a 68-bp region containing four adjacent GC boxes where most CpG dinucleotides are either unmethylated or partially methylated. Curiously, these GC boxes exhibit in vivo footprints only on the active X chromosome, not on the inactive X. The methylation pattern of the inactive HPRT gene is strikingly different from that reported for the inactive X-linked human phosphoglycerate kinase gene which exhibits methylation at all CpG sites in the 5' CpG island. These results suggest that the position of methylated CpG dinucleotides, the density of methylated CpGs, the length of methylated regions, and/or chromatin structure associated with methylated DNA may have a role in repressing the activity of housekeeping promoters on the inactive X chromosome. The pattern of DNA methylation on the inactive human HPRT gene may also provide insight into the process of inactivating the gene early in female embryogenesis.
Collapse
Affiliation(s)
- I K Hornstra
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville 32610
| | | |
Collapse
|
28
|
Affiliation(s)
- D J Driscoll
- Department of Pediatrics, University of Florida College of Medicine, Gainesville 32610
| |
Collapse
|
29
|
Piper AA, Bennett AM, Noyce L, Swanton MK, Cooper DW. Isolation of a clone partially encoding hill kangaroo X-linked hypoxanthine phosphoribosyltransferase: sex differences in methylation in the body of the gene. SOMATIC CELL AND MOLECULAR GENETICS 1993; 19:141-59. [PMID: 7685549 DOI: 10.1007/bf01233530] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
An X-linked clone encoding exons 4-9 of the hypoxanthine phosphoribosyltransferase (HPRT) gene was isolated from a kangaroo (Macropus robustus: Marsupialia) lambda EMBL4 genomic library. Sequence similarity between the kangaroo and eutherian HPRT coding sequences was high; however, intron sizes varied significantly between the kangaroo and other eutherian species. HpaII and HhaI sites in the body of the gene were generally hypermethylated in vivo on the active, relative to the inactive X, with sites within intron 3 showing essentially complete correspondence of activity with methylation and inactivity with unmethylation. At approximately 5 kb downstream from the gene, a switch to unmethylation of active X-linked sites occurred. This switch occurred within a cluster of HpaII and HhaI sites that may represent a CG island associated with a subsequent gene.
Collapse
Affiliation(s)
- A A Piper
- School of Biological and Biomedical Sciences, University of Technology Sydney, New South Wales, Australia
| | | | | | | | | |
Collapse
|
30
|
Affiliation(s)
- F Antequera
- Institute of Cell and Molecular Biology, University of Edinburgh, Scotland
| | | |
Collapse
|
31
|
Affiliation(s)
- C H Spruck
- Urologic Cancer Research Laboratory, Kenneth Norris Jr. Comprehensive Cancer Center, University of Southern California, Los Angeles 90033
| | | | | |
Collapse
|
32
|
Molecular and Genetic Studies of Human X Chromosome Inactivation. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/s1566-3116(08)60026-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
33
|
Ehrlich M, Ehrlich KC. Effect of DNA methylation on the binding of vertebrate and plant proteins to DNA. EXS 1993; 64:145-68. [PMID: 8418948 DOI: 10.1007/978-3-0348-9118-9_7] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- M Ehrlich
- Department of Biochemistry, Tulane Medical School, New Orleans, LA 70112
| | | |
Collapse
|
34
|
Multiple in vivo footprints are specific to the active allele of the X-linked human hypoxanthine phosphoribosyltransferase gene 5' region: implications for X chromosome inactivation. Mol Cell Biol 1992. [PMID: 1448069 DOI: 10.1128/mcb.12.12.5345] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dosage compensation of X-linked genes in male and female mammals is accomplished by random inactivation of one X chromosome in each female somatic cell. As a result, a transcriptionally active allele and a transcriptionally inactive allele of most X-linked genes reside within each female nucleus. To examine the mechanism responsible for maintaining this unique system of differential gene expression, we have analyzed the differential binding of regulatory proteins to the 5' region of the human hypoxanthine phosphoribosyltransferase (HPRT) gene on the active and inactive X chromosomes. Studies of DNA-protein interactions associated with the transcriptionally active and inactive HPRT alleles were carried out in intact cultured cells by in vivo footprinting by using ligation-mediated polymerase chain reaction and dimethyl sulfate. Analysis of the active allele demonstrates at least six footprinted regions, whereas no footprints were detected on the inactive allele. Of the footprints on the active allele, at least four occur over canonical GC boxes or Sp1 consensus binding sites, one is associated with a potential AP-2 binding site, and another is associated with a DNA sequence not previously reported to interact with a sequence-specific DNA-binding factor. While no footprints were observed for the HPRT gene on the inactive X chromosome, reactivation of the inactive allele with 5-azacytidine treatment restored the in vivo footprint pattern found on the active allele. Results of these experiments, in conjunction with recent studies on the X-linked human PGK-1 gene, bear implications for models of X chromosome inactivation.
