1
|
Chang W, Zhao Y, Rayêe D, Xie Q, Suzuki M, Zheng D, Cvekl A. Dynamic changes in whole genome DNA methylation, chromatin and gene expression during mouse lens differentiation. Epigenetics Chromatin 2023; 16:4. [PMID: 36698218 PMCID: PMC9875507 DOI: 10.1186/s13072-023-00478-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Cellular differentiation is marked by temporally and spatially coordinated gene expression regulated at multiple levels. DNA methylation represents a universal mechanism to control chromatin organization and its accessibility. Cytosine methylation of CpG dinucleotides regulates binding of methylation-sensitive DNA-binding transcription factors within regulatory regions of transcription, including promoters and distal enhancers. Ocular lens differentiation represents an advantageous model system to examine these processes as lens comprises only two cell types, the proliferating lens epithelium and postmitotic lens fiber cells all originating from the epithelium. RESULTS Using whole genome bisulfite sequencing (WGBS) and microdissected lenses, we investigated dynamics of DNA methylation and chromatin changes during mouse lens fiber and epithelium differentiation between embryos (E14.5) and newborns (P0.5). Histone H3.3 variant chromatin landscapes were also generated for both P0.5 lens epithelium and fibers by chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq). Tissue-specific features of DNA methylation patterns are demonstrated via comparative studies with embryonic stem (ES) cells and neural progenitor cells (NPCs) at Nanog, Pou5f1, Sox2, Pax6 and Six3 loci. Comparisons with ATAC-seq and RNA-seq data demonstrate that reduced methylation is associated with increased expression of fiber cell abundant genes, including crystallins, intermediate filament (Bfsp1 and Bfsp2) and gap junction proteins (Gja3 and Gja8), marked by high levels of histone H3.3 within their transcribed regions. Interestingly, Pax6-binding sites exhibited predominantly DNA hypomethylation in lens chromatin. In vitro binding of Pax6 proteins showed Pax6's ability to interact with sites containing one or two methylated CpG dinucleotides. CONCLUSIONS Our study has generated the first data on methylation changes between two different stages of mammalian lens development and linked these data with chromatin accessibility maps, presence of histone H3.3 and gene expression. Reduced DNA methylation correlates with expression of important genes involved in lens morphogenesis and lens fiber cell differentiation.
Collapse
Affiliation(s)
- William Chang
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Yilin Zhao
- Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Danielle Rayêe
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Qing Xie
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Masako Suzuki
- Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Deyou Zheng
- Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ales Cvekl
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
2
|
Bonnin N, Belville C, Chiambaretta F, Sapin V, Blanchon L. DNA methyl transferases are differentially expressed in the human anterior eye segment. Acta Ophthalmol 2014; 92:e366-71. [PMID: 24529261 DOI: 10.1111/aos.12365] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 01/06/2014] [Indexed: 01/30/2023]
Abstract
PURPOSE DNA methylation is an epigenetic mark involved in the control of genes expression. Abnormal epigenetic events have been reported in human pathologies but weakly documented in eye diseases. The purpose of this study was to establish DNMT mRNA and protein expression levels in the anterior eye segment tissues and their related (primary or immortalized) cell cultures as a first step towards future in vivo and in vitro methylomic studies. METHODS Total mRNA was extracted from human cornea, conjunctiva, anterior lens capsule, trabeculum and related cell cultures (cornea epithelial, trabecular meshwork, keratocytes for primary cells; and HCE, Chang, B-3 for immortalized cells). cDNA was quantified by real-time PCR using specific primers for DNMT1, 2, 3A, 3B and 3L. Immunolocalization assays were carried out on human cornea using specific primary antibodies for DNMT1, 2 and 3A, 3B and 3L. RESULTS All DNMT transcripts were detected in human cornea, conjunctiva, anterior lens capsule, trabeculum and related cells but showed statistically different expression patterns between tissues and cells. DNMT2 protein presented a specific and singular expression pattern in corneal endothelium. CONCLUSIONS This study produced the first inventory of the expression patterns of DNMTs in human adult anterior eye segment. Our research highlights that DNA methylation cannot be ruled out as a way to bring new insights into well-known ocular diseases. In addition, future DNA methylation studies using various cells as experimental models need to be conducted with attention to approach the results analysis from a global tissue perspective.
