1
|
Sheng Y, Wang H, Ou Y, Wu Y, Ding W, Tao M, Lin S, Deng Z, Bai L, Kang Q. Insertion sequence transposition inactivates CRISPR-Cas immunity. Nat Commun 2023; 14:4366. [PMID: 37474569 PMCID: PMC10359306 DOI: 10.1038/s41467-023-39964-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023] Open
Abstract
CRISPR-Cas immunity systems safeguard prokaryotic genomes by inhibiting the invasion of mobile genetic elements. Here, we screened prokaryotic genomic sequences and identified multiple natural transpositions of insertion sequences (ISs) into cas genes, thus inactivating CRISPR-Cas defenses. We then generated an IS-trapping system, using Escherichia coli strains with various ISs and an inducible cas nuclease, to monitor IS insertions into cas genes following the induction of double-strand DNA breakage as a physiological host stress. We identified multiple events mediated by different ISs, especially IS1 and IS10, displaying substantial relaxed target specificity. IS transposition into cas was maintained in the presence of DNA repair machinery, and transposition into other host defense systems was also detected. Our findings highlight the potential of ISs to counter CRISPR activity, thus increasing bacterial susceptibility to foreign DNA invasion.
Collapse
Affiliation(s)
- Yong Sheng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Hengyu Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Yixin Ou
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- Haihe Laboratory of Synthetic Biology, 300308, Tianjin, P. R. China
| | - Yingying Wu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization (South), Ministry of Agriculture and Rural Affairs, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 201403, Shanghai, P. R. China
| | - Wei Ding
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Meifeng Tao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- Haihe Laboratory of Synthetic Biology, 300308, Tianjin, P. R. China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- Haihe Laboratory of Synthetic Biology, 300308, Tianjin, P. R. China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.
- Haihe Laboratory of Synthetic Biology, 300308, Tianjin, P. R. China.
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.
| | - Qianjin Kang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.
- Haihe Laboratory of Synthetic Biology, 300308, Tianjin, P. R. China.
| |
Collapse
|
2
|
Escherichia coli O-Antigen Gene Clusters of Serogroups O62, O68, O131, O140, O142, and O163: DNA Sequences and Similarity between O62 and O68, and PCR-Based Serogrouping. BIOSENSORS-BASEL 2015; 5:51-68. [PMID: 25664526 PMCID: PMC4384082 DOI: 10.3390/bios5010051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/24/2015] [Accepted: 01/30/2015] [Indexed: 11/21/2022]
Abstract
The DNA sequence of the O-antigen gene clusters of Escherichia coli serogroups O62, O68, O131, O140, O142, and O163 was determined, and primers based on the wzx (O-antigen flippase) and/or wzy (O-antigen polymerase) genes within the O-antigen gene clusters were designed and used in PCR assays to identify each serogroup. Specificity was tested with E. coli reference strains, field isolates belonging to the target serogroups, and non-E. coli bacteria. The PCR assays were highly specific for the respective serogroups; however, the PCR assay targeting the O62 wzx gene reacted positively with strains belonging to E. coli O68, which was determined by serotyping. Analysis of the O-antigen gene cluster sequences of serogroups O62 and O68 reference strains showed that they were 94% identical at the nucleotide level, although O62 contained an insertion sequence (IS) element located between the rmlA and rmlC genes within the O-antigen gene cluster. A PCR assay targeting the rmlA and rmlC genes flanking the IS element was used to differentiate O62 and O68 serogroups. The PCR assays developed in this study can be used for the detection and identification of E. coli O62/O68, O131, O140, O142, and O163 strains isolated from different sources.
