1
|
Sachkova MY. Evolutionary origin of the nervous system from Ctenophora prospective. Evol Dev 2024; 26:e12472. [PMID: 38390763 DOI: 10.1111/ede.12472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024]
Abstract
Nervous system is one of the key adaptations underlying the evolutionary success of the majority of animal groups. Ctenophores (or comb jellies) are gelatinous marine invertebrates that were probably the first lineage to diverge from the rest of animals. Due to the key phylogenetic position and multiple unique adaptations, the noncentralized nervous system of comb jellies has been in the center of the debate around the origin of the nervous system in the animal kingdom and whether it happened only once or twice. Here, we discuss the latest findings in ctenophore neuroscience and multiple challenges on the way to build a clear evolutionary picture of the origin of the nervous system.
Collapse
Affiliation(s)
- Maria Y Sachkova
- School of Biological Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
2
|
Norekian TP, Moroz LL. Recording cilia activity in ctenophores: effects of nitric oxide and low molecular weight transmitters. Front Neurosci 2023; 17:1125476. [PMID: 37332869 PMCID: PMC10272528 DOI: 10.3389/fnins.2023.1125476] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/03/2023] [Indexed: 06/20/2023] Open
Abstract
Cilia are the major effectors in Ctenophores, but very little is known about their transmitter control and integration. Here, we present a simple protocol to monitor and quantify cilia activity and provide evidence for polysynaptic control of cilia coordination in ctenophores. We also screened the effects of several classical bilaterian neurotransmitters (acetylcholine, dopamine, L-DOPA, serotonin, octopamine, histamine, gamma-aminobutyric acid (GABA), L-aspartate, L-glutamate, glycine), neuropeptide (FMRFamide), and nitric oxide (NO) on cilia beating in Pleurobrachia bachei and Bolinopsis infundibulum. NO and FMRFamide produced noticeable inhibitory effects on cilia activity, whereas other tested transmitters were ineffective. These findings further suggest that ctenophore-specific neuropeptides could be major candidates for signal molecules controlling cilia activity in representatives of this early-branching metazoan lineage.
Collapse
Affiliation(s)
- Tigran P. Norekian
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, United States
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, United States
| | - Leonid L. Moroz
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, United States
- Departments of Neuroscience and McKnight, Brain Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
3
|
Norekian TP, Moroz LL. Nitric oxide suppresses cilia activity in ctenophores. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.27.538508. [PMID: 37163038 PMCID: PMC10168380 DOI: 10.1101/2023.04.27.538508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Cilia are the major effectors in Ctenophores, but very little is known about their transmitter control and integration. Here, we present a simple protocol to monitor and quantify cilia activity in semi-intact preparations and provide evidence for polysynaptic control of cilia coordination in ctenophores. Next, we screen the effects of several classical bilaterian neurotransmitters (acetylcholine, dopamine, L-DOPA, serotonin, octopamine, histamine, gamma-aminobutyric acid (GABA), L-aspartate, L-glutamate, glycine), neuropeptides (FMRFamide), and nitric oxide (NO) on cilia beating in Pleurobrachia bachei and Bolinopsis infundibulum . Only NO inhibited cilia beating, whereas other tested transmitters were ineffective. These findings further suggest that ctenophore-specific neuropeptides could be major candidate signaling molecules controlling cilia activity in representatives of this early-branching metazoan lineage.
Collapse
|
4
|
Burkhardt P, Jékely G. Evolution of synapses and neurotransmitter systems: The divide-and-conquer model for early neural cell-type evolution. Curr Opin Neurobiol 2021; 71:127-138. [PMID: 34826676 DOI: 10.1016/j.conb.2021.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/09/2021] [Accepted: 11/02/2021] [Indexed: 01/08/2023]
Abstract
Nervous systems evolved around 560 million years ago to coordinate and empower animal bodies. Ctenophores - one of the earliest-branching lineages - are thought to share a few neuronal genes with bilaterians and may have evolved neurons convergently. Here we review our current understanding of the evolution of neuronal molecules in nonbilaterians. We also reanalyse single-cell sequencing data in light of new cell-cluster identities from a ctenophore and uncover evidence supporting the homology of one ctenophore neuron-type with neurons in Bilateria. The specific coexpression of the presynaptic proteins Unc13 and RIM with voltage-gated channels, neuropeptides and homeobox genes pinpoint a spiking sensory-peptidergic cell in the ctenophore mouth. Similar Unc13-RIM neurons may have been present in the first eumetazoans to rise to dominance only in stem Bilateria. We hypothesise that the Unc13-RIM lineage ancestrally innervated the mouth and conquered other parts of the body with the rise of macrophagy and predation during the Cambrian explosion.
