1
|
Pulkkinen E, Haapa-Paananen S, Turakainen H, Savilahti H. A set of mini-Mu transposons for versatile cloning of circular DNA and novel dual-transposon strategy for increased efficiency. Plasmid 2016; 86:46-53. [PMID: 27387339 DOI: 10.1016/j.plasmid.2016.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 06/29/2016] [Accepted: 07/02/2016] [Indexed: 12/22/2022]
Abstract
Mu transposition-based cloning of DNA circles employs in vitro transposition reaction to deliver both the plasmid origin of replication and a selectable marker into the target DNA of interest. We report here the construction of a platform for the purpose that contains ten mini-Mu transposons with five different replication origins, enabling a variety of research approaches for the discovery and study of circular DNA. We also demonstrate that the simultaneous use of two transposons, one with the origin of replication and the other with selectable marker, is beneficial as it improves the cloning efficiency by reducing the fraction of autointegration-derived plasmid clones. The constructed transposons now provide a set of new tools for the studies on DNA circles and widen the applicability of Mu transposition based approaches to clone circular DNA from various sources.
Collapse
Affiliation(s)
- Elsi Pulkkinen
- Division of Genetics and Physiology, Department of Biology, University of Turku, Vesilinnantie 5, FI-20500 Turku, Finland
| | - Saija Haapa-Paananen
- Division of Genetics and Physiology, Department of Biology, University of Turku, Vesilinnantie 5, FI-20500 Turku, Finland
| | - Hilkka Turakainen
- Institute of Biotechnology, Viikki Biocenter, P.O. Box 56, Viikinkaari 9, FI-00014, University of Helsinki, Helsinki, Finland
| | - Harri Savilahti
- Division of Genetics and Physiology, Department of Biology, University of Turku, Vesilinnantie 5, FI-20500 Turku, Finland; Institute of Biotechnology, Viikki Biocenter, P.O. Box 56, Viikinkaari 9, FI-00014, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
2
|
Carraro N, Libante V, Morel C, Charron-Bourgoin F, Leblond P, Guédon G. Plasmid-like replication of a minimal streptococcal integrative and conjugative element. MICROBIOLOGY-SGM 2016; 162:622-632. [PMID: 26825653 DOI: 10.1099/mic.0.000219] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Integrative and conjugative elements (ICEs) are mobile genetic elements encoding their own excision from a replicon of their bacterial host, transfer by conjugation to a recipient bacterium and reintegration for maintenance. The conjugation, recombination and regulation modules of ICEs of the ICESt3 family are grouped together in a region called the ICE 'core region'. In addition to this core region, elements belonging to this family carry a highly variable region including cargo genes that could be involved in bacterial adaptation or in the maintenance of the element. Although ICEs are a major class of mobile elements through bacterial genomes, the functionality of an element encoding only its excision, transfer, integration and regulation has never been demonstrated experimentally. We engineered MiniICESt3, an artificial ICE derived from ICESt3, devoid of its cargo genes and thus only harbouring the core region. The functionality of this minimal element was assessed. MiniICESt3 was found to be able to excise at a rate of 3.1 %, transfer with a frequency of 1.0 × 10- 5 transconjugants per donor cell and stably maintain by site-specific integration into the 3' end of the fda gene, the same as ICESt3. Furthermore, MiniICESt3 was found in ∼10 copies per chromosome, this multicopy state likely contributing to its stability for >100 generations even in the absence of selection. Therefore, although ICEs were primarily assumed to only replicate along with the chromosome, our results uncovered extrachromosomal rolling-circle replicating plasmid-like forms of MiniICESt3.
Collapse
Affiliation(s)
- Nicolas Carraro
- INRA, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France.,Université de Lorraine, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France
| | - Virginie Libante
- INRA, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France.,Université de Lorraine, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France
| | - Catherine Morel
- Université de Lorraine, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France.,INRA, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France
| | - Florence Charron-Bourgoin
- Université de Lorraine, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France.,INRA, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France
| | - Pierre Leblond
- Université de Lorraine, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France.,INRA, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France
| | - Gérard Guédon
- Université de Lorraine, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France.,INRA, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
3
|
Abstract
Iteron-containing plasmids are model systems for studying the metabolism of extrachromosomal genetic elements in bacterial cells. Here we describe the current knowledge and understanding of the structure of iteron-containing replicons, the structure of the iteron plasmid encoded replication initiation proteins, and the molecular mechanisms for iteron plasmid DNA replication initiation. We also discuss the current understanding of control mechanisms affecting the plasmid copy number and how host chaperone proteins and proteases can affect plasmid maintenance in bacterial cells.
Collapse
|
4
|
Milewska K, Węgrzyn G, Szalewska-Pałasz A. Transformation of Shewanella baltica with ColE1-like and P1 plasmids and their maintenance during bacterial growth in cultures. Plasmid 2015; 81:42-9. [PMID: 26170108 DOI: 10.1016/j.plasmid.2015.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 07/04/2015] [Accepted: 07/06/2015] [Indexed: 11/28/2022]
Abstract
The presence of natural plasmids has been reported for many Shewanella isolates. However, knowledge about plasmid replication origin and segregation mechanisms is not extensive for this genus. Shewanella baltica is an important species in the marine environment due to its denitrification ability in oxygen-deficient zones and the potential role in bioremediation processes. However, no information about possible use of plasmid vectors in this species has been reported to date. Here we report that plasmids with ColE1-type and plasmid P1 origin can transform S. baltica and replicate in this bacterium. Without the antibiotic selection pressure plasmid maintenance is less efficient than in Escherichia coli. Nevertheless, cultivation of S. baltica in the presence of appropriate antibiotics caused relatively stable maintenance of ColE1-like and P1-derived plasmids. This indicates that plasmid-based genetic manipulations and gene transfer in S. baltica are possible.
