1
|
Berckx F, Nguyen TV, Hilker R, Wibberg D, Battenberg K, Kalinowski J, Berry A, Pawlowski K. Host-dependent specialized metabolism of nitrogen export in actinorhizal nodules induced by diazotrophic Actinomycetota Frankia cluster-2. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1164-1178. [PMID: 39487991 PMCID: PMC11850969 DOI: 10.1093/jxb/erae446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Frankia cluster-2 strains are diazotrophs that engage in root nodule symbiosis with actinorhizal plants of the Cucurbitales and the Rosales. Previous studies have shown that an assimilated nitrogen source, presumably arginine, is exported to the host in nodules of Datisca glomerata (Cucurbitales), while a different metabolite is exported in the nodules of Ceanothus thyrsiflorus (Rosales). To investigate if an assimilated nitrogen form is commonly exported to the host by cluster-2 strains, and which metabolite would be exported in Ceanothus, we analysed gene expression levels, metabolite profiles, and enzyme activities in nodules. We conclude that the export of assimilated nitrogen in symbiosis seems to be a common feature for Frankia cluster-2 strains, but the source of nitrogen is host dependent. The export of assimilated ammonium to the host suggests that 2-oxoglutarate is drawn from the tricarboxylic acid (TCA) cycle at a high rate. This specialized metabolism obviates the need for the reductive branch of the TCA cycle. We found that several genes encoding enzymes of central carbon and nitrogen metabolism were lacking in Frankia cluster-2 genomes: the glyoxylate shunt and succinate semialdehyde dehydrogenase. This led to a linearization of the TCA cycle, and we hypothesized that this could explain the low saprotrophic potential of Frankia cluster-2.
Collapse
Affiliation(s)
- Fede Berckx
- Department of Ecology, Environment and Plant Science, Stockholm University, 106 91 Stockholm, Sweden
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Thanh Van Nguyen
- Department of Ecology, Environment and Plant Science, Stockholm University, 106 91 Stockholm, Sweden
| | - Rolf Hilker
- German Center for Infection Research, Institute for Medical Microbiology, Justus Liebig University Giessen, D-35392 Giessen, Germany
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University, D-33615 Bielefeld, Germany
- Institute of Bio- and Geosciences IBG-5, Computational Metagenomics, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | - Kai Battenberg
- Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, D-33615 Bielefeld, Germany
| | - Alison Berry
- Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Science, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
2
|
Zhao X, Song Y, Wang T, Hua C, Hu R, Shang Y, Shi H, Chen S. Glutamine synthetase and GlnR regulate nitrogen metabolism in Paenibacillus polymyxa WLY78. Appl Environ Microbiol 2023; 89:e0013923. [PMID: 37668407 PMCID: PMC10537745 DOI: 10.1128/aem.00139-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/12/2023] [Indexed: 09/06/2023] Open
Abstract
Paenibacillus polymyxa WLY78, a N2-fixing bacterium, has great potential use as a biofertilizer in agriculture. Recently, we have revealed that GlnR positively and negatively regulates the transcription of the nif (nitrogen fixation) operon (nifBHDKENXhesAnifV) in P. polymyxa WLY78 by binding to two loci of the nif promoter according to nitrogen availability. However, the regulatory mechanisms of nitrogen metabolism mediated by GlnR in the Paenibacillus genus remain unclear. In this study, we have revealed that glutamine synthetase (GS) and GlnR in P. polymyxa WLY78 play a key role in the regulation of nitrogen metabolism. P. polymyxa GS (encoded by glnA within glnRA) and GS1 (encoded by glnA1) belong to distinct groups: GSI-α and GSI-β. Both GS and GS1 have the enzyme activity to convert NH4+ and glutamate into glutamine, but only GS is involved in the repression by GlnR. GlnR represses transcription of glnRA under excess nitrogen, while it activates the expression of glnA1 under nitrogen limitation. GlnR simultaneously activates and represses the expression of amtBglnK and gcvH in response to nitrogen availability. Also, GlnR regulates the expression of nasA, nasD1D2, nasT, glnQHMP, and glnS. IMPORTANCE In this study, we have revealed that Paenibacillus polymyxa GlnR uses multiple mechanisms to regulate nitrogen metabolism. GlnR activates or represses or simultaneously activates and inhibits the transcription of nitrogen metabolism genes in response to nitrogen availability. The multiple regulation mechanisms employed by P. polymyxa GlnR are very different from Bacillus subtilis GlnR which represses nitrogen metabolism under excess nitrogen. Both GS encoded by glnA within the glnRA operon and GS1 encoded by glnA1 in P. polymyxa WLY78 are involved in ammonium assimilation, but only GS is required for regulating GlnR activity. The work not only provides significant insight into understanding the interplay of GlnR and GS in nitrogen metabolism but also provides guidance for improving nitrogen fixation efficiency by modulating nitrogen metabolism.