Collapse
Affiliation(s)
- Nicolas Bonnin
- EA 7281 R2D2; Biochemistry Laboratory; Medicine School; Auvergne University; F-63000 Clermont-Ferrand France
- Internal Medicine-Ophthalmology-ENT Department; Ophthalmology; Clermont-Ferrand University Hospital; Clermont-Ferrand France
| | - Corinne Belville
- EA 7281 R2D2; Biochemistry Laboratory; Medicine School; Auvergne University; F-63000 Clermont-Ferrand France
- GReD Laboratory; UMR CNRS 6293; Clermont University; INSERM U1103; Medicine School; Clermont-Ferrand France
| | - Frédéric Chiambaretta
- EA 7281 R2D2; Biochemistry Laboratory; Medicine School; Auvergne University; F-63000 Clermont-Ferrand France
- Internal Medicine-Ophthalmology-ENT Department; Ophthalmology; Clermont-Ferrand University Hospital; Clermont-Ferrand France
| | - Vincent Sapin
- EA 7281 R2D2; Biochemistry Laboratory; Medicine School; Auvergne University; F-63000 Clermont-Ferrand France
| | - Loïc Blanchon
- EA 7281 R2D2; Biochemistry Laboratory; Medicine School; Auvergne University; F-63000 Clermont-Ferrand France
| |
Collapse
|
3
|
Abstract
DNA methylation is a major epigenetic regulatory mechanism for gene expression and cell differentiation. Until recently, it was still unclear how unmethylated regions in mammalian genomes are protected from de novo methylation and whether or not active demethylating activity is involved. Even the role of molecules and the mechanisms underlying the processes of active demethylation itself is blurred. Emerging sequencing technologies have led to recent insights into the dynamic distribution of DNA methylation during development and the role of this epigenetic mark within a distinct genome context, such as the promoters, exons, or imprinted control regions. This review summarizes recent insights on the dynamic nature of DNA methylation and demethylation, as well as the mechanisms regulating active DNA demethylation in mammalian cells, which have been fundamental research interests in the field of epigenomics.
Collapse
Affiliation(s)
- Cong-Jun Li
- USDA, Agricultural Research Service, Bovine Functional Genomics Laboratory, Beltsville, MD, USA
| |
Collapse
|
4
|
Bergman Y, Cedar H. DNA methylation dynamics in health and disease. Nat Struct Mol Biol 2013; 20:274-81. [PMID: 23463312 DOI: 10.1038/nsmb.2518] [Citation(s) in RCA: 423] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 01/04/2013] [Indexed: 12/13/2022]
Abstract
DNA methylation is an epigenetic mark that is erased in the early embryo and then re-established at the time of implantation. In this Review, dynamics of DNA methylation during normal development in vivo are discussed, starting from fertilization through embryogenesis and postnatal growth, as well as abnormal methylation changes that occur in cancer.
Collapse
Affiliation(s)
- Yehudit Bergman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel.
| | | |
Collapse
|
5
|
Active DNA demethylation and DNA repair. Differentiation 2008; 77:1-11. [PMID: 19281759 DOI: 10.1016/j.diff.2008.09.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 06/19/2008] [Accepted: 07/07/2008] [Indexed: 12/17/2022]
Abstract
DNA methylation on cytosine is an epigenetic modification and is essential for gene regulation and genome stability in vertebrates. Traditionally DNA methylation was considered as the most stable of all heritable epigenetic marks. However, it has become clear that DNA methylation is reversible by enzymatic "active" DNA demethylation, with examples in plant cells, animal development and immune cells. It emerges that "pruning" of methylated cytosines by active DNA demethylation is an important determinant for the DNA methylation signature of a cell. Work in plants and animals shows that demethylation occurs by base excision and nucleotide excision repair. Far from merely protecting genomic integrity from environmental insult, DNA repair is therefore at the heart of an epigenetic activation process.