Collapse
Affiliation(s)
- Klaudia Milewska
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | | |
Collapse
|
5
|
Helmbrecht K, Zeise E, Rensing L. Chaperones in cell cycle regulation and mitogenic signal transduction: a review. Cell Prolif 2008; 33:341-65. [PMID: 11101008 PMCID: PMC6496586 DOI: 10.1046/j.1365-2184.2000.00189.x] [Citation(s) in RCA: 215] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Chaperones/heat shock proteins (HSPs) of the HSP90 and HSP70 families show elevated levels in proliferating mammalian cells and a cell cycle-dependent expression. They transiently associate with key molecules of the cell cycle control system such as Cdk4, Wee-1, pRb, p53, p27/Kip1 and are involved in the nuclear localization of regulatory proteins. They also associate with viral oncoproteins such as SV40 super T, large T and small t antigen, polyoma large and middle S antigen and EpsteinBarr virus nuclear antigen. This association is based on a J-domain in the viral proteins and may assist their targeting to the pRb/E2F complex. Small HSPs and their state of phosphorylation and oligomerization also seem to be involved in proliferation and differentiation. Chaperones/HSPs thus play important roles within cell cycle processes. Their exact functioning, however, is still a matter of discussion. HSP90 in particular, but also HSP70 and other chaperones associate with proteins of the mitogen-activated signal cascade, particularly with the Src kinase, with tyrosine receptor kinases, with Raf and the MAP-kinase activating kinase (MEK). This apparently serves the folding and translocation of these proteins, but possibly also the formation of large immobilized complexes of signal transducing molecules (scaffolding function).
Collapse
Affiliation(s)
- K Helmbrecht
- Institute of Cell Biology, Biochemistry and Biotechnology, University of Bremen, Germany
| | | | | |
Collapse
|
6
|
Fekete RA, Venkova-Canova T, Park K, Chattoraj DK. IHF-dependent activation of P1 plasmid origin by dnaA. Mol Microbiol 2007; 62:1739-51. [PMID: 17087773 DOI: 10.1111/j.1365-2958.2006.05479.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In bacteria, many DNA-protein interactions that initiate transcription, replication and recombination require the mediation of DNA architectural proteins such as IHF and HU. For replication initiation, plasmid P1 requires three origin binding proteins: the architectural protein HU, a plasmid-specific initiator, RepA, and the Escherichia coli chromosomal initiator, DnaA. The two initiators bind in the origin of replication to multiple sites, called iterons and DnaA boxes respectively. We show here that all five known DnaA boxes can be deleted from the plasmid origin provided the origin is extended by about 120 bp. The additional DNA provides an IHF site and most likely a weak DnaA binding site, because replacing the putative site with an authentic DnaA box enhanced plasmid replication in an IHF-dependent manner. IHF most likely brings about interactions between distally bound DnaA and RepA by bending the intervening DNA. The role of IHF in activating P1 origin by allowing DnaA binding to a weak site is reminiscent of the role the protein plays in initiating the host chromosomal replication.
Collapse
Affiliation(s)
- Richard A Fekete
- Laboratory of Biochemistry, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-4255, USA
| | | | | | | |
Collapse
|
7
|
Slavcev RA, Funnell BE. Identification and characterization of a novel allele of Escherichia coli dnaB helicase that compromises the stability of plasmid P1. J Bacteriol 2005; 187:1227-37. [PMID: 15687186 PMCID: PMC545633 DOI: 10.1128/jb.187.4.1227-1237.2005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteriophage P1 lysogenizes Escherichia coli cells as a plasmid with approximately the same copy number as the copy number of the host chromosome. Faithful inheritance of the plasmids relies upon proper DNA replication, as well as a partition system that actively segregates plasmids to new daughter cells. We genetically screened for E. coli chromosomal mutations that influenced P1 stability and identified a novel temperature-sensitive allele of the dnaB helicase gene (dnaB277) that replaces serine 277 with a leucine residue (DnaB S277L). This allele conferred a severe temperature-sensitive phenotype to the host; dnaB277 cells were not viable at temperatures above 34 degrees C. Shifting dnaB277 cells to 42 degrees C resulted in an immediate reduction in the rate of DNA synthesis and extensive cell filamentation. The dnaB277 allele destabilized P1 plasmids but had no significant influence on the stability of the F low-copy-number plasmid. This observation suggests that there is a specific requirement for DnaB in P1 plasmid maintenance in addition to the general requirement for DnaB as the replicative helicase during elongation.
Collapse
Affiliation(s)
- Roderick A Slavcev
- Department of Medical Genetics and Microbiology, University of Toronto, 1 Kings College Circle, Toronto, Ontario, Canada M5S 1A8
| | | |
Collapse
|
8
|
Ravin NV, Strakhova TS, Kuprianov VV. The protelomerase of the phage-plasmid N15 is responsible for its maintenance in linear form. J Mol Biol 2001; 312:899-906. [PMID: 11580235 DOI: 10.1006/jmbi.2001.5019] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The prophage of coliphage N15 is not integrated into the bacterial chromosome but exists as a linear plasmid molecule with covalently closed ends. Upon infection of an Escherichia coli cell, the phage DNA circularises via cohesive ends. A phage-encoded enzyme, protelomerase, then cuts at another site, telRL, and forms hairpin ends (telomeres). We demonstrate that this enzyme acts in vivo on specific substrates, and show that it is necessary for replication of the linear prophage. We show that protelomerase is an end-resolving enzyme responsible for processing of replicative intermediates. Removal of protelomerase activity resulted in accumulation of replicative intermediates that were found to be circular head-to-head dimers. N15 protelomerase and its target site constitute a functional unit acting on other replicons independently of other phage genes; a mini-F or mini-P1 plasmid carrying this unit replicates as a linear plasmid with covalently closed ends. Our results suggest the following model of N15 prophage DNA replication. Replication is initiated at an internal ori site located close to the left end of plasmid DNA and proceeds bidirectionally. After replication of the left telomere, protelomerase cuts this sequence and forms two hairpin loops telL. After duplication of the right telomere (telR) the same enzyme resolves this sequence producing two linear plasmids. Alternatively, full replication of the linear prophage to form a circular head-to-head dimer may precede protelomerase-mediated formation of hairpin ends.