Collapse
Affiliation(s)
- Xiyun Zhao
- Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yi Song
- Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tianshu Wang
- Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chongchong Hua
- Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Rui Hu
- Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yimin Shang
- Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Haowen Shi
- Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Sanfeng Chen
- Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Pujic P, Carro L, Fournier P, Armengaud J, Miotello G, Dumont N, Bourgeois C, Saupin X, Jame P, Selak GV, Alloisio N, Normand P. Frankia alni Carbonic Anhydrase Regulates Cytoplasmic pH of Nitrogen-Fixing Vesicles. Int J Mol Sci 2023; 24:ijms24119162. [PMID: 37298114 DOI: 10.3390/ijms24119162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
A phyloprofile of Frankia genomes was carried out to identify those genes present in symbiotic strains of clusters 1, 1c, 2 and 3 and absent in non-infective strains of cluster 4. At a threshold of 50% AA identity, 108 genes were retrieved. Among these were known symbiosis-associated genes such as nif (nitrogenase), and genes which are not know as symbiosis-associated genes such as can (carbonic anhydrase, CAN). The role of CAN, which supplies carbonate ions necessary for carboxylases and acidifies the cytoplasm, was thus analyzed by staining cells with pH-responsive dyes; assaying for CO2 levels in N-fixing propionate-fed cells (that require a propionate-CoA carboxylase to yield succinate-CoA), fumarate-fed cells and N-replete propionate-fed cells; conducting proteomics on N-fixing fumarate and propionate-fed cells and direct measurement of organic acids in nodules and in roots. The interiors of both in vitro and nodular vesicles were found to be at a lower pH than that of hyphae. CO2 levels in N2-fixing propionate-fed cultures were lower than in N-replete ones. Proteomics of propionate-fed cells showed carbamoyl-phosphate synthase (CPS) as the most overabundant enzyme relative to fumarate-fed cells. CPS combines carbonate and ammonium in the first step of the citrulline pathway, something which would help manage acidity and NH4+. Nodules were found to have sizeable amounts of pyruvate and acetate in addition to TCA intermediates. This points to CAN reducing the vesicles' pH to prevent the escape of NH3 and to control ammonium assimilation by GS and GOGAT, two enzymes that work in different ways in vesicles and hyphae. Genes with related functions (carboxylases, biotin operon and citrulline-aspartate ligase) appear to have undergone decay in non-symbiotic lineages.
Collapse
Affiliation(s)
- Petar Pujic
- Ecologie Microbienne, Centre National de la Recherche Scientifique UMR 5557, Université de Lyon, Université Claude Bernard Lyon I, INRAE, UMRA1418, Cedex, 69622 Villeurbanne, France
| | - Lorena Carro
- Ecologie Microbienne, Centre National de la Recherche Scientifique UMR 5557, Université de Lyon, Université Claude Bernard Lyon I, INRAE, UMRA1418, Cedex, 69622 Villeurbanne, France
- Departamento de Microbiología y Genética, Facultad de CC Agrarias y Ambientales, Universidad de Salamanca, Plaza Doctores de la Reina, 37007 Salamanca, Spain
| | - Pascale Fournier
- Ecologie Microbienne, Centre National de la Recherche Scientifique UMR 5557, Université de Lyon, Université Claude Bernard Lyon I, INRAE, UMRA1418, Cedex, 69622 Villeurbanne, France
| | - Jean Armengaud
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris Saclay, CEA, INRAE, 30200 Bagnols-sur-Cèze, France
| | - Guylaine Miotello
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris Saclay, CEA, INRAE, 30200 Bagnols-sur-Cèze, France
| | | | - Caroline Bourgeois
- Institut des Sciences Analytiques, UMR 5280, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Xavier Saupin
- Institut des Sciences Analytiques, UMR 5280, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Patrick Jame
- Institut des Sciences Analytiques, UMR 5280, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Gabriela Vuletin Selak
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Nicole Alloisio
- Ecologie Microbienne, Centre National de la Recherche Scientifique UMR 5557, Université de Lyon, Université Claude Bernard Lyon I, INRAE, UMRA1418, Cedex, 69622 Villeurbanne, France
| | - Philippe Normand
- Ecologie Microbienne, Centre National de la Recherche Scientifique UMR 5557, Université de Lyon, Université Claude Bernard Lyon I, INRAE, UMRA1418, Cedex, 69622 Villeurbanne, France
| |
Collapse
|
4
|
Frieg B, Görg B, Gohlke H, Häussinger D. Glutamine synthetase as a central element in hepatic glutamine and ammonia metabolism: novel aspects. Biol Chem 2021; 402:1063-1072. [PMID: 33962502 DOI: 10.1515/hsz-2021-0166] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/22/2021] [Indexed: 12/27/2022]
Abstract
Glutamine synthetase (GS) in the liver is expressed in a small perivenous, highly specialized hepatocyte population and is essential for the maintenance of low, non-toxic ammonia levels in the organism. However, GS activity can be impaired by tyrosine nitration of the enzyme in response to oxidative/nitrosative stress in a pH-sensitive way. The underlying molecular mechanism as investigated by combined molecular simulations and in vitro experiments indicates that tyrosine nitration can lead to a fully reversible and pH-sensitive regulation of protein function. This approach was also used to understand the functional consequences of several recently described point mutations of human GS with clinical relevance and to suggest an approach to restore impaired GS activity.
Collapse
Affiliation(s)
- Benedikt Frieg
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | - Boris Görg
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Holger Gohlke
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
5
|
Bolay P, Muro-Pastor MI, Florencio FJ, Klähn S. The Distinctive Regulation of Cyanobacterial Glutamine Synthetase. Life (Basel) 2018; 8:E52. [PMID: 30373240 PMCID: PMC6316151 DOI: 10.3390/life8040052] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/23/2018] [Accepted: 10/25/2018] [Indexed: 12/02/2022] Open
Abstract
Glutamine synthetase (GS) features prominently in bacterial nitrogen assimilation as it catalyzes the entry of bioavailable nitrogen in form of ammonium into cellular metabolism. The classic example, the comprehensively characterized GS of enterobacteria, is subject to exquisite regulation at multiple levels, among them gene expression regulation to control GS abundance, as well as feedback inhibition and covalent modifications to control enzyme activity. Intriguingly, the GS of the ecologically important clade of cyanobacteria features fundamentally different regulatory systems to those of most prokaryotes. These include the interaction with small proteins, the so-called inactivating factors (IFs) that inhibit GS linearly with their abundance. In addition to this protein interaction-based regulation of GS activity, cyanobacteria use alternative elements to control the synthesis of GS and IFs at the transcriptional level. Moreover, cyanobacteria evolved unique RNA-based regulatory mechanisms such as glutamine riboswitches to tightly tune IF abundance. In this review, we aim to outline the current knowledge on the distinctive features of the cyanobacterial GS encompassing the overall control of its activity, sensing the nitrogen status, transcriptional and post-transcriptional regulation, as well as strain-specific differences.