Collapse
|
35
|
Hornstra IK, Yang TP. Multiple in vivo footprints are specific to the active allele of the X-linked human hypoxanthine phosphoribosyltransferase gene 5' region: implications for X chromosome inactivation. Mol Cell Biol 1992; 12:5345-54. [PMID: 1448069 PMCID: PMC360472 DOI: 10.1128/mcb.12.12.5345-5354.1992] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Dosage compensation of X-linked genes in male and female mammals is accomplished by random inactivation of one X chromosome in each female somatic cell. As a result, a transcriptionally active allele and a transcriptionally inactive allele of most X-linked genes reside within each female nucleus. To examine the mechanism responsible for maintaining this unique system of differential gene expression, we have analyzed the differential binding of regulatory proteins to the 5' region of the human hypoxanthine phosphoribosyltransferase (HPRT) gene on the active and inactive X chromosomes. Studies of DNA-protein interactions associated with the transcriptionally active and inactive HPRT alleles were carried out in intact cultured cells by in vivo footprinting by using ligation-mediated polymerase chain reaction and dimethyl sulfate. Analysis of the active allele demonstrates at least six footprinted regions, whereas no footprints were detected on the inactive allele. Of the footprints on the active allele, at least four occur over canonical GC boxes or Sp1 consensus binding sites, one is associated with a potential AP-2 binding site, and another is associated with a DNA sequence not previously reported to interact with a sequence-specific DNA-binding factor. While no footprints were observed for the HPRT gene on the inactive X chromosome, reactivation of the inactive allele with 5-azacytidine treatment restored the in vivo footprint pattern found on the active allele. Results of these experiments, in conjunction with recent studies on the X-linked human PGK-1 gene, bear implications for models of X chromosome inactivation.
Collapse
Affiliation(s)
- I K Hornstra
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville 32610
| | | |
Collapse
|
36
|
Hemimethylation and hypersensitivity are early events in transcriptional reactivation of human inactive X-linked genes in a hamster x human somatic cell hybrid. Mol Cell Biol 1992. [PMID: 1380647 DOI: 10.1128/mcb.12.9.3819] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reactivation of the hypoxanthine phosphoribosyltransferase (HPRT) gene on an inactive human X chromosome in a somatic cell hybrid was analyzed following exposure to 5-aza-2'-deoxycytidine. Hemimethylation and chromatin hypersensitivity in the 5' CpG island appeared by 6 h after exposure and continued to increase for 24 h in an exponentially growing cell culture. These results imply that the conformation of inactive chromatin requires a symmetrically methylated 5' G+C-rich promoter region. In addition, quantitative analysis of the time course patterns suggest that chromatin sensitivity changes may depend on strand-specific demethylation. Symmetrically demethylated DNA was first detected at 24 h and continued to increase until 48 h. HPRT mRNA was first detected at 24 h and increased in a biphasic pattern until 48 h. These results suggest that hemimethylation permits nuclease attack but not transcription factor binding, which requires symmetrically demethylated DNA. We also show that in G1-arrested cells, 5-aza-2'-deoxycytidine has no effect on methylation, chromatin conformation, or transcription. We conclude that reactivation of the HPRT gene present on the inactive X chromosome of a somatic cell hybrid involves the initial events of DNA hemimethylation and chromatin hypersensitivity at the 5' CpG island, followed by symmetrical demethylation and transcriptional reactivation.