Collapse
Affiliation(s)
- N V Ravin
- Centre Bioengineering, Russian Academy of Sciences, Prosp. 60-let Oktiabria, bld.7-1, Moscow, 117312, Russia.
| | | | | |
Collapse
|
9
|
Pagotto F, Dillon JA. Multiple origins and replication proteins influence biological properties of beta-lactamase-producing plasmids from Neisseria gonorrhoeae. J Bacteriol 2001; 183:5472-81. [PMID: 11544207 PMCID: PMC95436 DOI: 10.1128/jb.183.19.5472-5481.2001] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The beta-lactamase-producing Asia-type plasmid pJD4 of Neisseria gonorrhoeae is a 7.4-kb, broad-host-range plasmid. It is part of a family of plasmids which are structurally related yet vary in size, found in both N. gonorrhoeae and Haemophilus ducreyi. Branch-point analysis by electron microscopy indicates that pJD4 carries three clustered but distinguishable origins of replication, which we named ori1, ori2, and ori3. Although pJD4 belongs to incompatibility (Inc) group W, it also carries a silent IncFII determinant which is expressed when ori2 and ori3 are absent. The Africa-type plasmid pJD5, a naturally occurring deletion derivative of pJD4, carries only ori1, belongs to the IncFII group, and, in contrast to pJD4, requires DNA polymerase I (Pol I) for replication. Plasmids constructed from pJD4 which lack ori1 but carry ori2 and ori3 do not require Pol I and are incompatible with IncW plasmids, suggesting that the ori2 or ori3 region contains the IncW determinant. We have cloned a replication initiation protein (RepB) that is necessary for ori2 and ori3 to function. This Rep protein is distinct from RepA, which is necessary for ori1. Thus, pJD4 is unique because it is the smallest plasmid characterized containing three origins of replication and two unique Rep proteins.
Collapse
Affiliation(s)
- F Pagotto
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | | |
Collapse
|
10
|
Park K, Chattoraj DK. DnaA boxes in the P1 plasmid origin: the effect of their position on the directionality of replication and plasmid copy number. J Mol Biol 2001; 310:69-81. [PMID: 11419937 DOI: 10.1006/jmbi.2001.4741] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The DnaA protein is essential for initiation of DNA replication in a wide variety of bacterial and plasmid replicons. The replication origin in these replicons invariably contains specific binding sites for the protein, called DnaA boxes. Plasmid P1 contains a set of DnaA boxes at each end of its origin but can function with either one of the sets. Here we report that the location of origin-opening, initiation site of replication forks and directionality of replication do not change whether the boxes are present at both or at one of the ends of the origin. Replication was bidirectional in all cases. These results imply that DnaA functions similarly from the two ends of the origin. However, origins with DnaA boxes proximal to the origin-opening location opened more efficiently and maintained plasmids at higher copy numbers. Origins with the distal set were inactive unless the adjacent P1 DNA sequences beyond the boxes were included. At either end, phasing of the boxes with respect to the remainder of the origin influenced the copy number. Thus, although the boxes can be at either end, their precise context is critical for efficient origin function.
Collapse
Affiliation(s)
- K Park
- Laboratory of Biochemistry, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | | |
Collapse
|
11
|
Park K, Mukhopadhyay S, Chattoraj DK. Requirements for and regulation of origin opening of plasmid P1. J Biol Chem 1998; 273:24906-11. [PMID: 9733797 DOI: 10.1074/jbc.273.38.24906] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Origin opening is essential for the initiation of DNA replication in the theta mode and requires binding of initiator proteins. Using reactivity to KMnO4 in vivo as an assay, we find that, like initiation, origin opening of the Escherichia coli plasmid P1 requires the host initiators DnaA and HU and the plasmid-encoded initiator RepA. The ability to detect opening at the P1ori in vivo allowed us to study this activity at various copy numbers in chimeric replicons. The opening was prevented when the P1ori was cloned in high copy vectors or when excess RepA binding sites (iterons) were provided in trans. However, when RepA supply was also increased, the opening was efficient. A further increase in RepA prevented opening. Replication of an incoming P1 under these conditions correlated with opening. These results demonstrate that initiation is possible even at abnormally high origin concentrations and that oversupply of RepA, relative to iterons, can prevent replication by blocking origin opening. It appears that plasmid overreplication can be prevented either by limiting RepA or by accumulating RepA at a rate higher than that of the origin.
Collapse
Affiliation(s)
- K Park
- Laboratory of Biochemistry, NCI, National Institutes of Health, Bethesda, Maryland 20892-4255, USA
| | | | | |
Collapse
|
12
|
Skovgaard O, Olesen K, Wright A. The central lysine in the P-loop motif of the Escherichia coli DnaA protein is essential for initiating DNA replication from the chromosomal origin, oriC, and the F factor origin, oriS, but is dispensable for initiation from the P1 plasmid origin, oriR. Plasmid 1998; 40:91-9. [PMID: 9735311 DOI: 10.1006/plas.1998.1349] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Escherichia coli DnaA protein is essential for initiation of DNA replication from the chromosomal origin, oriC, and from certain plasmid origins such as oriR of P1, oriS of F, and ori of pSCS101. The DnaA protein binds ATP with high affinity and contains a P-loop motif assumed to be the binding site. Three mutations in the E. coli dnaA gene were constructed by oligonucleotide-directed mutagenesis that changed amino acids in the P-loop. A DnaA protein, K178T, in which the central lysine was changed to the smaller amino acid threonine, was able to initiate DNA replication from P1 oriR, but was unable to initiate replication from E. coli oriC or F oriS in vivo. Mutant and wild-type DnaA proteins were overexpressed, partially purified, and tested for replication activity in vitro. The K178T DnaA protein could initiate replication from oriR, although with a decreased activity compared to the wild-type DnaA protein. No replication activity was detected for this mutant protein from oriC. The different responses of the oriR and oriC replicons to the K178T DnaA protein indicate that the role of DnaA is different in the two systems.