Collapse
Affiliation(s)
- Paul Bolay
- Helmholtz Centre for Environmental Research, Department of Solar Materials, Permoserstrasse 15, D-04318 Leipzig, Germany.
| | - M Isabel Muro-Pastor
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Américo Vespucio 49, E-41092 Seville, Spain.
| | - Francisco J Florencio
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Américo Vespucio 49, E-41092 Seville, Spain.
| | - Stephan Klähn
- Helmholtz Centre for Environmental Research, Department of Solar Materials, Permoserstrasse 15, D-04318 Leipzig, Germany.
| |
Collapse
|
6
|
Singh SS, Singh A, Srivastava A, Singh P, Singh A, Mishra AK. Characterization of frankial strains isolated from Hippophae salicifolia D. Don, based on physiological, SDS–PAGE of whole cell proteins and RAPD PCR analyses. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0260-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Fink D, Weissschuh N, Reuther J, Wohlleben W, Engels A. Two transcriptional regulators GlnR and GlnRII are involved in regulation of nitrogen metabolism in Streptomyces coelicolor A3(2). Mol Microbiol 2002; 46:331-47. [PMID: 12406212 DOI: 10.1046/j.1365-2958.2002.03150.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Streptomyces coelicolor has an unusually large arsenal of glutamine synthetase (GS) enzymes: a prokaryotic GSI-beta-subtype enzyme (encoded by glnA), three annotated glnA-like genes of the GSI-alpha-subtype and a eukaryote-like glutamine synthetase II (encoded by glnII). Under all tested conditions, GSI was found to represent the dominant glutamine synthetase activity. A significant heat-labile GSII activity, which is very low to undetectable in liquid-grown cultures, was only detected in morphologically differentiating S. coelicolor cultures. Analysis of glnA and glnII transcription by S1 nuclease mapping and egfp fusions revealed that, on nitrogen-limiting solid medium, glnII but not glnA expression is upregulated. An OmpR-like regulator protein, GlnR, has previously been implicated in transcriptional control of glnA expression. Gel retardation analysis revealed that GlnR is a DNA-binding protein, which interacts with the glnA promoter. It is not autoregulatory and does not bind to the upstream regions of the glnA-like genes of the alpha-subfamily, nor to the glnII promoter in vitro. A second GlnR target was identified upstream of the amtB gene, encoding a putative ammonium transporter. amtB forms an operon with glnK (encoding a PII protein) and glnD (encoding a putative PII nucleotidylyltransferase) shown by S1 nuclease protection analysis and reverse transcription-polymerase chain reaction (RT-PCR). An amtB and glnA promoter alignment revealed a putative GlnR operator structure. Downstream of glnII, a gene encoding for another OmpR-like regulator, GlnRII, was identified, with strong similarity to GlnR. Gel shifts with GlnRII showed that the promoters recognized by GlnR are also targets of GlnRII. However, GlnRII also interacted with the glnII upstream region. Only inactivation of glnR resulted in a glutamine auxotrophic phenotype, whereas the glnRII mutant can grow on minimal medium without glutamine.
Collapse
Affiliation(s)
- D Fink
- Mikrobiologie/Biotechnologie, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | | | | | | | | |
Collapse
|
8
|
Fink D, Falke D, Wohlleben W, Engels A. Nitrogen metabolism in Streptomyces coelicolor A3(2): modification of glutamine synthetase I by an adenylyltransferase. MICROBIOLOGY (READING, ENGLAND) 1999; 145 ( Pt 9):2313-2322. [PMID: 10517584 DOI: 10.1099/00221287-145-9-2313] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
An internal adenylyltransferase gene (glnE) fragment from Streptomyces coelicolor was amplified using heterologous PCR primers derived from consensus motifs. The sequence had significant similarity to bacterial glnE genes, and included a motif typical of the C-terminal adenylyltransferase domain of glnE. glnE from S. coelicolor lies on the Asel-C fragment of the chromosome and is localized near glnA (encoding glutamine synthetase I, GSI) and glnII (encoding GSII). To analyse the function of glnE in S. coelicolor, glnE (S. coelicolor E4) and glnA (S. coelicolor HT107) gene replacement mutants were constructed. The GSI activity of the glnE mutant was not down-regulated after an ammonium shock. However, the GSI activity of the wild-type cells decreased to 60% of the original activity. The glnA mutant is not glutamine auxotrophic, but in the gamma-glutamyltransferase assay no GSI activity was detected in unshifted and shifted HT107 cells. By snake venom phosphodiesterase treatment the GSI activity in the wild-type can be reconstituted, whereas no alteration is observed in the E4 mutant. Additionally, the loss of short-term GSI regulation in the E4 mutant was accompanied by an increased glutamine:glutamate ratio.
Collapse
Affiliation(s)
- D Fink
- Mikrobiologie/Biotechnologie, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany1
| | - D Falke
- Mikrobiologie/Biotechnologie, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany1
| | - W Wohlleben
- Mikrobiologie/Biotechnologie, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany1
| | - A Engels
- Mikrobiologie/Biotechnologie, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany1
| |
Collapse
|
9
|
Abstract
Since the late 1970s, determining the phylogenetic relationships among the contemporary domains of life, the Archaea (archaebacteria), Bacteria (eubacteria), and Eucarya (eukaryotes), has been central to the study of early cellular evolution. The two salient issues surrounding the universal tree of life are whether all three domains are monophyletic (i.e., all equivalent in taxanomic rank) and where the root of the universal tree lies. Evaluation of the status of the Archaea has become key to answering these questions. This review considers our cumulative knowledge about the Archaea in relationship to the Bacteria and Eucarya. Particular attention is paid to the recent use of molecular phylogenetic approaches to reconstructing the tree of life. In this regard, the phylogenetic analyses of more than 60 proteins are reviewed and presented in the context of their participation in major biochemical pathways. Although many gene trees are incongruent, the majority do suggest a sisterhood between Archaea and Eucarya. Altering this general pattern of gene evolution are two kinds of potential interdomain gene transferrals. One horizontal gene exchange might have involved the gram-positive Bacteria and the Archaea, while the other might have occurred between proteobacteria and eukaryotes and might have been mediated by endosymbiosis.