Collapse
Affiliation(s)
- Pawel Burkhardt
- Sars International Centre for Marine Molecular Biology, University of Bergen, Norway.
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK.
| |
Collapse
|
5
|
Senatore A, Raiss H, Le P. Physiology and Evolution of Voltage-Gated Calcium Channels in Early Diverging Animal Phyla: Cnidaria, Placozoa, Porifera and Ctenophora. Front Physiol 2016; 7:481. [PMID: 27867359 PMCID: PMC5095125 DOI: 10.3389/fphys.2016.00481] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/07/2016] [Indexed: 12/18/2022] Open
Abstract
Voltage-gated calcium (Cav) channels serve dual roles in the cell, where they can both depolarize the membrane potential for electrical excitability, and activate transient cytoplasmic Ca2+ signals. In animals, Cav channels play crucial roles including driving muscle contraction (excitation-contraction coupling), gene expression (excitation-transcription coupling), pre-synaptic and neuroendocrine exocytosis (excitation-secretion coupling), regulation of flagellar/ciliary beating, and regulation of cellular excitability, either directly or through modulation of other Ca2+-sensitive ion channels. In recent years, genome sequencing has provided significant insights into the molecular evolution of Cav channels. Furthermore, expanded gene datasets have permitted improved inference of the species phylogeny at the base of Metazoa, providing clearer insights into the evolution of complex animal traits which involve Cav channels, including the nervous system. For the various types of metazoan Cav channels, key properties that determine their cellular contribution include: Ion selectivity, pore gating, and, importantly, cytoplasmic protein-protein interactions that direct sub-cellular localization and functional complexing. It is unclear when these defining features, many of which are essential for nervous system function, evolved. In this review, we highlight some experimental observations that implicate Cav channels in the physiology and behavior of the most early-diverging animals from the phyla Cnidaria, Placozoa, Porifera, and Ctenophora. Given our limited understanding of the molecular biology of Cav channels in these basal animal lineages, we infer insights from better-studied vertebrate and invertebrate animals. We also highlight some apparently conserved cellular functions of Cav channels, which might have emerged very early on during metazoan evolution, or perhaps predated it.
Collapse
Affiliation(s)
- Adriano Senatore
- Department of Biology, University of Toronto Mississauga Mississauga, ON, Canada
| | - Hamad Raiss
- Department of Biology, University of Toronto Mississauga Mississauga, ON, Canada
| | - Phuong Le
- Department of Biology, University of Toronto Mississauga Mississauga, ON, Canada
| |
Collapse
|
6
|
Abstract
Genomic and transcriptomic analyses show that sponges possess a large repertoire of genes associated with neuronal processes in other animals, but what is the evidence these are used in a coordination or sensory context in sponges? The very different phylogenetic hypotheses under discussion today suggest very different scenarios for the evolution of tissues and coordination systems in early animals. The sponge genomic 'toolkit' either reflects a simple, pre-neural system used to protect the sponge filter or represents the remnants of a more complex signalling system and sponges have lost cell types, tissues and regionalization to suit their current suspension-feeding habit. Comparative transcriptome data can be informative but need to be assessed in the context of knowledge of sponge tissue structure and physiology. Here, I examine the elements of the sponge neural toolkit including sensory cells, conduction pathways, signalling molecules and the ionic basis of signalling. The elements described do not fit the scheme of a loss of sophistication, but seem rather to reflect an early specialization for suspension feeding, which fits with the presumed ecological framework in which the first animals evolved.
Collapse
Affiliation(s)
- Sally P Leys
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
7
|
Abstract
Recent sequencing of ctenophore genomes opens a new era in the study of this unique and phylogenetically distant group. The presence of neurodevelopmental genes, pre- and postsynaptic modules, and transmitter molecules is consistent with a single origin of neurons.