Collapse
|
3
|
Morton ER, Merritt PM, Bever JD, Fuqua C. Large deletions in the pAtC58 megaplasmid of Agrobacterium tumefaciens can confer reduced carriage cost and increased expression of virulence genes. Genome Biol Evol 2013; 5:1353-64. [PMID: 23783172 PMCID: PMC3730347 DOI: 10.1093/gbe/evt095] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The accessory plasmid pAtC58 of the common laboratory strain of Agrobacterium tumefaciens confers numerous catabolic functions and has been proposed to play a role in virulence. Genomic sequencing of evolved laboratory strains of A. tumefaciens revealed the presence of multiple deletion events in the At plasmid, with reductions in plasmid size ranging from 25% to 30% (115–194 kb). Flanking both ends of the sites of these deletions is a short-nucleotide repeat sequence that is in a single copy in the deleted plasmids, characteristic of a phage- or transposon-mediated deletion event. This repeat sequence is widespread throughout the C58 genome, but concentrated on the At plasmid, suggesting its frequency to be nonrandom. In this study, we assess the prevalence of the larger of these deletions in multiple C58 derivatives and characterize its functional significance. We find that in addition to elevating virulence gene expression, this deletion is associated with a significantly reduced carriage cost to the cell. These observations are a clear demonstration of the dynamic nature of the bacterial genome and suggest a mechanism for genetic plasticity of these costly but otherwise stable plasmids. Additionally, this phenomenon could be the basis for some of the dramatic recombination events so ubiquitous within and among megaplasmids.
Collapse
|
4
|
Saito T, Chibazakura T, Takahashi K, Yoshikawa H, Sekine Y. Measurements of transposition frequency of insertion sequence IS1 by GFP hop-on assay. J GEN APPL MICROBIOL 2010; 56:187-92. [PMID: 20647675 DOI: 10.2323/jgam.56.187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Transposons play a significant role in the evolution of bacterial genomes. Quantifying frequency of transpositional events caused by a transposon will facilitate understanding its role. Here, we report successful measurement of the frequency of IS1 transposition using "GFP hop-on assay" in which transposition-dependent GFP expression is monitored by FACS. This assay allows easy assessment of IS transposition into the chromosomal DNA on a single-cell scale; this is an advantage over other conventional methods to measure transposition frequency.
Collapse
Affiliation(s)
- Takashi Saito
- Department of Life Science, College of Science, Rikkyo (St. Paul's) University, Toshima-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
5
|
Hoshino A, Park KI, Iida S. Identification of r mutations conferring white flowers in the Japanese morning glory (Ipomoea nil). JOURNAL OF PLANT RESEARCH 2009; 122:215-222. [PMID: 19085046 DOI: 10.1007/s10265-008-0202-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Accepted: 10/29/2008] [Indexed: 05/27/2023]
Abstract
The wild-type Japanese morning glory [Ipomoea nil (L.) Roth.] exhibits blue flowers with red stems, and spontaneous r mutants display white flowers with green stems. We have identified two r mutations, r1-1 and r1-2, that are caused by insertions of Tpn1-related DNA transposable elements, Tpn3 (5.6 kb) and Tpn6 (4.7 kb), respectively, into a unique intron of the CHS-D gene, which is responsible for flower and stem pigmentation. Both Tpn3 and Tpn6, which belong to the En/Spm or CACTA superfamily, are nonautonomous elements lacking transposase genes but containing unrelated cellular DNA segments including exons and introns. Interestingly, r1-2 contains an additional 4-bp insertion at the Tpn3 integration site in r1-1, presumably a footprint caused by the excision of Tpn3. The results strengthen the previous notion that Tpn1 and its relatives are major spontaneous mutagens for generating various floriculturally important traits in I. nil. Since I. nil has an extensive history of genetic studies, molecular identification of classical spontaneous mutations would also facilitate reinterpretation of the abundant classical genetic data available.