Collapse
Affiliation(s)
- J R Brown
- Canadian Institute for Advanced Research, Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | |
Collapse
|
10
|
Identification and characterization of a heat-labile type I glutamine synthetase fromStreptomyces cinnamonensis. Folia Microbiol (Praha) 1997. [DOI: 10.1007/bf02826549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Abstract
Nitrogen metabolism in prokaryotes involves the coordinated expression of a large number of enzymes concerned with both utilization of extracellular nitrogen sources and intracellular biosynthesis of nitrogen-containing compounds. The control of this expression is determined by the availability of fixed nitrogen to the cell and is effected by complex regulatory networks involving regulation at both the transcriptional and posttranslational levels. While the most detailed studies to date have been carried out with enteric bacteria, there is a considerable body of evidence to show that the nitrogen regulation (ntr) systems described in the enterics extend to many other genera. Furthermore, as the range of bacteria in which the phenomenon of nitrogen control is examined is being extended, new regulatory mechanisms are also being discovered. In this review, we have attempted to summarize recent research in prokaryotic nitrogen control; to show the ubiquity of the ntr system, at least in gram-negative organisms; and to identify those areas and groups of organisms about which there is much still to learn.
Collapse
Affiliation(s)
- M J Merrick
- Nitrogen Fixation Laboratory, John Innes Centre, Norwich, United Kingdom
| | | |
Collapse
|
12
|
Regulation, purification and partial characterization of glutamine synthetase fromStreptomyces aureofaciens. Folia Microbiol (Praha) 1995. [DOI: 10.1007/bf02814720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Abstract
The control of glutamine synthetase (GS), the first enzyme in the main pathway used by Rhizobium meliloti to assimilate ammonia, is central to cellular nitrogen metabolism. R. meliloti is unusual in having three distinct types of GS, including a unique GS, GSIII, that differs considerably from both GSI, which resembles other bacterial GS proteins and GSII, which resembles the GS found in eukaryotes. We show here that GSIII can be post-translationally modified in vivo by ADP-ribosylation at an arginine residue. 32PO4 attached to GSIII during bacterial growth as part of the modifying group could be removed by treatment with snake venom phosphodiesterase or by turkey erythrocyte ADP-ribosylarginine hydrolase. Treatment of modified GSIII with hydroxylamine at neutral pH releases a chromophore that has the retention time of ADP-ribose when analyzed by reversed-phase high performance liquid chromatography. ADP-ribosylation inhibits GSIII activity.
Collapse
Affiliation(s)
- Y Liu
- Department of Microbiology, Washington State University, Pullman 99164-6340
| | | |
Collapse
|
14
|
Nguyen KT, Nguyen LT, Běhal V. What type of glutamine synthetase is important forStreptomyces coelicolor A3(2) under nitrogen-limited growth conditions? Biotechnol Lett 1994. [DOI: 10.1007/bf01022397] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Brown JR, Masuchi Y, Robb FT, Doolittle WF. Evolutionary relationships of bacterial and archaeal glutamine synthetase genes. J Mol Evol 1994; 38:566-76. [PMID: 7916055 DOI: 10.1007/bf00175876] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Glutamine synthetase (GS), an essential enzyme in ammonia assimilation and glutamine biosynthesis, has three distinctive types: GSI, GSII and GSIII. Genes for GSI have been found only in bacteria (eubacteria) and archaea (archaebacteria), while GSII genes only occur in eukaryotes and a few soil-dwelling bacteria. GSIII genes have been found in only a few bacterial species. Recently, it has been suggested that several lateral gene transfers of archaeal GSI genes to bacteria may have occurred. In order to study the evolution of GS, we cloned and sequenced GSI genes from two divergent archaeal species: the extreme thermophile Pyrococcus furiosus and the extreme halophile Haloferax volcanii. Our phylogenetic analysis, which included most available GS sequences, revealed two significant prokaryotic GSI subdivisions: GSI-alpha and GSI-beta. GSI-alpha-genes are found in the thermophilic bacterium, Thermotoga maritima, the low G+C Gram-positive bacteria, and the Euryarchaeota (includes methanogens, halophiles, and some thermophiles). GSI-beta-type genes occur in all other bacteria. GSI-alpha- and GSI-beta-type genes also differ with respect to a specific 25-amino-acid insertion and adenylylation control of GS enzyme activity, both absent in the former but present in the latter. Cyanobacterial genes lack adenylylation regulation of GS and may have secondarily lost it. The GSI gene of Sulfolobus solfataricus, a member of the Crenarchaeota (extreme thermophiles), is exceptional and could not be definitely placed in either subdivision.
Collapse
Affiliation(s)
- J R Brown
- Canadian Institute for Advanced Research, Department of Biochemistry, Halifax, Nova Scotia
| | | | | | | |
Collapse
|
16
|
Woods DR, Reid SJ. Recent developments on the regulation and structure of glutamine synthetase enzymes from selected bacterial groups. FEMS Microbiol Rev 1993; 11:273-83. [PMID: 7691113 DOI: 10.1111/j.1574-6976.1993.tb00001.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The structure of glutamine synthetase (GS) enzymes from diverse bacterial groups fall into three distinct classes. GSI is the typical bacterial GS, GSII is similar to the eukaryotic GS and is found together with GSI in plant symbionts and Streptomyces, while GSIII has been found in two unrelated anaerobic rumen bacteria. In most cases, the structural gene for GS enzyme is regulated in response to nitrogen. However, different regulatory mechanisms, to ensure optimal utilization of nitrogen substrates, control the GS enzyme in each class.