Collapse
|
6
|
Palacios D, Puri PL. The epigenetic network regulating muscle development and regeneration. J Cell Physiol 2006; 207:1-11. [PMID: 16155926 DOI: 10.1002/jcp.20489] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This review focuses on our current knowledge of the epigenetic changes regulating gene expression at the chromatin and DNA level, independently on the primary DNA sequence, to reprogram the nuclei of muscle precursors during developmental myogenesis and muscle regeneration. These epigenetic marks provide the blueprint by which the extra-cellular cues are interpreted at the nuclear level by the transcription machinery to select the repertoire of tissue-specific genes to be expressed. The reversibility of some of these changes necessarily reflects the dynamic nature of skeletal myogenesis, which entails the progression through two antagonistic processes--proliferation and differentiation. Other epigenetic modifications are instead associated to events conventionally considered as irreversible--e.g. maintenance of lineage commitment and terminal differentiation. However, recent results support the possibility that these events can be reversed, at least upon certain experimental conditions, thereby revealing a dynamic nature of many of the epigenetic modifications underlying skeletal myogenesis. The elucidation of the epigenetic network that regulates transcription during developmental myogenesis and muscle regeneration might provide the information instrumental to devise pharmacological interventions toward selective manipulation of gene expression to promote regeneration of skeletal muscles and possibly other tissue.
Collapse
Affiliation(s)
- Daniela Palacios
- Laboratory of Gene Expression, Dulbecco Telethon Institute at Fondazione A. Cesalpino. ICBTE, San Raffaele Biomedical Science Park of Rome, Italy
| | | |
Collapse
|
7
|
Bruniquel D, Schwartz RH. Selective, stable demethylation of the interleukin-2 gene enhances transcription by an active process. Nat Immunol 2003; 4:235-40. [PMID: 12548284 DOI: 10.1038/ni887] [Citation(s) in RCA: 352] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2002] [Accepted: 12/21/2002] [Indexed: 11/09/2022]
Abstract
A role for DNA demethylation in transcriptional regulation of genes expressed in differentiated somatic cells remains controversial. Here, we define a small region in the promoter-enhancer of the interleukin-2 (Il2) gene that demethylates in T lymphocytes following activation, and remains demethylated thereafter. This epigenetic change was necessary and sufficient to enhance transcription in reporter plasmids. The demethylation process started as early as 20 minutes after stimulation and was not prevented by a G1 to S phase cell cycle inhibitor that blocks DNA replication. These results imply that this demethylation process proceeds by an active enzymatic mechanism.
Collapse
Affiliation(s)
- Denis Bruniquel
- Laboratory of Cellular and Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0420, USA
| | | |
Collapse
|
8
|
El-Osta A, Wolffe AP. DNA methylation and histone deacetylation in the control of gene expression: basic biochemistry to human development and disease. Gene Expr 2000; 9:63-75. [PMID: 11097425 PMCID: PMC5964960 DOI: 10.3727/000000001783992731] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
DNA methylation is a major determinant in the epigenetic silencing of genes. The mechanisms underlying the targeting of DNA methylation and the subsequent repression of transcription are relevant to human development and disease, as well as for attempts at somatic gene therapy. The success of transgenic technologies in plants and animals is also compromised by DNA methylation-dependent silencing pathways. Recent biochemical experiments provide a mechanistic foundation for understanding the influence of DNA methylation on transcription. The DNA methyltransferase Dnmt1, and several methyl-CpG binding proteins, MeCP2, MBD2, and MBD3, all associate with histone deacetylase. These observations firmly connect DNA methylation with chromatin modifications. They also provide new pathways for the potential targeting of DNA methylation to repressive chromatin as well as the assembly of repressive chromatin on methylated DNA. Here we discuss the implications of the methylation-acetylation connection for human cancers and the developmental syndromes Fragile X and Rett, which involve a mistargeting of DNA methylation-dependent repression.