Collapse
|
37
|
Sasaki T, Hansen RS, Gartler SM. Hemimethylation and hypersensitivity are early events in transcriptional reactivation of human inactive X-linked genes in a hamster x human somatic cell hybrid. Mol Cell Biol 1992; 12:3819-26. [PMID: 1380647 PMCID: PMC360251 DOI: 10.1128/mcb.12.9.3819-3826.1992] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Reactivation of the hypoxanthine phosphoribosyltransferase (HPRT) gene on an inactive human X chromosome in a somatic cell hybrid was analyzed following exposure to 5-aza-2'-deoxycytidine. Hemimethylation and chromatin hypersensitivity in the 5' CpG island appeared by 6 h after exposure and continued to increase for 24 h in an exponentially growing cell culture. These results imply that the conformation of inactive chromatin requires a symmetrically methylated 5' G+C-rich promoter region. In addition, quantitative analysis of the time course patterns suggest that chromatin sensitivity changes may depend on strand-specific demethylation. Symmetrically demethylated DNA was first detected at 24 h and continued to increase until 48 h. HPRT mRNA was first detected at 24 h and increased in a biphasic pattern until 48 h. These results suggest that hemimethylation permits nuclease attack but not transcription factor binding, which requires symmetrically demethylated DNA. We also show that in G1-arrested cells, 5-aza-2'-deoxycytidine has no effect on methylation, chromatin conformation, or transcription. We conclude that reactivation of the HPRT gene present on the inactive X chromosome of a somatic cell hybrid involves the initial events of DNA hemimethylation and chromatin hypersensitivity at the 5' CpG island, followed by symmetrical demethylation and transcriptional reactivation.
Collapse
Affiliation(s)
- T Sasaki
- Department of Medicine, University of Washington, Seattle 98195
| | | | | |
Collapse
|
38
|
Scholl T, Pitcock A, Jones B. Hypomethylation of MHC class II Eb gene is associated with expression. Immunogenetics 1992; 36:255-63. [PMID: 1639442 DOI: 10.1007/bf00215056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Methylation patterns in the major histocompatibility complex (MHC) class II Eb locus have been analyzed in cell lines representative of different cell types; in particular those with phenotypes found at various stages of B cell development. A series of variant B cell lymphoma lines which serves as a model in which to investigate mechanisms regulating class II gene expression in normal peripheral B cells has been examined. Eb methylation patterns have also been determined in various healthy mouse tissues. The pattern of methylation of the Eb locus varies between different cell lines and tissue types such that hypomethylation is associated with gene expression. There appears to be a methylation pattern which is permissive for class II gene expression and which is characteristic of a variety of cell lines, but is lost in cell lines representing terminally differentiated class II nonexpressing plasma cells. Another methylation pattern has been identified which is found in cloned cell lines selected for expression of very high levels of cell surface class II product. The patterns of methylation associated with MHC class II expression involve changes in methylation sites located within the first intron and several kilobase pairs 5' of the promoter, but no changes were observed in the 3' end of the locus. Moreover, the different methylation patterns do not map to the prominent CpG rich cluster located 5' of the Eb promoter and which remains completely methylated regardless of transcriptional status.