Collapse
Affiliation(s)
- Heather Marlow
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69012 Heidelberg, Germany.
| | - Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69012 Heidelberg, Germany.
| |
Collapse
|
8
|
Abstract
Neurons are defined as polarized secretory cells specializing in directional propagation of electrical signals leading to the release of extracellular messengers - features that enable them to transmit information, primarily chemical in nature, beyond their immediate neighbors without affecting all intervening cells en route. Multiple origins of neurons and synapses from different classes of ancestral secretory cells might have occurred more than once during ~600 million years of animal evolution with independent events of nervous system centralization from a common bilaterian/cnidarian ancestor without the bona fide central nervous system. Ctenophores, or comb jellies, represent an example of extensive parallel evolution in neural systems. First, recent genome analyses place ctenophores as a sister group to other animals. Second, ctenophores have a smaller complement of pan-animal genes controlling canonical neurogenic, synaptic, muscle and immune systems, and developmental pathways than most other metazoans. However, comb jellies are carnivorous marine animals with a complex neuromuscular organization and sophisticated patterns of behavior. To sustain these functions, they have evolved a number of unique molecular innovations supporting the hypothesis of massive homoplasies in the organization of integrative and locomotory systems. Third, many bilaterian/cnidarian neuron-specific genes and 'classical' neurotransmitter pathways are either absent or, if present, not expressed in ctenophore neurons (e.g. the bilaterian/cnidarian neurotransmitter, γ-amino butyric acid or GABA, is localized in muscles and presumed bilaterian neuron-specific RNA-binding protein Elav is found in non-neuronal cells). Finally, metabolomic and pharmacological data failed to detect either the presence or any physiological action of serotonin, dopamine, noradrenaline, adrenaline, octopamine, acetylcholine or histamine - consistent with the hypothesis that ctenophore neural systems evolved independently from those in other animals. Glutamate and a diverse range of secretory peptides are first candidates for ctenophore neurotransmitters. Nevertheless, it is expected that other classes of signal and neurogenic molecules would be discovered in ctenophores as the next step to decipher one of the most distinct types of neural organization in the animal kingdom.
Collapse
Affiliation(s)
- Leonid L Moroz
- The Whitney Laboratory of Marine Biosciences and Department of Neuroscience and McKnight Brain Institute, University of Florida, FL 32080, USA. The Whitney Laboratory, University of Florida, 9505 Ocean Shore Boulevard, St. Augustine, FL 32080, USA
| |
Collapse
|
9
|
Abstract
All multicellular organisms need a means of communicating between cells and between regions of the body. The evolution of a nervous system, by the Cnidaria, provided a fast means of communication and enabled the colonization of rapidly changing environments. Sponges, the descendants of the first multicellular animals, lack nerves but nevertheless have a number of different systems that allow coordinated behaviour, albeit rather slow coordinated behaviour. It is from elements within these systems that the origins of the nervous and endocrine systems, the grand organizing principles of higher animals, seem likely to have appeared. Electrical activity has not been found in cellular sponges, yet local contractions are elicited in response to a variety of stimuli and, in some cases, contractions propagate across the body to control the hydrodynamics of the feeding current. The mechanism of propagation is thought to involve hormones or a combination of other signaling molecules and direct mechanical action of one cell on the next, leading to increased intracellular calcium. In other instances cellular sponges respond to stress, such as heat shock, by elevating intracellular calcium by way of second messengers such as cyclic ADP-ribose. Electrical communication, well known in plants and protists, was first demonstrated in a sponge in 1997. Hexactinellids (glass sponges), which arrest their feeding current within 20 s of mechanical or electrical stimulation, do so via an electrical impulse that propagates through syncytial tissues. These unusual syncytial tissues are cytoplasmically coupled from outside to inside and top to bottom so that there are no membrane boundaries to impede the electrical currents. Pharmacological tests suggest that Ca2+, rather than Na+, drives the action potential. The conduction velocity is slow (0.27 cm·s–1) and is highly temperature sensitive (Q10~3). At present, glass sponges are the only poriferans known to have propagated electrical signals. In addition, reports of directional swimming in sponge larvae, of the rapid and coordinated changes in the tensile strength of the extracellular matrix in Chondrosia Nardo, 1847, and of the rapid closure of ostia of some cellular sponges in response to mechanical stimuli further illustrate the variety of coordinating mechanisms that evolved in the Porifera in the absence of a nervous system.