Collapse
Affiliation(s)
- Assam El-Osta
- Laboratory of Molecular Embryology, National Institute of Child Heath and Human Development, NIH, Bethesda, MD 20892-5431
| | - Alan P. Wolffe
- Laboratory of Molecular Embryology, National Institute of Child Heath and Human Development, NIH, Bethesda, MD 20892-5431
| |
Collapse
|
9
|
Hsieh CL. Evidence that protein binding specifies sites of DNA demethylation. Mol Cell Biol 1999; 19:46-56. [PMID: 9858530 PMCID: PMC83864 DOI: 10.1128/mcb.19.1.46] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/1998] [Accepted: 09/17/1998] [Indexed: 11/20/2022] Open
Abstract
It has been hypothesized that protein factors may protect CpG islands from methyltransferase during development and that demethylation may involve protein-DNA interactions at demethylated sites. However, direct evidence has been lacking. In this study, demethylation at the EBNA-1 binding sites of the Epstein-Barr virus latent replication origin, oriP, was investigated by using human cells. Several novel findings are discussed. First, there are specific preferential demethylation sites within the oriP region. Second, the DNA sequence of oriP alone is not the target of an active demethylation process. Third, EBNA-1 binding is required for the site-specific demethylation in oriP. Interestingly, CpG sites adjacent to and between the EBNA-1 sites do not become demethylated. Fourth, demethylation of the first DNA strand in oriP at the EBNA-1 binding sites involves a passive (replication-dependent) mechanism. The second-strand demethylation appears to occur through an active mechanism. That is, EBNA-1 protein binding prevents the EBNA-1 binding sites from being remethylated after one round of DNA replication, and it appears that an active demethylase then demethylates these hemimethylated sites. This study provides clear evidence that protein binding specifies sites of DNA demethylation and provides insights into the sequence of steps and the mechanism of demethylation.
Collapse
Affiliation(s)
- C L Hsieh
- Department of Urology and Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, California 90033, USA.
| |
Collapse
|
10
|
Riggs AD, Xiong Z, Wang L, LeBon JM. Methylation dynamics, epigenetic fidelity and X chromosome structure. NOVARTIS FOUNDATION SYMPOSIUM 1998; 214:214-25; discussion 225-32. [PMID: 9601020 DOI: 10.1002/9780470515501.ch13] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
DNA methylation of the X chromosome is reviewed and discussed, with emphasis on the partial methylation seen in the mouse X-linked Pgk1 promoter region. A new study of partial methylation is presented in which the methylation of CpG site H3 in the mouse Igf2 upstream region was quantitatively measured during growth of subcloned cells in tissue culture. Before subcloning the average methylation level was 50%. After subcloning, methylation was highly variable in early stage clones. With continued passage, clones initially having high methylation lost methylation, whereas clones initially having low methylation gained methylation. By about the 25th generation, all clones had returned to a steady-state methylation level of 50%. These findings are discussed in the context of epigenetic mechanisms and epigenetic fidelity. Interpretation of the results is made according to a model that assumes stochastic methylation and demethylation, with rate parameters influenced by local chromatin structure. A second type of study is reported in which we have measured chromatin accessibility differences between the active X chromosome (Xa) and the inactive X chromosome (Xi). We found that Xa/Xi differences in accessibility to DNase I are surprisingly labile. Relatively infrequent DNA nicks rapidly eliminate differential accessibility.
Collapse
Affiliation(s)
- A D Riggs
- Biology Department, Beckman Research Institute of the City of Hope, Duarte, CA 91010-0269, USA
| | | | | | | |
Collapse
|
11
|
Abrink M, Larsson E, Hellman L. Demethylation of ERV3, an endogenous retrovirus regulating the Krüppel-related zinc finger gene H-plk, in several human cell lines arrested during early monocyte development. DNA Cell Biol 1998; 17:27-37. [PMID: 9468220 DOI: 10.1089/dna.1998.17.27] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The activation of H-plk (Human-proviral linked Krüppel), a human Krüppel-related zinc finger gene in organs such as placenta, adrenal cortex, and testis, is probably due to insertion of an endogenous retrovirus, ERV3, upstream of the gene. Several differently spliced transcripts originate from this locus, e.g., a transcript encoding the retroviral envelope protein and a few differentially spliced transcripts encoding both the env and the zinc finger protein. During a screening for zinc finger proteins expressed during monocyte differentiation, two H-plk encoding cDNA clones were isolated from the human monoblast cell line U-937. Northern blot analysis of a panel of human hematopoietic cell lines showed high levels of constitutive expression of this zinc finger transcript in two monocytic cell lines (U-937 and THP-1) but not in any of the other cell lines or tissues tested. In addition, the H-plk transcript was upregulated by the phorbolester PMA in U-937 and in an additional monocytic cell line, MonoMac 6. Genomic Southern blot analysis of a panel of hematopoietic cell lines, after cleavage with the methylation sensitive enzyme Xho I, led to the detection of tissue specific demethylation in all three monocytic cell lines. The Xho I site was mapped to a position just downstream of the regulatory region of the endogenous retrovirus. By analysis of the U-937 cell line with two additional restriction enzymes, Nar I and Sma I, the demethylation was shown to affect at least three independent CpG dinucleotides in this region of the gene. In summary, the present data provide evidence for specific demethylation of this genomic region, in cells of monocytic origin, resulting in enhanced transcription of the genetic regions derived from both the env region of the retrovirus and the Krüppel-related zinc finger gene.