Collapse
Affiliation(s)
- Atsushi Hoshino
- National Institute for Basic Biology, Myodaiji, Okazaki 444-8585, Japan.
| | | | | |
Collapse
|
6
|
Hsu WB, Chen JH. The IS1 elements in Shigella boydii: horizontal transfer, vertical inactivation and target duplication. FEMS Microbiol Lett 2003; 222:289-95. [PMID: 12770720 DOI: 10.1016/s0378-1097(03)00319-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
IS1(SB) and its two variants were identified as the major and minor IS1 elements in Shigella boydii. The nucleotide sequences of IS1(SB), IS1(O157:H7) from Escherichia coli O157:H7 and IS1F from E. coli K12 suggest that these IS1 elements had been horizontally transferred among S. boydii and E. coli O157:H7 and K12. The two IS1(SB) variants and IS1(O157:H7) have transposition activities 7- to 86-fold less than that of IS1(SB), whereas IS1F has little transposition activity. Analysis of the flanking sequences of IS1(SB) and its two variants in S. boydii revealed the nature of regional specificity of the target sites and the sequence dependence of 8 and 9 bp target duplications, for which a model is presented.
Collapse
Affiliation(s)
- Wen-Bin Hsu
- Institute of Molecular Biology, National Chung Hsing University, 402, Taichung, Taiwan
| | | |
Collapse
|
7
|
Ohta S, Tsuchida K, Choi S, Sekine Y, Shiga Y, Ohtsubo E. Presence of a characteristic D-D-E motif in IS1 transposase. J Bacteriol 2002; 184:6146-54. [PMID: 12399484 PMCID: PMC151954 DOI: 10.1128/jb.184.22.6146-6154.2002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transposases encoded by various transposable DNA elements and retroviral integrases belong to a family of proteins with three conserved acidic amino acids, D, D, and E, constituting the D-D-E motif that represents the active center of the proteins. IS1, one of the smallest transposable elements in bacteria, encodes a transposase which has been thought not to belong to the family of proteins with the D-D-E motif. In this study, we found several IS1 family elements that were widely distributed not only in eubacteria but also in archaebacteria. The alignment of the transposase amino acid sequences from these IS1 family elements showed that out of 14 acidic amino acids present in IS1 transposase, three (D, D, and E) were conserved in corresponding positions in the transposases encoded by all the elements. Comparison of the IS1 transposase with other proteins with the D-D-E motif revealed that the polypeptide segments surrounding each of the three acidic amino acids were similar. Furthermore, the deduced secondary structures of the transposases encoded by IS1 family elements were similar to one another and to those of proteins with the D-D-E motif. These results strongly suggest that IS1 transposase has the D-D-E motif and thus belongs to the family of proteins with the D-D-E motif. In fact, mutant IS1 transposases with an amino acid substitution for each of the three acidic amino acids possibly constituting the D-D-E motif were not able to promote transposition of IS1, supporting this hypothesis. The D-D-E motif identified in IS1 transposase differs from those in the other proteins in that the polypeptide segment between the second D and third E in IS1 transposase is the shortest, 24 amino acids in length. Because of this difference, the presence of the D-D-E motif in IS1 transposase has not been discovered for some time.
Collapse
Affiliation(s)
- Shinya Ohta
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Iida S, Hiestand-Nauer R, Sandmeier H, Lehnherr H, Arber W. Accessory genes in the darA operon of bacteriophage P1 affect antirestriction function, generalized transduction, head morphogenesis, and host cell lysis. Virology 1998; 251:49-58. [PMID: 9813202 DOI: 10.1006/viro.1998.9405] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacteriophage P1 mutants with the 8.86-kb region between the invertible C-segment and the residential IS1 element deleted from their genome are still able to grow vegetatively and to lysogenize stably, but they show several phenotypic changes. These include the formation of minute plaques due to delayed cell lysis, the abundant production of small-headed particles, a lack of specific internal head proteins, sensitivity to type I host restriction systems, and altered properties to mediate generalized transduction. In the wild-type P1 genome, the accessory genes encoding the functions responsible for these characters are localized in the darA operon that is transcribed late during phage production. We determined the relevant DNA sequence that is located between the C-segment and the IS1 element and contains the cin gene for C-inversion and the accessory genes in the darA operon. The darA operon carries eight open reading frames that could encode polypeptides containing >100 amino acids. Genetic studies indicate that some of these open reading frames, in particular those residing in the 5' part of the darA operon, are responsible for the phenotypic traits identified. The study may contribute to a better comprehension of phage morphogenesis, of the mobilization of host DNA into phage particles mediating generalized transduction, of the defense against type I restriction systems, and of the control of host lysis.