Collapse
Affiliation(s)
- O Skovgaard
- Department of Life Sciences and Chemistry, Roskilde University, Denmark.
| | | | | |
Collapse
|
13
|
del Solar G, Giraldo R, Ruiz-Echevarría MJ, Espinosa M, Díaz-Orejas R. Replication and control of circular bacterial plasmids. Microbiol Mol Biol Rev 1998; 62:434-64. [PMID: 9618448 PMCID: PMC98921 DOI: 10.1128/mmbr.62.2.434-464.1998] [Citation(s) in RCA: 704] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
An essential feature of bacterial plasmids is their ability to replicate as autonomous genetic elements in a controlled way within the host. Therefore, they can be used to explore the mechanisms involved in DNA replication and to analyze the different strategies that couple DNA replication to other critical events in the cell cycle. In this review, we focus on replication and its control in circular plasmids. Plasmid replication can be conveniently divided into three stages: initiation, elongation, and termination. The inability of DNA polymerases to initiate de novo replication makes necessary the independent generation of a primer. This is solved, in circular plasmids, by two main strategies: (i) opening of the strands followed by RNA priming (theta and strand displacement replication) or (ii) cleavage of one of the DNA strands to generate a 3'-OH end (rolling-circle replication). Initiation is catalyzed most frequently by one or a few plasmid-encoded initiation proteins that recognize plasmid-specific DNA sequences and determine the point from which replication starts (the origin of replication). In some cases, these proteins also participate directly in the generation of the primer. These initiators can also play the role of pilot proteins that guide the assembly of the host replisome at the plasmid origin. Elongation of plasmid replication is carried out basically by DNA polymerase III holoenzyme (and, in some cases, by DNA polymerase I at an early stage), with the participation of other host proteins that form the replisome. Termination of replication has specific requirements and implications for reinitiation, studies of which have started. The initiation stage plays an additional role: it is the stage at which mechanisms controlling replication operate. The objective of this control is to maintain a fixed concentration of plasmid molecules in a growing bacterial population (duplication of the plasmid pool paced with duplication of the bacterial population). The molecules involved directly in this control can be (i) RNA (antisense RNA), (ii) DNA sequences (iterons), or (iii) antisense RNA and proteins acting in concert. The control elements maintain an average frequency of one plasmid replication per plasmid copy per cell cycle and can "sense" and correct deviations from this average. Most of the current knowledge on plasmid replication and its control is based on the results of analyses performed with pure cultures under steady-state growth conditions. This knowledge sets important parameters needed to understand the maintenance of these genetic elements in mixed populations and under environmental conditions.
Collapse
Affiliation(s)
- G del Solar
- Centro de Investigaciones Biológicas, CSIC, E-28006 Madrid, Spain
| | | | | | | | | |
Collapse
|
14
|
Abstract
The Escherichia coli DnaA protein is a sequence-specific DNA binding protein that promotes the initiation of replication of the bacterial chromosome, and of several plasmids including pSC101. Twenty-eight novel missense mutations of the E. coli dnaA gene were isolated by selecting for their inability to replicate a derivative of pSC101 when contained in a lambda vector. Characterization of these as well as seven novel nonsense mutations and one in-frame deletion mutation are described here. Results suggest that E. coli DnaA protein contains four functional domains. Mutations that affect residues in the P-loop or Walker A motif thought to be involved in ATP binding identify one domain. The second domain maps to a region near the C terminus and is involved in DNA binding. The function of the third domain that maps near the N terminus is unknown but may be involved in the ability of DnaA protein to oligomerize. Two alleles encoding different truncated gene products retained the ability to promote replication from the pSC101 origin but not oriC, identifying a fourth domain dispensable for replication of pSC101 but essential for replication from the bacterial chromosomal origin, oriC.
Collapse
Affiliation(s)
- M D Sutton
- Department of Biochemistry, Michigan State University, East Lansing 48824-1319, USA
| | | |
Collapse
|
15
|
Chattoraj DK, Schneider TD. Replication control of plasmid P1 and its host chromosome: the common ground. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1997; 57:145-86. [PMID: 9175433 DOI: 10.1016/s0079-6603(08)60280-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- D K Chattoraj
- Laboratory of Biochemistry NCI, NIH Bethesda, Maryland 20892, USA
| | | |
Collapse
|
16
|
Eliasson A, Nordström K, Bernander R. Escherichia coli strains in which chromosome replication is controlled by a P1 or F replicon integrated into oriC. Mol Microbiol 1996; 20:1013-23. [PMID: 8809754 DOI: 10.1111/j.1365-2958.1996.tb02542.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We report the construction of intP1 and intFs strains, in which the basic replicon from either plasmid P1 or plasmid F (oriS) has been integrated in both orientations into the origin of replication, oriC, of the Escherichia coli chromosome. In these strains, oriC is no longer functional and chromosome-replication is instead controlled by the integrated plasmid replicon. The strains were viable, showing that the deviation from normal chromosome-replication control was not large enough to prohibit cell survival. The strains showed a broader cell-size distribution than a wild-type strain and were more filamentous in rich than in minimal media, although cells of wild-type size were also present. Cells which contained aberrantly shaped or aberrantly distributed nucleoids were also observed. Marker-frequency analysis indicated that chromosome replication was predominantly bidirectional in both intFs strains. In the intP1 strains, the degree of bidirectionality depended upon the orientation of the integrated replicon.
Collapse
Affiliation(s)
- A Eliasson
- Department of Microbiology, Uppsala University, Sweden
| | | | | |
Collapse
|
17
|
Eliasson A, Bernander R, Nordström K. Random initiation of replication of plasmids P1 and F (oriS) when integrated into the Escherichia coli chromosome. Mol Microbiol 1996; 20:1025-32. [PMID: 8809755 DOI: 10.1111/j.1365-2958.1996.tb02543.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have constructed intP1 and intFs strains of Escherichia coli in which the basic replicons of either plasmid P1 or plasmid F (oriS) were integrated into an inactivated oriC, such that chromosome replication is controlled by the integrated plasmid replicon. In this study, we have further analysed these strains, and density-shift experiments revealed that chromosome replication occurred randomly during the cell cycle. Flow-cytometry analyses of exponentially growing populations supported this conclusion, and also showed that the DNA/mass ratio of the strains decreased with increasing growth rate. Flow cytometry of exponentially growing cultures treated with rifampicin demonstrated that initiation of replication was uncoordinated in cells containing multiple replication origins.