Collapse
Affiliation(s)
- D R Woods
- Department of Microbiology, University of Cape Town, Rondebosch, South Africa
| | | |
Collapse
|
17
|
Hua Z, Jian D, Zhongze Z, Xuenong Z. Nitrogen metabolism of Frankia strain, Cc01, Mg+, At4 and Hr18. Arch Microbiol 1993. [DOI: 10.1007/bf00249032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Hosted TJ, Rochefort DA, Benson DR. Close linkage of genes encoding glutamine synthetases I and II in Frankia alni CpI1. J Bacteriol 1993; 175:3679-84. [PMID: 8099074 PMCID: PMC204773 DOI: 10.1128/jb.175.11.3679-3684.1993] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Frankia alni CpI1 has two glutamine synthetases (GSs), GSI and GSII. The GSI gene (glnA) was isolated from a cosmid library of F. alni CpI1 DNA by heterologous probing with glnA from Streptomyces coelicolor. The glnA gene was shown to be located upstream of the GSII gene (glnII) by DNA-DNA hybridization. The nucleotide sequences of the 1,422-bp CpI1 glnA gene and of the 449-bp intervening region between glnA and glnII were determined, and the glnA amino acid sequence was deduced. In common with GSIs from other organisms, CpI1 GSI contains five conserved regions near the active site and a conserved tyrosine at the adenylylation site. F. alni CpI1 glnA complemented the glutamine growth requirement of the Escherichia coli glnA deletion strain YMC11 but only when expressed from an E. coli lac promoter. While the functional significance of maintaining two GSs adjacent to one another remains unclear, this arrangement in F. alni provides support for the recently proposed origin of GSI and GSII as resulting from a gene duplication early in the evolution of life.
Collapse
Affiliation(s)
- T J Hosted
- Department of Molecular and Cell Biology, University of Connecticut, Storrs 06269-3044
| | | | | |
Collapse
|
19
|
Abstract
Frankia strains are N2-fixing actinomycetes whose isolation and cultivation were first reported in 1978. They induce N2-fixing root nodules on diverse nonleguminous (actinorhizal) plants that are important in ecological successions and in land reclamation and remediation. The genus Frankia encompasses a diverse group of soil actinomycetes that have in common the formation of multilocular sporangia, filamentous growth, and nitrogenase-containing vesicles enveloped in multilaminated lipid envelopes. The relatively constant morphology of vesicles in culture is modified by plant interactions in symbiosis to give a diverse array of vesicles shapes. Recent studies of the genetics and molecular genetics of these organisms have begun to provide new insights into higher-plant-bacterium interactions that lead to productive N2-fixing symbioses. Sufficient information about the relationship of Frankia strains to other bacteria, and to each other, is now available to warrant the creation of some species based on phenotypic and genetic criteria.
Collapse
Affiliation(s)
- D R Benson
- Department of Molecular and Cell Biology, University of Connecticut, Storrs 06269-3044
| | | |
Collapse
|
20
|
Tiboni O, Cammarano P, Sanangelantoni AM. Cloning and sequencing of the gene encoding glutamine synthetase I from the archaeum Pyrococcus woesei: anomalous phylogenies inferred from analysis of archaeal and bacterial glutamine synthetase I sequences. J Bacteriol 1993; 175:2961-9. [PMID: 8098326 PMCID: PMC204614 DOI: 10.1128/jb.175.10.2961-2969.1993] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The gene glnA encoding glutamine synthetase I (GSI) from the archaeum Pyrococcus woesei was cloned and sequenced with the Sulfolobus solfataricus glnA gene as the probe. An operon reading frame of 448 amino acids was identified within a DNA segment of 1,528 bp. The encoded protein was 49% identical with the GSI of Methanococcus voltae and exhibited conserved regions characteristic of the GSI family. The P. woesei GSI was aligned with available homologs from other archaea (S. solfataricus, M. voltae) and with representative sequences from cyanobacteria, proteobacteria, and gram-positive bacteria. Phylogenetic trees were constructed from both the amino acid and the nucleotide sequence alignments. In accordance with the sequence similarities, archaeal and bacterial sequences did not segregate on a phylogeny. On the basis of sequence signatures, the GSI trees could be subdivided into two ensembles. One encompassed the GSI of cyanobacteria and proteobacteria, but also that of the high-G + C gram-positive bacterium Streptomyces coelicolor (all of which are regulated by the reversible adenylylation of the enzyme subunits); the other embraced the GSI of the three archaea as well as that of the low-G + C gram-positive bacteria (Clostridium acetobutilycum, Bacillus subtilis) and Thermotoga maritima (none of which are regulated by subunit adenylylation). The GSIs of the Thermotoga and the Bacillus-Clostridium lineages shared a direct common ancestor with that of P. woesei and the methanogens and were unrelated to their homologs from cyanobacteria, proteobacteria, and S. coelicolor. The possibility is presented that the GSI gene arose among the archaea and was then laterally transferred from some early methanogen to a Thermotoga-like organism. However, the relationship of the cyanobacterial-proteobacterial GSIs to the Thermotoga GSI and the GSI of low-G+C gram-positive bacteria remains unexplained.