Collapse
Affiliation(s)
- S Iida
- Biozentrum, University of Basel, Klingelbergstrasse 70, Basel, CH-4056, Switzerland
| | | | | | | | | |
Collapse
|
9
|
Abstract
Insertion sequences (ISs) constitute an important component of most bacterial genomes. Over 500 individual ISs have been described in the literature to date, and many more are being discovered in the ongoing prokaryotic and eukaryotic genome-sequencing projects. The last 10 years have also seen some striking advances in our understanding of the transposition process itself. Not least of these has been the development of various in vitro transposition systems for both prokaryotic and eukaryotic elements and, for several of these, a detailed understanding of the transposition process at the chemical level. This review presents a general overview of the organization and function of insertion sequences of eubacterial, archaebacterial, and eukaryotic origins with particular emphasis on bacterial elements and on different aspects of the transposition mechanism. It also attempts to provide a framework for classification of these elements by assigning them to various families or groups. A total of 443 members of the collection have been grouped in 17 families based on combinations of the following criteria: (i) similarities in genetic organization (arrangement of open reading frames); (ii) marked identities or similarities in the enzymes which mediate the transposition reactions, the recombinases/transposases (Tpases); (iii) similar features of their ends (terminal IRs); and (iv) fate of the nucleotide sequence of their target sites (generation of a direct target duplication of determined length). A brief description of the mechanism(s) involved in the mobility of individual ISs in each family and of the structure-function relationships of the individual Tpases is included where available.
Collapse
Affiliation(s)
- J Mahillon
- Laboratoire de Génétique Microbienne, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | | |
Collapse
|
10
|
Abstract
Sequence analysis of three IS200 elements (two from Salmonella typhimurium, one from Salmonella abortusovis) reveals a highly conserved structure, with a length of 707-708 bp and absence of terminal repeats. IS200 contains an open-reading-frame (ORF) which potentially encodes a peptide of 151 amino acids, with a putative ribosome-binding-site properly placed upstream of the ORF. A potential RNA stem-loop structure that might occlude the ribosome-binding-site of the ORF is also found. Another conserved trait is a potential RNA hairpin which resembles a Rho-independent transcription terminator, located near one end of IS200. The junctions between IS200 and host DNA sequences are A+T-rich. Upon insertion, IS200 duplicates 1-2 bp of host DNA sequences. The observation that IS200 elements characterized as 'hops' are roughly identical to those residing in the Salmonella genome suggests that IS200 transposition is unlikely to generate inactive copies. If such is the case and many or all IS200 elements are active, the extremely low frequency of IS200 transposition may reflect the normal behavior of the element.
Collapse
Affiliation(s)
- C R Beuzón
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Apartado 1095, E-41080 Sevilla, Spain
| | | |
Collapse
|
11
|
Abstract
The heat-stable toxin I gene in the human Escherichia coli isolate 18D is the estA1 allele. The gene is not part of a composite transposon, but inspection of the flanking DNA sequences suggests that it was at one time part of a transposon. The hypothetical transposon originated from an event other than the occurrence that formed Tn1681.