Collapse
|
10
|
Iwadate Y, Suzaki T. Ciliary reorientation is evoked by a rise in calcium level over the entire cilium. ACTA ACUST UNITED AC 2004; 57:197-206. [PMID: 14752804 DOI: 10.1002/cm.10165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Internal Ca2+ levels control the pattern of ciliary and flagellar beating in eukaryotes. In ciliates, ciliary reversal is induced by a rise in intra-ciliary Ca2+, but the mechanism by which Ca2+ induces reversal is not known. We injected the fluorescent Ca2+ indicator Calcium Green into a ciliate Didinium nasutum and observed the intra-ciliary Ca2+ level during the initial reversed stroke preceding spontaneous cyclic reversed beating. In D. nasutum, Ca2+ rose throughout the length of the cilia undergoing initial reversed stroke. Electron microscopy with a combined oxalate-pyroantimonate method showed Ca2+ deposits distributed throughout the reversed cilia. We injected caged Ca2+ into D. nasutum and irradiated the base or mid region of the cilia with UV to locally increase Ca2+ concentration. Uncaging Ca2+ in the middle of the cilia produced reversal distally, but not proximally to the site of Ca2+ release. These results strongly suggest that not only Ca2+ influx sites, but also Ca2+ binding sites and vectoral bending machineries for ciliary reversal, are distributed throughout the cilium.
Collapse
Affiliation(s)
- Yoshiaki Iwadate
- Department of Life Science, Faculty of Integrated Arts and Sciences, The University of Tokushima, Tokushima, Japan.
| | | |
Collapse
|
11
|
Tamm SL, Tamm S. Novel bridge of axon-like processes of epithelial cells in the aboral sense organ of ctenophores. J Morphol 2002; 254:99-120. [PMID: 12353295 DOI: 10.1002/jmor.10019] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We describe by light and electron microscopy a novel structure in the aboral sense organ (apical organ) of cydippid (Pleurobrachia) and lobate (Mnemiopsis) ctenophores. An elevated bundle of long, thin, microtubule-filled processes arises from the apical ends of two groups of epithelial cells located on opposite sides of the apical organ along the tentacular plane of the body. This bundle of axon-like processes arches over the epithelial floor like a bridge, with branches at both ends running toward opposing pairs of ciliary balancers that are motile pacemakers for the rows of locomotory ciliary comb plates. The bridge in Pleurobrachia is approximately 40 microm long and 3-4 microm wide and consists of approximately 60 closely packed processes, 0.2-0.8 microm thick, containing vesicles and numerous microtubules running parallel to their long axes. There are approximately 30 epithelial cells in each of the two groups giving rise to the bridge and each cell forms a single process, so roughly half of the processes in the bridge must originate from cells on one side and diverge into branches to a pair of balancers on the opposite side of the apical organ. The 150-200 cilia in each balancer arise from morphologically complex cellular projections with asymmetric lateral extensions directed towards a fork of the bridge. Presynaptic triad structures and vesicles are found in this region but clear examples of synaptic contacts between bridge processes and balancer cells have not yet been traced. Cydippid larvae of Mnemiopsis have a conspicuous bridge along the tentacular plane of the apical organ. Beroid ctenophores that lack tentacles at all stages do not have a bridge. We discuss the possibility that the bridge is an electrical conduction pathway to balancers that coordinates tentacle-evoked swimming responses of ctenophores, such as global ciliary excitation.
Collapse
Affiliation(s)
- Sidney L Tamm
- Biology Department, Boston University, Boston, Massachusetts 02215, USA.
| | | |
Collapse
|
12
|
Abstract
Experimental investigation has provided a wealth of structural, biochemical, and physiological information regarding the motile mechanism of eukaryotic flagella/cilia. This chapter surveys the available literature, selectively focusing on three major objectives. First, it attempts to identify those conserved structural components essential to providing motile function in eukaryotic axonemes. Second, it examines the relationship between these structural elements to determine the interactions that are vital to the mechanism of flagellar/ciliary beating. Third, the vital principles of these interactions are incorporated into a tractable theoretical model, referred to as the Geometric Clutch, and this hypothetical scheme is examined to assess its compatibility with experimental observations.