Collapse
Affiliation(s)
- O Tiboni
- Dipartimento Genetica e Microbiologia A. Buzzati-Traverso, Università di Pavia, Italy
| | | | | |
Collapse
|
21
|
Wray LV, Atkinson MR, Fisher SH. Identification and cloning of the glnR locus, which is required for transcription of the glnA gene in Streptomyces coelicolor A3(2). J Bacteriol 1991; 173:7351-60. [PMID: 1718946 PMCID: PMC209244 DOI: 10.1128/jb.173.22.7351-7360.1991] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Six Streptomyces coelicolor mutants that required glutamine for growth at the wild-type rate on all nitrogen sources (Gln-) were isolated. The phenotypes of all six mutants were similar. The glutamine synthetase (GS) levels were 20- to 100-fold lower in extracts of the Gln- mutants than in extracts of their parents. The reduced levels of GS activity in the Gln- mutants were not due to adenylylation of the GS protein, because GS activity in Gln- extracts did not increase after snake venom phosphodiesterase treatment. No transcripts of the GS structural gene (glnA) could be detected in RNA isolated from the Gln- mutants in primer extension experiments. All six gln mutations mapped adjacent to adeA. S. coelicolor chromosomal DNA complementing the Gln- mutants was isolated from a library of S. coelicolor chromosomal DNA constructed in the low-copy-number S. coelicolor plasmid pIJ922. Subcloning experiments showed that a 1.45-kb DNA fragment could complement all six Gln- mutants. This DNA fragment did not hybridize with either the cloned S. coelicolor glnA gene or the cloned S. viridochromogenes GSII gene in Southern blots. Since glnA transcription was restored in the Gln- mutants containing the complementing DNA, the gln mutations appear to lie in one or more closely linked genes that are required for glnA transcription in S. coelicolor.
Collapse
Affiliation(s)
- L V Wray
- Department of Microbiology, Boston University School of Medicine, Massachusetts 02118-2394
| | | | | |
Collapse
|
22
|
Pesole G, Bozzetti MP, Lanave C, Preparata G, Saccone C. Glutamine synthetase gene evolution: a good molecular clock. Proc Natl Acad Sci U S A 1991; 88:522-6. [PMID: 1671172 PMCID: PMC50843 DOI: 10.1073/pnas.88.2.522] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Glutamine synthetase (EC 6.3.1.2) gene evolution in various animals, plants, and bacteria was evaluated by a general stationary Markov model. The evolutionary process proved to be unexpectedly regular even for a time span as long as that between the divergence of prokaryotes from eukaryotes. This enabled us to draw phylogenetic trees for species whose phylogeny cannot be easily reconstructed from the fossil record. Our calculation of the times of divergence of the various organelle-specific enzymes led us to hypothesize that the pea and bean chloroplast genes for these enzymes originated from the duplication of nuclear genes as a result of the different metabolic needs of the various species. Our data indicate that the duplication of plastid glutamine synthetase genes occurred long after the endosymbiotic events that produced the organelles themselves.
Collapse
Affiliation(s)
- G Pesole
- Dipartimento di Biochimica e Biologia Molecolare, Universitá di Bari, Italy
| | | | | | | | | |
Collapse
|
23
|
Espin G, Moreno S, Wild M, Meza R, Iaccarino M. A previously unrecognized glutamine synthetase expressed in Klebsiella pneumoniae from the glnT locus of Rhizobium leguminosarum. MOLECULAR & GENERAL GENETICS : MGG 1990; 223:513-6. [PMID: 1980142 DOI: 10.1007/bf00264461] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Using glnT DNA of Rhizobium meliloti as a hybridization probe we identified a R. leguminosarum biovar phaseoli (R. l. phaseoli) locus (glnT) expressing a glutamine synthetase activity in Klebsiella pneumoniae. A 2.2 kb DNA fragment from R. l. phaseoli was cloned to give plasmid pMW5a, which shows interspecific complementation of a K. pneumoniae glnA mutant. The cloned sequence did not show cross-hybridization to glnA or glnII, the genes coding for two glutamine synthetase isozymes of Rhizobium spp. While in previous reports on glnT of R. meliloti and Agrobacterium tumefaciens no glutamine synthetase activity was detected, we do find activity with the glnT locus of R. l. phaseoli. The glutamine synthetase (GSIII) activity expressed in a K. pneumoniae glnA strain from pMW5a shows a ratio of biosynthetic to transferase activity 10(3)-fold higher than that observed for GSI or GSII. GSIII is similar in molecular weight and heat stability to GSI.
Collapse
Affiliation(s)
- G Espin
- Unidad de Biologia Molecular y Biotecnologia Vegetal, Universidad Nacional Autonoma de Mexico, Cuernavaca
| | | | | | | | | |
Collapse
|
24
|
Abstract
Streptomyces hygroscopicus, which produces the glutamine synthetase inhibitor phosphinothricin, possesses at least two genes (glnA and glnB) encoding distinct glutamine synthetase isoforms (GSI and GSII). The glnB gene was cloned from S. hygroscopicus DNA by complementation in an Escherichia coli glutamine auxotrophic mutant (glnA). glnB was subcloned in Streptomyces plasmids by insertion into pIJ486 (pMSG3) and pIJ702 (pMSG5). Both constructions conferred resistance to the tripeptide form of phosphinothricin (bialaphos) and were able to complement a glutamine auxotrophic marker in S. coelicolor. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis of S. lividans(pMSG5) revealed a highly overexpressed 40-kilodalton protein. When GS was purified from this strain, it was indistinguishable in apparent molecular mass from the 40-kilodalton protein. The nucleic acid sequence of the cloned region contained an open reading frame which encoded a protein whose size, amino acid composition, and N-terminal sequence corresponded to those of the purified GS. glnB had a high G + C content and codon usage typical of streptomycete genes. A comparison of its predicted amino acid sequence with the protein data bases revealed that it encoded a GSII-type enzyme which had previously been found only in various eucaryotes (47 to 50% identity) and nodulating bacteria such as Bradyrhizobium spp. (42% identity). glnB had only 13 to 18% identity with eubacterial GSI enzymes. Southern blot hybridization experiments showed that sequences similar to glnB were present in all of the five other Streptomyces species tested, as well as Frankia species. These results do not support the previous suggestion that GSII-type enzymes found in members of the family Rhizobiaceae represent a unique example of interkingdom gene transfer associated with symbiosis in the nodule. Instead they imply that the presence of more than one gene encoding GS may be more common among soil microorganisms than previously appreciated.