Collapse
Affiliation(s)
- A Eliasson
- Department of Microbiology, Uppsala University, Sweden
| | | | | |
Collapse
|
18
|
Sutton MD, Kaguni JM. Novel alleles of the Escherichia coli dnaA gene are defective in replication of pSC101 but not of oriC. J Bacteriol 1995; 177:6657-65. [PMID: 7592447 PMCID: PMC177522 DOI: 10.1128/jb.177.22.6657-6665.1995] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Five novel alleles of the Escherichia coli dnaA gene that were temperature sensitive in maintenance of pSC101, a plasmid that is dependent on this gene for replication, were isolated. Nucleotide sequence analysis revealed that four of the five alleles arose from single base substitutions, whereas the fifth contained three base substitutions, two of which were silent. Whereas all five alleles were temperature sensitive in vivo for pSC101 maintenance, genetic and biochemical characterization indicated that only two were defective in replication from the chromosomal origin, oriC. As previously characterized mutations are defective in replication for both pSC101 and oriC, the dnaA mutations specifically defective in pSC101 maintenance represent a novel class. We speculate that one or more of these pSC101-specific mutants are defective in interaction with pSC101 RepA protein, which is also required for initiation of plasmid DNA replication.
Collapse
Affiliation(s)
- M D Sutton
- Department of Biochemistry, Michigan State University, East Lansing 48824-1319, USA
| | | |
Collapse
|
19
|
Abstract
The replication of staphylococcal plasmid pT181 is indirectly controlled at the level of the synthesis of its replication initiator, RepC. As a result, high levels of RepC synthesis per plasmid copy were expected to lead to autocatalytic plasmid replication, which secondarily would affect host physiology. Surprisingly, RepC overexpression was found to lead to a rapid decrease in pT181 copy number and replication rate. These effects depended on the ratio of RepC to the pT181 replication origin rather than on the absolute amount of RepC in the cell. In a wild-type host, the increase in RepC/plasmid copy also inhibited chromosome replication and cell division. The changes in host physiology did not play any role in the decrease in pT181 replication caused by RepC overexpression since pT181 replication responded in the same way in a host mutant insensitive to the effects of RepC induction. These results suggest that pT181, the prototype of an entire class of plasmids from Gram-positive bacteria, responds to overexpression of its replication initiator by a decrease in plasmid replication.
Collapse
Affiliation(s)
- S Iordanescu
- Public Health Research Institute, New York, New York 10016, USA
| |
Collapse
|
20
|
Marszalek J, Kaguni J. DnaA protein directs the binding of DnaB protein in initiation of DNA replication in Escherichia coli. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37627-5] [Citation(s) in RCA: 161] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
21
|
McCarty JS, Walker GC. DnaK mutants defective in ATPase activity are defective in negative regulation of the heat shock response: expression of mutant DnaK proteins results in filamentation. J Bacteriol 1994; 176:764-80. [PMID: 8300530 PMCID: PMC205114 DOI: 10.1128/jb.176.3.764-780.1994] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Site-directed mutagenesis has previously been used to construct Escherichia coli dnaK mutants encoding proteins that are altered at the site of in vitro phosphorylation (J. S. McCarty and G. C. Walker, Proc. Natl. Acad. Sci. USA 88:9513-9517, 1991). These mutants are unable to autophosphorylate and are severely defective in ATP hydrolysis. These mutant dnaK genes were placed under the control of the lac promoter and were found not to complement the deficiencies of a delta dnaK mutant in negative regulation of the heat shock response. A decrease in the expression of DnaK and DnaJ below their normal levels at 30 degrees C was found to result in increased expression of GroEL. The implications of these results for DnaK's role in the negative regulation of the heat shock response are discussed. Evidence is also presented indicating the existence of a 70-kDa protein present in a delta dnaK52 mutant that cross-reacts with antibodies raised against DnaK. Derivatives of the dnaK+ E. coli strain MC4100 expressing the mutant DnaK proteins filamented severely at temperatures equal to or greater than 34 degrees C. In the dnaK+ E. coli strain W3110, expression of these mutant proteins caused extreme filamentation even at 30 degrees C. Together with other observations, these results suggest that DnaK may play a direct role in the septation pathway, perhaps via an interaction with FtsZ. Although delta dnaK52 derivatives of strain MC4100 filament extensively, a level of underexpression of DnaK and DnaJ that results in increased expression of the other heat shock proteins did not result in filamentation. The delta dnaK52 allele could be transduced successfully, at temperatures of up to 45 degrees C, into strains carrying a plasmid expressing dnaK+ dnaJ+, although the yield of transductants decreased above 37 degrees C. In contrast, with a strain that did not carry a plasmid expressing dnaK+ dnaJ+, the yield of delta dnaK52 transductants decreased extremely sharply between 39 and 40 degrees C, suggesting that DnaK and DnaJ play one or more roles critical for growth at temperatures of 40 degrees C or greater.
Collapse
Affiliation(s)
- J S McCarty
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | |
Collapse
|
22
|
Papp PP, Chattoraj DK. Missing-base and ethylation interference footprinting of P1 plasmid replication initiator. Nucleic Acids Res 1994; 22:152-7. [PMID: 8121798 PMCID: PMC307765 DOI: 10.1093/nar/22.2.152] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
RepA, the replication initiator protein of plasmid P1, binds to specific 19 bp sequences on the plasmid DNA. Earlier footprinting studies with dimethylsulfate identified the guanines that contact RepA through the major groove of DNA. In this study, base elimination was used to identify the contribution of all four bases to the binding reaction. Depurination and depyrimidation of any base in the neighborhood of the contacting guanines was found to decrease RepA binding. These results are consistent with the notion that RepA contacts bases of two consecutive major grooves on the same face of DNA. We also observed that depurination but not methylation of three guanines (G3, G8 and G9) affected binding. We identified the DNA phosphate groups (3 in the top strand, one of which mapped between G8 and G9, and 4 in the bottom strand, one of which was adjacent to C3) that strongly interfered with RepA binding upon ethylation. These results indicate that certain bases (e.g. G3, G8 and G9) may not contact RepA directly but contribute to base and backbone contacts by maintaining proper structure of the binding site.