Collapse
Affiliation(s)
- C B Lindemann
- Department of Biological Sciences, Oakland University, Rochester, Michigan 48309, USA
| | | |
Collapse
|
13
|
SKEER JACQUELINEM, NORMAN ROBERTI, SATTELLE DAVIDB. INVERTEBRATE VOLTAGE-DEPENDENT CALCIUM CHANNEL SUBTYPES. Biol Rev Camb Philos Soc 1996. [DOI: 10.1111/j.1469-185x.1996.tb00744.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Abstract
To image changes in intraciliary Ca controlling ciliary motility, we microinjected Ca Green dextran, a visible wavelength fluorescent Ca indicator, into eggs or two cell stages of the ctenophore Mnemiopsis leidyi. The embryos developed normally into free-swimming, approximately 0.5 mm cydippid larvae with cells and ciliary comb plates (approximately 100 microns long) loaded with the dye. Comb plates of larvae, like those of adult ctenophores, undergo spontaneous or electrically stimulated reversal of beat direction, triggered by Ca influx through voltage-sensitive Ca channels. Comb plates of larvae loaded with Ca Green dextran emit spontaneous or electrically stimulated fluorescent flashes along the entire length of their cilia, correlated with ciliary reversal. Fluorescence intensity peaks rapidly (34-50 ms), then slowly falls to resting level in approximately 1 s. Electrically stimulated Ca Green emissions often increase in steps to a maximum value near the end of the stimulus pulse train, and slowly decline in 1-2 s. In both spontaneous and electrically stimulated flashes, measurements at multiple sites along a single comb plate show that Ca Green fluorescence rises within 17 ms (1 video field) and to a similar relative extent above resting level from base to tip of the cilia. The decline of fluorescence intensity also begins simultaneously and proceeds at similar rates along the ciliary length. Ca-free sea water reversibly abolishes spontaneous and electrically stimulated Ca Green ciliary emissions as well as reversed beating. Calculations of Ca diffusion from the ciliary base show that Ca must enter the comb plate along the entire length of the ciliary membranes. The voltage-dependent Ca channels mediating changes in beat direction are therefore distributed over the length of the comb plate cilia. The observed rapid and virtually instantaneous Ca signal throughout the intraciliary space may be necessary for reprogramming the pattern of dynein activity responsible for reorientation of the ciliary beat cycle.
Collapse
Affiliation(s)
- S L Tamm
- Boston University Marine Program, Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| | | |
Collapse
|
15
|
Beck C, Uhl R. On the localization of voltage-sensitive calcium channels in the flagella of Chlamydomonas reinhardtii. J Cell Biol 1994; 125:1119-25. [PMID: 8195293 PMCID: PMC2120057 DOI: 10.1083/jcb.125.5.1119] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
This study was undertaken to prove that voltage-sensitive calcium channels controlling the photophobic stop response of the unicellular green alga Chlamydomonas reinhardtii are exclusively found in the flagellar region of the cell and to answer the question as to their exact localization within the flagellar membrane. The strategy used was to amputate flagella to a variable degree without perturbing the electrical properties of the cell and measure flagellar currents shortly after amputation and during the subsequent regeneration process. Under all conditions, a close correlation was found between current size and flagellar length, strongly suggesting that the channels that mediate increases in intraflagellar calcium concentration are confined to and distributed over the total flagellar length. Bald mutants yielded tiny flagellar currents, in agreement with the existence of residual flagellar stubs. In the presence of the protein synthesis inhibitor cycloheximide, flagellar length and flagellar currents also recovered in parallel. Recovery came to an earlier end, however, leveling off at a time when in the absence of cycloheximide only half maximal values were achieved. This suggests the existence of a pool of precursors, which permits the maintenance of a constant ratio between voltage-sensitive calcium channels and other intraflagellar proteins.