Collapse
Affiliation(s)
- W S Dallas
- Department of Molecular Genetics and Microbiology, Wellcome Research Laboratories, Burroughs Wellcome Co., Research Triangle Park, North Carolina 27709
| |
Collapse
|
12
|
Reimmann C, Moore R, Little S, Savioz A, Willetts NS, Haas D. Genetic structure, function and regulation of the transposable element IS21. MOLECULAR & GENERAL GENETICS : MGG 1989; 215:416-24. [PMID: 2540414 DOI: 10.1007/bf00427038] [Citation(s) in RCA: 95] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The IncP plasmid R68.45 and other plasmids carrying tandem repeats of the insertion sequence IS21 [= (IS21)2] produce replicon fusions via transposition at high frequencies in Escherichia coli and other gram-negative bacteria, whereas plasmids with a single IS21 copy, e.g. R68, give replicon fusions rarely. The 2131 bp nucleotide sequence of IS21 was determined; at the ends there were 11 bp inverted repeats with one mismatch. Two adjacent open reading frames, istA and istB, were located on one DNA strand of IS21. In E. coli maxicells, polypeptides of 46 kDa (the istA gene product) and 30 kDa (the istB gene product) were expressed by (IS21)2 plasmids, but not by IS21 plasmids. Genetic analysis of (IS21)2 plasmids indicates that the IS21-IS21 junctions form a promoter, which initiates transcription of the istAB operon in one of the two IS21 elements. A single IS21 element fused to an inducible external tac promoter expressed both proteins after induction, but did not promote effective replicon fusion, unless an IS21-IS21 junction (the preferred site for IS21 transposase action) was also present on the plasmid carrying the tac-IS21 construct. The sequences located between the IS21 elements in (IS21)2, 3 bp in R68.45 or 2 bp in pME28, were not recovered in the replicon fusion products. Homologous recombination between the directly oriented IS21 elements in the fusion products led to plasmids with a single IS21 insertion. Analysis of the latter showed that IS21 had a low, but not totally random specificity of insertion and created target duplications of 4 bp (occasionally 5 bp).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C Reimmann
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
13
|
Dusha I, Kovalenko S, Banfalvi Z, Kondorosi A. Rhizobium meliloti insertion element ISRm2 and its use for identification of the fixX gene. J Bacteriol 1987; 169:1403-9. [PMID: 3031010 PMCID: PMC211960 DOI: 10.1128/jb.169.4.1403-1409.1987] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Two of the three plasmids of the wild-type Rhizobium meliloti 41 (pRme41a and pRme41c) carry a copy of ISRm2, a 2.7-kilobase-long transposable element. ISRm2 is terminated by 22-base-pair (bp) inverted repeat sequences, exhibiting some homology to the inverted repeats of elements generating 9-bp target sequence duplication. Transposition of ISRm2 results in a duplication of 8 bp in length, rather rare among transposable elements. DNA sequences homologous to an internal fragment of ISRm2 were found in several Rhizobium species. Transposition of ISRm2 into fixation and nodulation genes located on the symbiotic plasmid pRme41b was detected at a high frequency. Exact locations of two copies of ISRm2 which transposed into the nod-nif region on the megaplasmid were determined. In one case, integration into the protein-coding region of the hsnD gene that determines a host specificity function of nodulation occurred. In the other mutant, ISRm2 was localized upstream of nifA, where a short open reading frame coding for a new fix gene (fixX) was identified. The product of fixX is a ferredoxin carrying a characteristic cluster of cysteine residues. On the basis of the observation that the arrangement of the ISRm2 copies is identical in the free-living wild-type cells and in nitrogen-fixing nodules, we concluded that the involvement of ISRm2 transposition in the development of nitrogen-fixing symbiosis is unlikely.
Collapse
|
14
|
Hübner P, Iida S, Arber W. A transcriptional terminator sequence in the prokaryotic transposable element IS1. MOLECULAR & GENERAL GENETICS : MGG 1987; 206:485-90. [PMID: 3035345 DOI: 10.1007/bf00428889] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The prokaryotic transposable element IS1 is known to exert a strong polar effect upon integration into an operon. To elucidate this polar effect, we constructed a plasmid which has an IS1 integrated between the 5' half of the tet gene for tetracycline resistance and the cat structural gene for chloramphenicol resistance. The cat gene is expressed by the tet promoter and the presence of IS1 in orientation I, in which the IS1 transposase genes insA and insB are in the same orientation as the cat gene, reduced the cat expression. By introducing deletions or insertions within the IS1 sequence, we were able to map a rho-dependent terminator TIS1A between the insA and insB genes. Translational interruption between these ins genes is important for TIS1A to be an active terminator.
Collapse
|