Collapse
Affiliation(s)
- P P Papp
- Laboratory of Biochemistry, National Cancer Institute, NIH, Bethesda, MD 20892
| | | |
Collapse
|
23
|
Spiers AJ, Bhana N, Bergquist PL. Regulatory interactions between RepA, an essential replication protein, and the DNA repeats of RepFIB from plasmid P307. J Bacteriol 1993; 175:4016-24. [PMID: 8320218 PMCID: PMC204830 DOI: 10.1128/jb.175.13.4016-4024.1993] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The control of RepFIB replication appears to rely on the interaction between an initiator protein (RepA) and two sets of DNA repeat elements located on either side of the repA gene (BCDD'D" and EFGHIJ). In vivo genetic tests demonstrate that the BCDD'D" repeats form part of the origin of replication, while some of the downstream repeat elements (HIJ) are involved in the sensing and setting of plasmid copy number. RepA DNA binding to these groups of repeats has been investigated in vivo by utilizing the fact that the replicon contains three active promoters (orip, repAp, and EFp), one of which has previously been shown to control the expression of repA (repAp). All three promoters are closely associated with the repeat elements flanking repA, and an investigation using lacZ or cml gene fusions has demonstrated that RepA expressed in trans is able to repress each promoter. However, these assays suggest that the transcriptional responses of orip and repAp to RepA repression are significantly different, despite the fact that both promoters are embedded within the BCDD'D" repeat elements. Extra copies of the BCDD'D" or EFG repeats in trans have no effect on RepA repression of repAp embedded in a second copy of the BCDD'D" repeats, but copies of the HIJ or EFGHIJ repeats are able to derepress repAp, suggesting that there is a fundamental difference between RepA-BCDD'D" or -HIJ complexes and RepA-EFG or -EFGHIJ complexes.
Collapse
Affiliation(s)
- A J Spiers
- Centre for Gene Technology, University of Auckland, New Zealand
| | | | | |
Collapse
|
24
|
Sozhamannan S, Chattoraj DK. Heat shock proteins DnaJ, DnaK, and GrpE stimulate P1 plasmid replication by promoting initiator binding to the origin. J Bacteriol 1993; 175:3546-55. [PMID: 8501058 PMCID: PMC204755 DOI: 10.1128/jb.175.11.3546-3555.1993] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Binding of the P1-encoded protein RepA to the origin of P1 plasmid replication is essential for initiation of DNA replication and for autoregulatory repression of the repA promoter. Previous studies have shown defects in both initiation and repression in hosts lacking heat shock proteins DnaJ, DnaK, and GrpE and have suggested that these proteins play a role in the RepA-DNA binding required for initiation and repression. In this study, using in vivo dimethyl sulfate footprinting, we have confirmed the roles of the three heat shock proteins in promoting RepA binding to the origin. The defects in both activities could be suppressed by increasing the concentration of wild-type RepA over the physiological level. We also isolated RepA mutants that were effective initiators and repressors without requiring the heat shock proteins. These data suggest that the heat shock proteins facilitate both repression and initiation by promoting only the DNA-binding activity of RepA. In a similar plasmid, F, initiator mutants that confer heat shock protein independence for replication were also found, but they were defective for repression. We propose that the initiator binding involved in repression and the initiator binding involved in initiation are similar in P1 but different in F.
Collapse
Affiliation(s)
- S Sozhamannan
- Laboratory of Biochemistry, National Cancer Institute, Bethesda, Maryland 20892
| | | |
Collapse
|
25
|
Banerjee SK, Luck BT, Kim HY, Iyer VN. Three clustered origins of replication in a promiscuous-plasmid replicon and their differential use in a PolA+ strain and a delta PolA strain of Escherichia coli K-12. J Bacteriol 1992; 174:8139-43. [PMID: 1459961 PMCID: PMC207553 DOI: 10.1128/jb.174.24.8139-8143.1992] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A 1,197-bp region of the broad-host-range plasmid pCU1 is adequate for its replication. Analysis of replicating molecules containing this region reveals three clustered origins of vegetative replication and replication proceeds bidirectionally from each in a theta mode. In an Escherichia coli polymerase I deletion mutant, utilization of one of these three origins was not detected. The potentiality for origin utilization may therefore be a determinant of replicon host range.
Collapse
Affiliation(s)
- S K Banerjee
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
26
|
Wickner S, Hoskins J, McKenney K. Monomerization of RepA dimers by heat shock proteins activates binding to DNA replication origin. Proc Natl Acad Sci U S A 1991; 88:7903-7. [PMID: 1896443 PMCID: PMC52413 DOI: 10.1073/pnas.88.18.7903] [Citation(s) in RCA: 146] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
DnaK is a major heat shock protein of Escherichia coli and the homolog of hsp70 in eukaryotes. We demonstrate the mechanism by which DnaK and another heat shock protein, DnaJ, render the plasmid P1 initiator RepA 100-fold more active for binding to the P1 origin of replication. Activation is the conversion of RepA dimers into monomers in an ATP-dependent reaction and the monomer form binds with high affinity to oriP1 DNA. Reversible chemical denaturants also convert RepA dimers to monomers and simultaneously activate oriP1 DNA binding. Increasing protein concentration converts monomers to dimers and deactivates RepA. Based on our data and previous work, we present a model for heat shock protein action under normal and stress conditions.