Collapse
Affiliation(s)
- T Scholl
- Department of Molecular and Cell Biology, Pennsylvania State University, University Park 16802
| | | | | |
Collapse
|
39
|
Abstract
In mammals, dosage compensation for X-linked genes between males and females is achieved by the inactivation of one of the X chromosomes in females. The inactivation event occurs early in development in all cells of the female mouse embryo and is stable and heritable in somatic cells. However, in the primordial germ cells, reactivation occurs around the time of meiosis. Owing to random inactivation in somatic cells, all female mice and humans are mosaic for X-linked gene function. Variable mosaicism can result in expression of disease in human females heterozygous for an X-linked gene defect. In the extra-embryonic lineages of female mouse embryos, and in the somatic cells of female marsupials, the paternally inherited X chromosome is preferentially inactivated. The X chromosomes in the egg and sperm must be differentially marked or imprinted, so that they are distinguished by the inactivation mechanism in these tissues. Initiation of inactivation of an entire X chromosome appears to spread from a single X-inactivation centre and may involve the recently discovered gene, XIST, which is expressed only from the inactive X chromosome. The maintenance of inactivation of certain household genes on the inactive X chromosome involves methylation of CpG islands in their 5' regions. Critical CpG sites are methylated at, or very close to, the time of inactivation in development. The mouse and the human X chromosomes carry the same genes but their arrangement is different and there are some genes in the pairing segment and elsewhere on the human X chromosome which can escape inactivation. Regions of homology between the mouse and human X chromosomes allow prediction of the map positions of homologous genes and provide mouse models of genetic disease in the human.
Collapse
Affiliation(s)
- M Monk
- MRC Mammalian Development Unit, London, UK
| |
Collapse
|
40
|
Affiliation(s)
- S M Gartler
- Department of Medicine, University of Washington, Seattle
| | | | | |
Collapse
|
41
|
Abstract
A large body of evidence demonstrates that DNA methylation plays a role in gene regulation in animal cells. Not only is there a correlation between gene transcription and undermethylation, but also transfection experiments clearly show that the presence of methyl moieties inhibits gene expression in vivo. Furthermore, gene activation can be induced by treatment of cells with 5-azacytidine, a potent demethylating agent. Methylation appears to influence gene expression by affecting the interactions with DNA of both chromatin proteins and specific transcription factors. Although methylation patterns are very stable in somatic cells, the early embryo is characterized by large alterations in DNA modification. New methodologies are now becoming available for studying methylation at this stage and in the germ line. During development, tissue-specific genes undergo demethylation in their tissue of expression. In tissue culture cells this process is highly specific and appears to involve an active mechanism which takes place in the absence of DNA replication. The X chromosome undergoes inactivation during development; this is accompanied by de novo methylation, which appears necessary to stably maintain its silent state. As opposed to the programmed changes in DNA methylation which occur in vivo, immortalized tissue culture cells demonstrate alterations in DNA modification which take place over a long time scale and which appear to be the result of selective pressures present during the growth of these cells in culture.
Collapse
Affiliation(s)
- A Razin
- Department of Cellular Biochemistry, Hebrew University Medical School, Jerusalem, Israel
| | | |
Collapse
|
42
|
Abstract
Studies of the whole genome by molecular and cytogenetic methods have implicated DNA methylation in the formation of 'inactive chromatin'. This has been confirmed by analysis of specific endogenous sequences, and has been mimicked by introducing methylated and non-methylated sequences into cells. As well as affecting chromatin structure. DNA methylation also represses transcription. A protein (MeCP) which binds specifically to methylated DNA has been identified. The properties of MeCP could account for the effects of DNA methylation on both chromatin and transcription.
Collapse
Affiliation(s)
- J Lewis
- Institute of Cell and Molecular Biology, University of Edinburgh, UK
| | | |
Collapse
|
43
|
Bartlett MH, Adra CN, Park J, Chapman VM, McBurney MW. DNA methylation of two X chromosome genes in female somatic and embryonal carcinoma cells. SOMATIC CELL AND MOLECULAR GENETICS 1991; 17:35-47. [PMID: 1998141 DOI: 10.1007/bf01233203] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The extent of methylation of DNA sequences upstream and within the two X-linked genes, Pgk-1 and Hprt, was analyzed in male and female somatic cells and in female embryonal carcinoma cells carrying either two active X chromosomes (Xa) or one active and one inactive X chromosome (Xi). Sites upstream and within the first intron of both Pgk-1 and Hprt were heavily methylated on the Xi in somatic cells and in embryonal carcinoma cells with an Xi. Reactivation of this Xi was accompanied by extensive demethylation of these sites. In female embryonal carcinoma cells with two active X chromosomes, one X inactivates during differentiation in culture; however, methylation did not occur during differentiation, consistent with the idea that DNA methylation does not play a role in the initiation of X inactivation but may be involved in maintaining inactivation of those genes on the Xi.