Collapse
Affiliation(s)
- C Beck
- Max-Planck-Institut für Biochemie, Martinsried, Federal Republic of Germany
| | | |
Collapse
|
16
|
Moss AG, Tamm SL. Patterns of electrical activity in comb plates of feeding Pleurobrachia (Ctenophora). Philos Trans R Soc Lond B Biol Sci 1993; 339:1-16. [PMID: 8096084 DOI: 10.1098/rstb.1993.0001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The electromotor behaviour of ciliary comb plates was studied during prey-stimulated and electrically stimulated feeding by intact Pleurobrachia pileus (Müller). Comb plate electrical activity was recorded by extracellular electrodes attached directly to the cilia; comb plate motility was recorded by high-speed video microscopy. Comb plate electrical activity fell into two distinct classes, identified by waveform and amplitude: (i) excitatory postsynaptic potentials (EPSPS) in the comb plate (polster) cells and (ii) regenerative potentials in the cilia, as described previously (Moss & Tamm 1987). Slow phasic bursts of regenerative potentials (reversal volleys) were observed in comb plates of rows undergoing reversed beating during capture of prey or by rhythmic electrical stimulation of the tentacles. All plates of a given comb row exhibited virtually identical electrical activity. Timing and development of electrical activity in comb plates of the subtentacular (ST) rows were nearly identical even though separated by several centimetres; onset of the reversal volleys of plates of subsagittal (ss) rows were delayed on average by about 0.5 s relative to the ST rows, although individual EPSPS displayed very similar timing. Microsurgery, combined with extracellular recording from comb plates and the tentacle and associated basal structures, revealed the presence of an integrative center in the tentacular bulb. This communicates with the comb plates by means of a diffuse pathway, presumably the nerve net, which itself is maximally sensitive to rhythmic input. The pathway underlying the reversal volley may innervate only the stimulated hemisphere. In addition to the rhythmic pathway, a through-conducting pathway runs from distal regions of the tentacle to the comb plate cells. Yet another excitatory pathway, possibly distinct from the tentacular through-conducting pathway, may mediate certain cases of global postsynaptic activity. The pathway that controls mouth movements during feeding is entirely independent of any comb plate pathway.
Collapse
Affiliation(s)
- A G Moss
- Boston University Marine Program, Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| | | |
Collapse
|
17
|
Tamm S, Tamm S. Actin pegs and ultrastructure of presumed sensory receptors of Beroë (Ctenophora). Cell Tissue Res 1991; 264:151-9. [PMID: 1711417 DOI: 10.1007/bf00305733] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have investigated the actin content and ultrastructure of two kinds of presumed sensory projections on the lip epidermis of beroid ctenophores. Transmission electron microscopy showed that conical pegs contain a large bundle of densely packed, parallel microfilaments. Rhodamine-phalloidin brightly stained the pegs, confirming that they contain filamentous actin. Epidermal cells with actin pegs also bear a single long cilium with an onion-root structure, previously described as arising from a different type of cell. The actin peg and onion-root cilium project side-by-side, defining a polarized axis of the cell which is shared by neighboring cells. The onion-root body is surrounded by a flattened membrane sac which lies immediately below the plasma membrane. The perimeter of the membrane sac is encircled by aggregates of dense material. An extra layer of dense material is found along the side of the membrane sac facing the peg; this material often makes direct contact with the adjacent actin filament bundle. Cells with actin pegs and onion-root cilia synapse onto adjacent neurites and secretory gland cells, indicating that one or both types of projections are sensory elements. Since the feeding responses of beroids are reported to depend on chemical and tactile stimuli to the lips, the cells bearing pegs and cilia may function as both mechanoreceptors and chemoreceptors, that is, as double sensory receptors.
Collapse
Affiliation(s)
- S Tamm
- Boston University Marine Program, Marine Biological Laboratory, Woods Hole, MA 02543
| | | |
Collapse
|
18
|
Affiliation(s)
- E C Beyer
- Department of Anatomy and Cellular Biology, Harvard Medical School, Boston, Massachusetts
| | | | | |
Collapse
|
19
|
Lindemann CB, Goltz JS, Kanous KS, Gardner TK, Olds-Clarke P. Evidence for an increased sensitivity to Ca2+ in the flagella of sperm from tw32/+mice. Mol Reprod Dev 1990; 26:69-77. [PMID: 2346648 DOI: 10.1002/mrd.1080260111] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The majority of sperm from mice carrying the tw32 haplotype undergo hyperactivation sooner than sperm from +/+ mice of the same strains (Olds-Clarke, Dev Biol 131:475-482, 1989). To investigate the mechanism underlying this abnormal motility, the Ca2+ sensitivity of their flagellar apparatus was compared to that of age- and strain-matched controls using Triton X-100-extracted sperm. Under these conditions, the curvature of the sperm flagellum is controlled by the free calcium concentration. Sperm from mice carrying the tw32 haplotype consistently exhibited a change in flagellar curvature at lower free calcium concentrations than controls. In addition, intact sperm from tw32/+ mice were much more likely than congenic control sperm to have a hook-like bend in the midpiece, which persisted throughout most of the beat cycle. Sperm exhibiting the hooked middle piece could be converted to a more normal appearance by 2 mM procaine, which immobilizes cytoplasmic calcium. Thus an increased sensitivity of the sperm motor apparatus to calcium could be the cause of the precocious hyperactivation of sperm from mice carrying the tw32 haplotype.