Collapse
Affiliation(s)
- S Wickner
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | | | |
Collapse
|
27
|
Replication of plasmid R6K origin gamma in vitro. Dependence on dual initiator proteins and inhibition by transcription. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)98515-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
28
|
Abstract
The core of the P1 plasmid replication origin consists of a series of 7-bp repeats and a G+C-rich stretch. Methylation of the GATC sequences in the repeats is essential. Forty different single-base mutations in the region were isolated and assayed for origin function. A single-base change within any 7-bp repeat could block the origin, irrespective of whether GATC bases were affected. The repeats themselves were critical, but the short intervals between them were not. Mutations in the G+C-rich region showed it to be a spacer whose exact length is important but whose sequence can vary considerably. It maintains a precise distance between the 7-bp repeats and binding sites for the P1 RepA initiator protein. It may also serve as a clamp to limit strand separation during initiation.
Collapse
Affiliation(s)
- T Brendler
- Laboratory of Chromosome Biology, NCI-Frederick Cancer Research and Development Center, Maryland 21702
| | | | | |
Collapse
|
29
|
Wickner S, Hoskins J, McKenney K. Function of DnaJ and DnaK as chaperones in origin-specific DNA binding by RepA. Nature 1991; 350:165-7. [PMID: 2005967 DOI: 10.1038/350165a0] [Citation(s) in RCA: 165] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Heat-shock proteins are normal constituents of cells whose synthesis is increased on exposure to various forms of stress. They are interesting because of their ubiquity and high conservation during evolution. Two families of heat-shock proteins, hsp60s and hsp70s, have been implicated in accelerating protein folding and oligomerization and also in maintaining proteins in an unfolded state, thus facilitating membrane transport. The Escherichia coli hsp70 analogue, DnaK, and two other heat-shock proteins, DnaJ and GrpE, are required for cell viability at high temperatures and are involved in DNA replication of phage lambda and plasmids P1 and F. These three proteins are involved in replication in vitro of P1 DNA along with many host replication proteins and the P1 RepA initiator protein. RepA exists in a stable protein complex with DnaJ containing a dimer each of RepA and DnaJ. We report here that DnaK and DnaJ mediate an alteration in the P1 initiator protein, rendering it much more active for oriP1 DNA binding.
Collapse
Affiliation(s)
- S Wickner
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | | | | |
Collapse
|
30
|
Abstract
The par locus is a segment of pSC101 that has been identified as a cis-acting determinant of plasmid stability. We show that par also determines copy number and must, therefore, play a role in plasmid replication. The segregation defect, but not the copy-number reduction, of par- replication origins is completely suppressed by a short sequence from the bacteriophage lambda gene O which is present in plasmid pKO-4. Thus, replication and segregation functions are separable from each other.
Collapse
Affiliation(s)
- D Manen
- Department of Molecular Biology, University of Geneva, Switzerland
| | | | | |
Collapse
|
31
|
The ABC-primosome. A novel priming system employing dnaA, dnaB, dnaC, and primase on a hairpin containing a dnaA box sequence. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)77233-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
32
|
Abeles AL, Reaves LD, Austin SJ. A single DnaA box is sufficient for initiation from the P1 plasmid origin. J Bacteriol 1990; 172:4386-91. [PMID: 2165477 PMCID: PMC213265 DOI: 10.1128/jb.172.8.4386-4391.1990] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The P1 plasmid replication origin requires the host DnaA protein for function. Two DnaA-binding boxes lie in tandem within the previously defined minimal origin, constituting its left boundary. Three more boxes lie 200 base pairs to the right of these, in the leader region for the P1 repA gene. We show that either set alone is active for origin function. One of the two origin boxes is relatively inactive. Constructs with just one of the five boxes are active for specific origin function as long as the box conforms exactly to the published consensus. This single consensus box is functional when placed either to the left or right of the core origin sequences. The flexibility shown by this system suggests that the boxes play a role different from those in the host oriC origin, where the number and position of boxes are critical.
Collapse
Affiliation(s)
- A L Abeles
- Laboratory of Chromosome Biology, National Cancer Institute-Frederick Cancer Research and Development Center, Maryland 21701
| | | | | |
Collapse
|
33
|
Muraiso K, Mukhopadhyay G, Chattoraj DK. Location of a P1 plasmid replication inhibitor determinant within the initiator gene. J Bacteriol 1990; 172:4441-7. [PMID: 2198259 PMCID: PMC213273 DOI: 10.1128/jb.172.8.4441-4447.1990] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The P1 plasmid replication initiator protein, RepA, binds to its own promoter and represses transcription efficiently. There are only about 20 RepA dimers present per repA gene. A possible reason for this highly restrained expression became evident when repA expression was increased by using foreign promoters: with fivefold overexpression, the replication rate was diminished, and with 40-fold overexpression, replication was not detectable. The inhibition was P1 specific: growth of Escherichia coli and replication of pSC101, R6K, and mini-F plasmids were not affected. The activity is apparently not from RepA itself. Excess purified RepA did not inhibit replication in vitro. Mutations of the repA translation initiation codon reduced synthesis of the initiator but not the inhibitory activity. Deletion from either the N- or C-terminal ends of repA (28 and 69 codons, respectively, out of the 286-codon open reading frame) affected the initiator but not the inhibitory activity. Further deletions affected both the activities. These results demonstrate that the integrity of the initiator is not required for inhibition, but involvement of an unstable initiator fragment or of initiator mRNA cannot be ruled out.
Collapse
Affiliation(s)
- K Muraiso
- Laboratory of Biochemistry, National Cancer Institute, Bethesda, Maryland 20892
| | | | | |
Collapse
|
34
|
Wickner S, Hoskins J, Chattoraj D, McKenney K. Deletion analysis of the mini-P1 plasmid origin of replication and the role of Escherichia coli DnaA protein. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38443-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
35
|
Wickner SH. Three Escherichia coli heat shock proteins are required for P1 plasmid DNA replication: formation of an active complex between E. coli DnaJ protein and the P1 initiator protein. Proc Natl Acad Sci U S A 1990; 87:2690-4. [PMID: 2181445 PMCID: PMC53756 DOI: 10.1073/pnas.87.7.2690] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
DNA containing the plasmid origin of bacteriophage P1 is replicated in vitro by a protein fraction prepared from uninfected Escherichia coli supplemented with purified P1 RepA protein. It has previously been shown that the reaction required the E. coli DnaA initiator protein, the DnaB helicase, DnaC protein, RNA polymerase, and DNA gyrase. I show here that three E. coli heat shock proteins, DnaJ, DnaK, and GrpE, are directly involved in P1 plasmid replication. Purified DnaJ, DnaK, and GrpE proteins were required to stimulate P1 plasmid ori DNA-dependent replication in in vitro complementation assays in which the host protein fractions were prepared from cells mutated in the corresponding gene. I have also found that the DnaJ and RepA proteins form a complex. This complex exists in crude cell extracts and can be isolated as a molecular species of about 160,000 Da containing one dimer of DnaJ protein and one dimer of RepA. The complex can also be reconstituted by mixing purified DnaJ and RepA proteins. These results imply that the DnaJ-RepA complex, DnaK, and GrpE are directly involved in P1 plasmid replication.