Collapse
|
25
|
Molecular cloning, sequencing, and expression of the glutamine synthetase II (glnII) gene from the actinomycete root nodule symbiont Frankia sp. strain CpI1. J Bacteriol 1990; 172:5335-42. [PMID: 1975584 PMCID: PMC213197 DOI: 10.1128/jb.172.9.5335-5342.1990] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In common with other plant symbionts, Frankia spp., the actinomycete N2-fixing symbionts of certain nonleguminous woody plants, synthesize two glutamine synthetases, GSI and GSII. DNA encoding the Bradyrhizobium japonicum gene for GSII (glnII) hybridized to DNA from three Frankia strains. B. japonicum glnII was used as a probe to clone the glnII gene from a size-selected KpnI library of Frankia strain CpI1 DNA. The region corresponding to the Frankia sp. strain CpI1 glnII gene was sequenced, and the amino acid sequence was compared with that of the GS gene from the pea and glnII from B. japonicum. The Frankia glnII gene product has a high degree of similarity with both GSII from B. japonicum and GS from pea, although the sequence was about equally similar to both the bacterial and eucaryotic proteins. The Frankia glnII gene was also capable of complementing an Escherichia coli delta glnA mutant when transcribed from the vector lac promoter, but not when transcribed from the Frankia promoter. GSII produced in E. coli was heat labile, like the enzyme produced in Frankia sp. strain CpI1 but unlike the wild-type E. coli enzyme.
Collapse
|
26
|
Overexpression of a Streptomyces viridochromogenes gene (glnII) encoding a glutamine synthetase similar to those of eucaryotes confers resistance against the antibiotic phosphinothricyl-alanyl-alanine. J Bacteriol 1990; 172:5326-34. [PMID: 1975583 PMCID: PMC213196 DOI: 10.1128/jb.172.9.5326-5334.1990] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Phosphinothricyl-alanyl-alanine (PTT), also known as bialaphos, contains phosphinothricin, a potent inhibitor of glutamine synthetase (GS). A 2.75-kilobase NcoI fragment of the Streptomyces viridochromogenes PTT-resistant mutant ES2 cloned on a multicopy vector mediated PTT resistance to S. lividans and to S. viridochromogenes. Nucleotide sequence analysis of the 2.75-kb NcoI fragment revealed the presence of three open reading frames. Open reading frame 3 was termed glnII since significant similarity was found between its deduced amino acid sequence and those from GS of eucaryotes and GSII of members of the family Rhizobiaceae. Subcloning experiments showed that PTT resistance is mediated by overexpression of glnII encoding a 37.3-kilodalton protein of 343 amino acids. A three- to fourfold increase in gamma-glutamyltransferase activity could be observed in S. lividans transformants carrying the glnII gene on a multicopy plasmid. For S. viridochromogenes it was shown that PTT resistance conferred by the 2.75-kb NcoI fragment was dependent on its multicopy state. GS activity encoded by glnII was found to be heat labile. Southern hybridization with seven different Streptomyces strains suggested that they all carry two types of GS genes, glnA and glnII.
Collapse
|
27
|
Schultz NA, Benson DR. Enzymes of ammonia assimilation in hyphae and vesicles of Frankia sp. strain CpI1. J Bacteriol 1990; 172:1380-4. [PMID: 1968454 PMCID: PMC208609 DOI: 10.1128/jb.172.3.1380-1384.1990] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Frankia spp. are filamentous actinomycetes that fix N2 in culture and in actinorhizal root nodules. In combined nitrogen-depleted aerobic environments, nitrogenase is restricted to thick-walled spherical structures, Frankia vesicles, that are formed on short stalks along the vegetative hyphae. The activities of the NH4(+)-assimilating enzymes (glutamine synthetase [GS], glutamate synthase, glutamate dehydrogenase, and alanine dehydrogenase) were determined in cells grown on NH4+ and N2 and in vesicles and hyphae from N2-fixing cultures separated on sucrose gradients. The two frankial GSs, GSI and GSII, were present in vesicles at levels similar to those detected in vegetative hyphae from N2-fixing cultures as shown by enzyme assay and two-dimensional polyacrylamide gel electrophoresis. Glutamate synthase, glutamate dehydrogenase, and alanine dehydrogenase activities were restricted to the vegetative hyphae. Vesicles apparently lack a complete pathway for assimilating ammonia beyond the glutamine stage.
Collapse
Affiliation(s)
- N A Schultz
- Department of Molecular and Cell Biology, University of Connecticut, Storrs 06269-3044
| | | |
Collapse
|
28
|
Shatters RG, Kahn ML. Glutamine synthetase II in Rhizobium: reexamination of the proposed horizontal transfer of DNA from eukaryotes to prokaryotes. J Mol Evol 1989; 29:422-8. [PMID: 2575672 DOI: 10.1007/bf02602912] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have determined the DNA sequence of a Rhizobium meliloti gene that encodes glutamine synthetase II (GSII). The deduced amino acid sequence was compared to that of Bradyrhizobium japonicum GSII and those of various plant and mammalian glutamine synthetases (GS) in order to evaluate a proposal that the gene for this enzyme was recently transferred from plants to their symbiotic bacteria. There is 83.6% identity between the R. meliloti and B. japonicum proteins. The bacterial GSII proteins average 42.5% identity with the plant GS proteins and 41.8% identity with their mammalian counterparts. The plant proteins average 53.7% identity with the mammalian proteins. Thus, the GS proteins are highly conserved and the divergence of these proteins is proportional to the phylogenetic divergence of the organisms from which the sequences were determined. No transfer of genes across large taxonomic gaps is needed to explain the presence of GSII in these bacteria.