Collapse
Affiliation(s)
- M H Bartlett
- Department of Medicine, University of Ottawa, Ontario, Canada
| | | | | | | | | |
Collapse
|
44
|
Jones PA, Wolkowicz MJ, Rideout WM, Gonzales FA, Marziasz CM, Coetzee GA, Tapscott SJ. De novo methylation of the MyoD1 CpG island during the establishment of immortal cell lines. Proc Natl Acad Sci U S A 1990; 87:6117-21. [PMID: 2385586 PMCID: PMC54483 DOI: 10.1073/pnas.87.16.6117] [Citation(s) in RCA: 186] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
CpG dinucleotides are unevenly distributed in the vertebrate genome. Bulk DNA is depleted of CpGs and most of the cytosines in the dinucleotide in this fraction are methylated. On the other hand, CpG islands, which are often associated with genes, are unmethylated at testable sites in all normal tissues with the exception of genes on the inactive X chromosome. We used Hpa II/Msp I analysis and ligation-mediated polymerase chain reaction to examine the methylation of the MyoD1 CpG island in adult mouse tissues, early cultures of mouse embryo cells, and immortal fibroblastic cell lines. The island was almost devoid of methylation at CCGG sites in adult mouse tissues and in low-passage mouse embryo fibroblasts. In marked contrast, the island was methylated in 10T 1/2 cells and in six other immortal cell lines showing that methylation of this CpG island had occurred during escape from senescence. The island became even more methylated in chemically transformed derivatives of 10T 1/2 cells. Thus, CpG islands not methylated in normal tissues may become modified to an abnormally high degree during immortalization and transformation.
Collapse
Affiliation(s)
- P A Jones
- Kenneth Norris Jr. Comprehensive Cancer Center, University of Southern California, Los Angeles 90033
| | | | | | | | | | | | | |
Collapse
|
45
|
Prantera G, Ferraro M. Analysis of methylation and distribution of CpG sequences on human active and inactive X chromosomes by in situ nick translation. Chromosoma 1990; 99:18-23. [PMID: 1692783 DOI: 10.1007/bf01737285] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In situ nick translation of fixed mitotic chromosomes after HpaII or MspI digestion allows us to detect different DNA methylation levels along chromosomes. We used this technique to analyse the methylation levels of CCGG sites in the active and inactive X chromosomes of female human cells. In addition, we analysed the distribution of these sites with respect to the banding pattern. Our data show that the inactive X, as a whole, is more methylated than the active one and that CCGG sequences are preferentially located on R-positive bands.
Collapse
Affiliation(s)
- G Prantera
- Dipartimento di Genetica e Biologia Molecolare, Università La Sapienza, Roma, Italy
| | | |
Collapse
|
46
|
Monk M. Changes in DNA methylation during mouse embryonic development in relation to X-chromosome activity and imprinting. Philos Trans R Soc Lond B Biol Sci 1990; 326:299-312. [PMID: 1968666 DOI: 10.1098/rstb.1990.0013] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Changing DNA methylation patterns during embryonic development are discussed in relation to differential gene expression, changes in X-chromosome activity and genomic imprinting. Sperm DNA is more methylated than oocyte DNA, both overall and for specific sequences. The methylation difference between the gametes could be one of the mechanisms (along with chromatin structure) regulating initial differences in expression of parental alleles in early development. There is a loss of methylation during development from the morula to the blastocyst and a marked decrease in methylase activity. De novo methylation becomes apparent around the time of implantation and occurs to a lesser extent in extra-embryonic tissue DNA. In embryonic DNA, de novo methylation begins at the time of random X-chromosome inactivation but it continues to occur after X-chromosome inactivation and may be a mechanism that irreversibly fixes specific patterns of gene expression and X-chromosome inactivity in the female. The germ line is probably delineated before extensive de novo methylation and hence escapes this process. The marked undermethylation of the germ line DNA may be a prerequisite for X-chromosome reactivation. The process underlying reactivation and removal of parent-specific patterns of gene expression may be changes in chromatin configuration associated with meiosis and a general reprogramming of the germ line to developmental totipotency.