Collapse
Affiliation(s)
- S H Wickner
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
36
|
Abstract
Replication of plasmid deoxyribonucleic acid (DNA) is dependent on three stages: initiation, elongation, and termination. The first stage, initiation, depends on plasmid-encoded properties such as the replication origin and, in most cases, the replication initiation protein (Rep protein). In recent years the understanding of initiation and regulation of plasmid replication in Escherichia coli has increased considerably, but it is only for the ColE1-type plasmids that significant biochemical data about the initial priming reaction of DNA synthesis exist. Detailed models have been developed for the initiation and regulation of ColE1 replication. For other plasmids, such as pSC101, some hypotheses for priming mechanisms and replication initiation are presented. These hypotheses are based on experimental evidence and speculative comparisons with other systems, e.g., the chromosomal origin of E. coli. In most cases, knowledge concerning plasmid replication is limited to regulation mechanisms. These mechanisms coordinate plasmid replication to the host cell cycle, and they also seem to determine the host range of a plasmid. Most plasmids studied exhibit a narrow host range, limited to E. coli and related bacteria. In contrast, some others, such as the IncP plasmid RK2 and the IncQ plasmid RSF1010, are able to replicate in nearly all gram-negative bacteria. This broad host range may depend on the correct expression of the essential rep genes, which may be mediated by a complex regulatory mechanism (RK2) or by the use of different promoters (RSF1010). Alternatively or additionally, owing to the structure of their origin and/or to different forms of their replication initiation proteins, broad-host-range plasmids may adapt better to the host enzymes that participate in initiation. Furthermore, a broad host range can result when replication initiation is independent of host proteins, as is found in the priming reaction of RSF1010.
Collapse
|
37
|
Tilly K, Yarmolinsky M. Participation of Escherichia coli heat shock proteins DnaJ, DnaK, and GrpE in P1 plasmid replication. J Bacteriol 1989; 171:6025-9. [PMID: 2681150 PMCID: PMC210467 DOI: 10.1128/jb.171.11.6025-6029.1989] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Low-copy-number plasmids, such as P1 prophage and the fertility factor F, require a plasmid-encoded replication protein and several host products for replication. Stable maintenance also depends on active partitioning of plasmids into daughter cells. Mini-P1 par+ and par plasmids were found to be destabilized by mutations in the dnaJ, dnaK, and grpE genes of Escherichia coli. The transformation efficiency and stability of mini-F plasmids were also reduced in the mutant strains. These results indicate that heat shock proteins DnaJ, DnaK, and GrpE play roles in the replication of plasmid P1 and probably also in of F.
Collapse
Affiliation(s)
- K Tilly
- Laboratory of Biochemistry, National Cancer Institute, Bethesda, Maryland 20892
| | | |
Collapse
|
38
|
Abstract
The P1 RepA protein appears to play three roles in P1 plasmid replication: acting at the origin both as a specific initiator and as a repressor of transcription, and interacting with the copy-control locus incA to bring about a negative control of initiation. We have used the DNase I footprinting technique to show that RepA binds specifically to repeat units of a 19-base-pair consensus sequence present in both the origin and incA control regions. RNA polymerase was shown to bind to two specific regions within the origin repeats. One of these constitutes the known promoter sequence for the repA gene. We show evidence that the polymerase can be efficiently displaced from the promoter by subsequent RepA binding, thus providing a direct mechanism for RepA autoregulation. Under the conditions used, there were no obvious differences in the affinities of individual repeat sequences for the purified protein.
Collapse
Affiliation(s)
- A L Abeles
- Laboratory of Chromosome Biology, National Cancer Institute-Frederick Cancer Research Facility, Maryland 21701
| | | | | |
Collapse
|
39
|
Pal SK, Chattoraj DK. P1 plasmid replication: initiator sequestration is inadequate to explain control by initiator-binding sites. J Bacteriol 1988; 170:3554-60. [PMID: 3403509 PMCID: PMC211328 DOI: 10.1128/jb.170.8.3554-3560.1988] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The unit-copy plasmid replicon mini-P1 consists of an origin, a gene for an initiator protein, RepA, and a control locus, incA. Both the origin and the incA locus contain repeat sequences that bind RepA. It has been proposed that the incA repeats control replication by sequestering the rate-limiting RepA initiator protein. Here we show that when the concentration of RepA was increased about fourfold beyond its normal physiological level from an inducible source in trans, the copy number of a plasmid carrying the P1 origin increased about eightfold. However, when the origin and a single copy of incA were present in the same plasmid, the copy number did not even double. The failure of an increased supply of RepA to overcome the inhibitory activity of incA is inconsistent with the hypothesis that incA inhibits replications solely by sequestering RepA. We propose that incA, in addition to sequestration, can also restrain replication by causing steric hindrance to the origin function. Our proposal is based on the observation that incA can bind to a RepA-origin complex in vitro.
Collapse
Affiliation(s)
- S K Pal
- Laboratory of Biochemistry, National Cancer Institute, Bethesda, Maryland 20892
| | | |
Collapse
|
40
|
Seufert W, Dobrinski B, Lurz R, Messer W. Functionality of the dnaA protein binding site in DNA replication is orientation-dependent. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)69127-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|