Collapse
Affiliation(s)
- R G Shatters
- Program in Genetics and Cell Biology, Washington State University, Pullman 99164-6340
| | | |
Collapse
|
29
|
Physiological characteristics of glutamine synthetases I and II of Frankia sp. strain CpI1. Arch Microbiol 1989. [DOI: 10.1007/bf00425177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Shatters RG, Somerville JE, Kahn ML. Regulation of glutamine synthetase II activity in Rhizobium meliloti 104A14. J Bacteriol 1989; 171:5087-94. [PMID: 2570059 PMCID: PMC210321 DOI: 10.1128/jb.171.9.5087-5094.1989] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Most rhizobia contain two glutamine synthetase (GS) enzymes: GSI, encoded by glnA, and GSII, encoded by glnII. We have found that WSU414, a Rhizobium meliloti 104A14 glutamine auxotroph derived from a glnA parental strain, is an ntrA mutant. The R. meliloti glnII promoter region contains DNA sequences similar to those found in front of other genes that require ntrA for their transcription. No GSII was found in the glnA ntrA mutant, and when a translational fusion of glnII to the Escherichia coli lacZ gene was introduced into WSU414, no beta-galactosidase was expressed. These results indicate that ntrA is required for glnII expression. The ntrA mutation did not prevent the expression of GSI. In free-living culture, the level of GSII and of the glnII-lacZ fusion protein was regulated by altering transcription in response to available nitrogen. No GSII protein was detected in alfalfa, pea, or soybean nodules when anti-GSII-specific antiserum was used.
Collapse
Affiliation(s)
- R G Shatters
- Department of Microbiology, Washington State University, Pullman 99164-6340
| | | | | |
Collapse
|
31
|
Somerville JE, Shatters RG, Kahn ML. Isolation, characterization, and complementation of Rhizobium meliloti 104A14 mutants that lack glutamine synthetase II activity. J Bacteriol 1989; 171:5079-86. [PMID: 2570058 PMCID: PMC210320 DOI: 10.1128/jb.171.9.5079-5086.1989] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The glutamine synthetase (GS)-glutamate synthase pathway is the primary route used by members of the family Rhizobiaceae to assimilate ammonia. Two forms of glutamine synthetase, GSI and GSII, are found in Rhizobium and Bradyrhizobium species. These are encoded by the glnA and glnII genes, respectively. Starting with a Rhizobium meliloti glnA mutant as the parent strain, we isolated mutants unable to grow on minimal medium with ammonia as the sole nitrogen source. For two auxotrophs that lacked any detectable GS activity, R. meliloti DNA of the mutated region was cloned and partially characterized. Lack of cross-hybridization indicated that the cloned regions were not closely linked to each other or to glnA; they therefore contain two independent genes needed for GSII synthesis or activity. One of the cloned regions was identified as glnII. An R. meliloti glnII mutant and an R. meliloti glnA glnII double mutant were constructed. Both formed effective nodules on alfalfa. This is unlike the B. japonicum-soybean symbiosis, in which at least one of these GS enzymes must be present for nitrogen-fixing nodules to develop. However, the R. meliloti double mutant was not a strict glutamine auxotroph, since it could grow on media that contained glutamate and ammonia, an observation that suggests that a third GS may be active in this species.
Collapse
Affiliation(s)
- J E Somerville
- Department of Microbiology, Washington State University, Pullman 99164-6340
| | | | | |
Collapse
|
32
|
Lightfoot DA, Green NK, Cullimore JV. The chloroplast-located glutamine synthetase of Phaseolus vulgaris L.: nucleotide sequence, expression in different organs and uptake into isolated chloroplasts. PLANT MOLECULAR BIOLOGY 1988; 11:191-202. [PMID: 24272261 DOI: 10.1007/bf00015671] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/1988] [Accepted: 04/26/1988] [Indexed: 06/02/2023]
Abstract
Work using a full-length cDNA clone has revealed that the plastid-located glutamine synthetase (GS) of Phaseolus vulgaris is encoded by a single nuclear gene. Nucleotide sequencing has shown that this cDNA is more closely related to a cDNA encoding the plastidic GS of Pisum sativum than to cDNAs encoding three different cytosolic GS subunits of P. vulgaris. The plastid GS subunits are initially synthesized as higher M r (47000) precursors containing an N-terminal presequence of about 50 amino acids which is structurally similar to the presequences of other nuclear-encoded chloroplast proteins. The precursor has been synthesized in vitro and is imported by isolated pea chloroplasts and processed to two polypeptides of the same size as native P. vulgaris chloroplast GS subunits (M r 42000). Experiments with fusion proteins show that the N-terminal 68 amino acids of this precursor allow the cytosolic GS subunit β also to be imported and processed by isolated chloroplasts. Polyadenylated mRNA specifically related to the plastidic GS gene is most highly abundant in chloroplast-containing organs (leaves and stems) but is also detectable in roots and nodules.
Collapse
Affiliation(s)
- D A Lightfoot
- Department of Biological Sciences, University of Warwick, CV4 7AL, Coventry, UK
| | | | | |
Collapse
|
33
|
Illing N, Hill RT, Woods DR. Purification and characterisation of glutamine synthetase from Nocardia corallina. Antonie Van Leeuwenhoek 1988; 54:497-507. [PMID: 2906794 DOI: 10.1007/bf00588386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Glutamine synthetase (GS) (EC 6.3.1.2) has been purified 67-fold from Nocardia corallina. The apparent Mr of the GS subunit was approximately 56,000. Assuming the enzyme is a typical dodecamer this indicates a particle mass for the undissociated enzyme of 672,000. The GS is regulated by adenylylation and deadenylylation, and subject to feedback inhibition by alanine and glycine. The pH profiles assayed by the gamma-glutamyl transferase method were similar for NH+4-treated and untreated cell extracts and an isoactivity point was not obtained from these curves. GS activity was repressed by (NH4)2SO4 and glutamate. Cells grown in the presence of glutamine, alanine, proline and histidine had enhanced levels of GS activity. The GS of N. corallina cross-reacted with antisera prepared against GS from a Gram-negative Thiobacillus ferrooxidans strain but not with antisera raised against GS from a Gram-positive Clostridium acetobutylicum strain.
Collapse
Affiliation(s)
- N Illing
- Department of Microbiology, University of Cape Town, South Africa
| | | | | |
Collapse
|