Collapse
Affiliation(s)
- M Monk
- MRC Mammalian Development Unit, London, U.K
| |
Collapse
|
47
|
Pagani F, Toniolo D, Vergani C. Stability of DNA methylation of X-chromosome genes during aging. SOMATIC CELL AND MOLECULAR GENETICS 1990; 16:79-84. [PMID: 1689869 DOI: 10.1007/bf01650482] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The stability of DNA methylation during aging was assessed in two groups of young (5-20 years old) and old (85-95 years old) women in DNA from blood leukocytes. Three X-linked genes were investigated. Two, G6PD and GdX, are located on Xq28, on the inactivated portion of the X chromosome: demethylation of specific regions of both genes was shown previously to be directly correlated with gene reactivation. The third, MIC2, is located on the pseudoautosomal region of the X chromosome and escapes X inactivation. The 5' region of the G6PD and GdX genes and the body of the G6PD, GDX, and MIC2 genes were analyzed with specific DNA probes. No age-related changes in methylation pattern were detected. We can conclude therefore that the methylation pattern of the three X-linked genes is stable during aging in female leukocytes and that a high rate of age-related reactivation of X-linked genes may not be a feature of all X-linked loci.
Collapse
Affiliation(s)
- F Pagani
- Fondazione Rivetti, Laboratorio di Biochimica e Biologia Molecolare, Milan, Italy
| | | | | |
Collapse
|
48
|
Athanassakis-Vassiliadis I, Thanos D, Papamatheakis J. Induction of class II major histocompatibility complex antigens in murine placenta by 5-azacytidine and interferon-gamma involves different cell populations. Eur J Immunol 1989; 19:2341-8. [PMID: 2481591 DOI: 10.1002/eji.1830191224] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Class II MHC antigen expression is required for recognition of an alloantigen and generation of immune response. In rodents as well as in humans primary trophoblasts do not express class II MHC antigens. In this study we focused our interest on the mechanism(s) of class II antigen suppression on murine trophoblasts. First, we examined the possibility of gene inactivation by methylation and second the possibility of lymphokine regulation of the class II genes. The first possibility was tested by treatment of placental cells with 5-azacytidine (5-AzaC), a cytidine analog which upon incorporation into the DNA inhibits further methylation, thus leading to gene activation. In order to test the second possibility we treated placental cells with interferon-gamma (IFN-gamma) or interleukin 4 (IL4) which are known to induce class II antigen expression in many systems. We showed that treatment with 5-AzaC or IFN-gamma but not IL4 significantly increased class II expression on cytokeratin-positive and vimentin-negative adherent placental cells. Following placental cell fractionation we distinguished three cell subsets with different responsiveness to 5-AzaC and IFN-gamma. The first, characterized as placental macrophages, were induced to express class II MHC antigens only after IFN-gamma treatment. The other two subsets, characterized as trophoblasts, were isolated from the labyrinthine- and spongio-trophoblast layer of the placenta and showed class II inducibility to 5-AzaC and IFN-gamma, respectively. The results show that depending on the anatomical localization of trophoblasts within the placenta, various regulatory elements control gene expression, so that the placental barrier provides fetal protection at different levels.