Collapse
Affiliation(s)
- C B Lindemann
- Department of Biological Sciences, Oakland University, Rochester, Michigan 48309-4401
| | | | | | | | | |
Collapse
|
20
|
Riechelmann H, Mann W, Maurer J. The influence of Ca2+ antagonists on the ciliary activity of the guinea pig trachea. Eur Arch Otorhinolaryngol 1990; 248:35-9. [PMID: 2083071 DOI: 10.1007/bf00634779] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The ciliary activity of the guinea pig tracheal respiratory epithelium was measured using a photoelectric device. Fourteen animals were administered 75 mg diltiazem/kg body weight 2 days, 1 day and 4 h prior to the investigation. Thirteen animals served as controls. In the pretreated group, the mean ciliary stroke frequency (13.4 +/- 3.0 Hz) was significantly lower (P = 0.02) than in the control group (16.6 +/- 3.7 Hz). The application of aerosolized 0.3 mmol/l nifedipine solution on the tracheal preparations of the control animals also significantly reduced the stroke frequency (P = 0.02). The ciliary activity never dropped beyond a frequency of about 8 Hz. The most probable interpretation of these results is a modulating effect of Ca2+ antagonists on ciliary activity by blocking voltage-gated calcium channels.
Collapse
Affiliation(s)
- H Riechelmann
- Department of Otolaryngology, Head and Neck Surgery, Johannes Gutenberg University, Mainz, Federal Republic of Germany
| | | | | |
Collapse
|
21
|
Tamm SL, Tamm S. Calcium sensitivity extends the length of ATP-reactivated ciliary axonemes. Proc Natl Acad Sci U S A 1989; 86:6987-91. [PMID: 2780555 PMCID: PMC297977 DOI: 10.1073/pnas.86.18.6987] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We use the Ca-dependent activation response of macrocilia of the ctenophore Beroë to map the distribution of Ca sensitivity along axonemes of detergent-extracted ATP-reactivated models. Local iontophoretic application of Ca (or Sr or Ba) to any site along the length of demembranated macrocilia in ATP-Mg solution elicits oscillatory bending. Bending responses are localized to the site of application of these cations and do not propagate. Ca sensitivity for initiating bends is, therefore, distributed along the entire length of the axonemes. Since Ca triggers ATP-dependent microtubule sliding disintegration of macrociliary axonemes, a Ca-sensitive mechanism for activating microtubule sliding extends the length of the axonemes. In contrast, local application of Ca to living dissociated macrociliary cells elicits beating only when applied to the base of the macrocilium, indicating that the effective site of Ca entry is localized to the membrane at the ciliary base. Therefore, the spatial distributions of membrane Ca permeability and axonemal Ca sensors do not coincide.
Collapse
Affiliation(s)
- S L Tamm
- Station Zoologique, Villefranche-sur-Mer, France
| | | |
Collapse
|
22
|
Slepak VZ, Pronin AN, Kiselyov OG, Voeikov VL, Frolova EI, Lipkin VM. Structure and function of the alpha-subunit of the GTP-binding protein Go from bovine cerebellum. JOURNAL OF PROTEIN CHEMISTRY 1989; 8:436-8. [PMID: 2506883 DOI: 10.1007/bf01674315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- V Z Slepak
- Shemyakin Institute of Bioorganic Chemistry, USSR Academy of Sciences, Moscow
| | | | | | | | | | | |
Collapse
|
23
|
Arkett SA. Development and senescence of control of ciliary locomotion in a gastropod veliger. JOURNAL OF NEUROBIOLOGY 1988; 19:612-23. [PMID: 3225558 DOI: 10.1002/neu.480190704] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The rhythmical ciliary arrest behavior characteristic of the veliger larvae of the prosobranch Calliostoma ligatum develops in a predictable sequence of events. Spontaneous, small-amplitude (1-3 mV) postsynaptic potentials (PSPs) are first recorded intracellularly from prototrochal ciliated cells at about 45 h after fertilization. Prototrochal ciliated cells, which are precursors of the locomotory, preoral ciliated cells of mature veligers, are electrically coupled to each other. Cilia beat continuously and erratically at this stage. PSP amplitude and duration gradually increase with age, and at about 56 h, preoral ciliated cells become electrically excitable. A single regenerative action potential first occurs at this time and causes a velum-wide, ciliary arrest. Between 56 and 72 h, the duration of the depolarizing phase of the preoral ciliated cell action potential decreases, the amplitude increases, and the hyperpolarizing undershoot develops. Preoral ciliated cell action potentials appear to be Ca2+-dependent throughout development. Shortening of the action potential duration and development of the hyperpolarizing undershoot may be due to activation of later developing K+ channels. As veligers become competent to metamorphose, the preoral velar cells and their connections with the body deteriorate.
Collapse
Affiliation(s)
- S A Arkett
- Department of Biology, University of Victoria, B.C
| |
Collapse
|
24
|
Tamm SL. Calcium activation of macrocilia in the ctenophore Beroë. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1988; 163:23-31. [PMID: 2455043 DOI: 10.1007/bf00611993] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
1. Macrocilia on the lips of the ctenophore Beroë are usually quiescent, but can be activated to beat rapidly and continuously by various stimuli. 2. During feeding, macrocilia beat actively and serve to spread the lips of Beroë over its prey. 3. Vigorous, repetitive mechanical stimulation of the lips evokes widespread activation of macrocilia via a pathway that is probably neural. 4. Extracellular electrical stimulation (DC or bipolar pulse-trains) elicits immediate activation of macrocilia on lip pieces, but not on dissociated cells. 5. Macrocilia on lip pieces are activated to beat by high KCl artificial sea water (ASW), but not by high KCl Ca-free ASW. Continuous beating for long periods is also elicited by high Ca ASW or Mg-free ASW, but not by Ca-Mg-free ASW. Addition of La, Cd, Co or Mn (10 mM) to high KCl ASW reversibly blocks activation. Verapamil, D-600, nifedipine, or BAY K 8644 (10 microM) has no effect on KC1-induced activation, but the anticalmodulin drug W-7 (10 microM) reversibly inhibits beating. 6. Mild heat treatment dissociates macrociliary cells from lip tissue. Such isolated macrociliary cells usually beat continuously in normal sea water, and swim in circular paths. Ca-free ASW, or addition of Co or Mn to ASW, inhibits beating of dissociated cells. High KCl ASW activates beating of quiescent, isolated macrociliary cells. 7. Ca-Mg-free ASW inhibits beating of dissociated macrociliary cells, and return to Mg-free ASW activates motility, allowing one to activate macrocilia on isolated cells simply by addition of Ca.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S L Tamm
- Boston University Marine Program, Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| |
Collapse
|
25
|
Tamm SL. Iontophoretic localization of Ca-sensitive sites controlling activation of ciliary beating in macrocilia of Beroë: the ciliary rete. CELL MOTILITY AND THE CYTOSKELETON 1988; 11:126-38. [PMID: 2903799 DOI: 10.1002/cm.970110206] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Macrocilia are thick compound ciliary organelles found on the lips of the ctenophore Beroë. Each macrocilium contains several hundred axonemes enclosed by a single common membrane around the shaft of the organelle. Macrocilia are activated to beat rapidly and continuously in the normal direction by stimulus-triggered Ca influx through voltage-dependent Ca channels (Tamm, 1988). Heat-dissociated macrociliary cells are spontaneously active without depolarizing stimuli, providing Ca is present (Tamm, 1988). Here we investigate the spatial distribution of macrociliary Ca channels by iontophoretic application of extracellular Ca to different sites along quiescent, "potentially activated" macrocilia of dissociated cells in Ca-free medium. We find that Ca sensitivity for eliciting motility is highest or resides exclusively on the basal portion of the macrociliary surface. This is the first demonstration of local differences in Ca sensitivity along living cilia or flagella. The Ca-sensitive region coincides morphologically with a reticulum of unfused ciliary membranes at the base of the macrocilium. This ciliary rete is in direct communication with the surrounding sea water. It is likely that the ciliary rete provides the necessary Ca influx to trigger beating by virtue of its greater Ca conductance (i.e., density of Ca channels) and/or greater total membrane area.
Collapse
Affiliation(s)
- S L Tamm
- Marine Biological Laboratory, Boston University Marine Program, Woods Hole, MA 02543
| |
Collapse
|