Collapse
|
49
|
Avramis VI, Mecum RA, Nyce J, Steele DA, Holcenberg JS. Pharmacodynamic and DNA methylation studies of high-dose 1-beta-D-arabinofuranosyl cytosine before and after in vivo 5-azacytidine treatment in pediatric patients with refractory acute lymphocytic leukemia. Cancer Chemother Pharmacol 1989; 24:203-10. [PMID: 2473850 DOI: 10.1007/bf00257619] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The primary development of clinical resistance to 1-beta-D-arabinofuranosyl cytosine (ara-C) in leukemic blast cells is expressed as decreased cellular concentrations of its active anabolite. Correlations exist between the cellular concentrations of 1-beta-D-arabinofuranosyl cytosine 5'-triphosphate (ara-CTP) in leukemic blast cells and inhibition of DNA synthetic capacity with the clinical response to high-dose cytosine arabinoside (HDara-C). 5-Azacytidine (5-Aza-C) and its congeners are potent DNA hypomethylating agents, an action closely associated with the reexpression of certain genes such as that for deoxycytidine kinase (dCk) in ara-C-resistant mouse and human leukemic cells. Reexpression of dCk could increase the cellular ara-CTP concentrations and the sensitivity to ara-C. A total of 17 pediatric patients with refractory acute lymphocytic leukemia (ALL) received a continuous infusion of 5-Aza-C at 150 mg/m2 daily for 5 days after not responding to (13/17) or relapsing from (4/17) an HDara-C regimen (3 g/m2 over 3 h, every 12 h, x 8 doses). Approximately 3 days after the end of the 5-Aza-C infusion, the HDara-C regimen was given again with the idea that the induced DNA hypomethylation in the leukemic cells may have increased the dCk activity and that a reversal of the tumor drug resistance to ara-C could have occurred. Deoxycytidine kinase (expressed as cellular ara-CTP concentrations) in untreated blasts, DNA synthetic capacity (DSC), and the percentage of DNA methylcytidine levels were determined before and after 5-Aza-C administration. Cellular ara-CTP was enhanced to varying degrees in 15 of 16 patients after 5-Aza-C treatment. The average cellular concentration of ara-CTP determined in vitro by the sensitivity test was 314 +/- 390 microM, 2.3-fold higher than the average value before 5-Aza-C treatment. In 12 patients in whom the DNA methylation studies were completed before and after 5-Aza-C treatment, the average DNA hypomethylation level was 55.6% + 15.8% of pretreatment values (n = 13; mean +/- SD). DSC showed a profound decline in 2/9 evaluable patients who achieved a complete response (CR) after this regimen. The data suggest that treatment with a cytostatic but DNA-modulatory regimen of 5-Aza-C causes DNA hypomethylation in vivo, which is associated with dCk reexpression in the patients' leukemic blasts. The partial reversal of drug resistance to ara-C by 5-Aza-C yielded two CRs in this poor-prognosis, multiply relapsed patient population with refractory ALL.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- V I Avramis
- Department of Pediatrics, School of Medicine, University of Southern California, Childrens Hospital of Los Angeles 90027
| | | | | | | | | |
Collapse
|
50
|
Michalowsky LA, Jones PA. DNA methylation and differentiation. ENVIRONMENTAL HEALTH PERSPECTIVES 1989; 80:189-97. [PMID: 2466640 PMCID: PMC1567602 DOI: 10.1289/ehp.8980189] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The methylation of specific cytosine residues in DNA has been implicated in regulating gene expression and facilitating functional specialization of cellular phenotypes. Generally, the demethylation of certain CpG sites correlates with transcriptional activation of genes. 5-Azacytidine is an inhibitor of DNA methylation and has been widely used as a potent activator of suppressed genetic information. Treatment of cells with 5-azacytidine results in profound phenotypic alterations. The drug-induced hypomethylation of DNA apparently perturbs DNA-protein interactions that may consequently alter transcriptional activity and cell determination. The inhibitory effect of cytosine methylation may be exerted via altered DNA-protein interactions specifically or may be transduced by a change in the conformation of chromatin. Recent studies have demonstrated that cytosine methylation also plays a central role in parental imprinting, which in turn determines the differential expression of maternal and paternal genomes during embryogenesis. In other words, methylation is the mechanism whereby the embryo retains memory of the gametic origin of each component of genetic information. A memory of this type would probably persist during DNA replication and cell division as methylation patterns are stable and heritable.
Collapse
Affiliation(s)
- L A Michalowsky
- Department of Biochemistry, USC Cancer Center, Los Angeles 90033
| | | |
Collapse
|