Collapse
Affiliation(s)
- M Abrink
- Department of Medical Immunology and Microbiology, BMC, Uppsala University, Sweden
| | | | | |
Collapse
|
12
|
Razin A, Kafri T. DNA methylation from embryo to adult. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1994; 48:53-81. [PMID: 7938554 DOI: 10.1016/s0079-6603(08)60853-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- A Razin
- Department of Cellular Biochemistry, Hebrew University Medical School, Jerusalem, Israel
| | | |
Collapse
|
13
|
Abstract
DNA methylation plays a role in the repression of gene expression in animal cells. In the mouse preimplantation embryo, most genes are unmethylated but a wave of de novo methylation prior to gastrulation generates a bimodal pattern characterized by unmethylated CpG island-containing housekeeping genes and fully modified tissue-specific genes. Demethylation of individual genes then takes place during cell type specific differentiation, and this demodification may be a required step in the process of transcriptional activation. DNA modification is also involved in the maintenance of gene repression on the inactive X chromosome in female somatic cells and the marking of parental alleles at genomically imprinted gene loci.
Collapse
Affiliation(s)
- M Brandeis
- Department of Cellular Biochemistry, Hebrew University, Jerusalem, Israel
| | | | | |
Collapse
|
14
|
Jost JP, Saluz HP. Steroid hormone dependent changes in DNA methylation and its significance for the activation or silencing of specific genes. EXS 1993; 64:425-451. [PMID: 8380354 DOI: 10.1007/978-3-0348-9118-9_19] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Affiliation(s)
- J P Jost
- Friedrich Miescher-Institut, Basel, Switzerland
| | | |
Collapse
|
15
|
Affiliation(s)
- A Razin
- Department of Cellular Biochemistry, Hebrew University, Hadassah Medical School, Jerusalem, Israel
| | | |
Collapse
|
16
|
5-Azacytidine treatment of HA-A melanoma cells induces Sp1 activity and concomitant transforming growth factor alpha expression. Mol Cell Biol 1992. [PMID: 1380648 DOI: 10.1128/mcb.12.9.3998] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Evidence indicates DNA methylation as a part of the regulatory machinery controlling mammalian gene expression. The human melanoma cell line HA-A expresses low levels of transforming growth factor alpha (TGF-alpha). TGF-alpha mRNA accumulated, however, in response to DNA demethylation induced by a nucleoside analog, 5-azacytidine (5-azaC). The importance of DNA methylation in the TGF-alpha promoter region was examined by a transient transfection assay with luciferase reporter plasmids containing a portion of the TGF-alpha promoter. 5-azaC treatment of HA-A cells before the transfection caused a significant increase in the luciferase activity. Since input plasmids were confirmed to remain unmethylated, DNA demethylation of the TGF-alpha promoter itself does not account for the observed increase in TGF-alpha mRNA. Using an electrophoretic mobility shift assay, enhanced formation of protein-TGF-alpha promoter complex was detected in response to 5-azaC treatment. This 5-azaC-induced complex was shown to contain the transcription factor Sp1 by the following criteria: the protein-DNA complex formed on the TGF-alpha promoter contained immunoreactive Sp1; the mobility of the complex in an electrophoretic mobility shift assay was similar to that formed by recombinant Sp1; and DNase I footprinting analysis demonstrated that the 5-azaC-induced complex produced a footprint on the TGF-alpha promoter identical to that of authentic Sp1. These observations suggest that 5-azaC induces TGF-alpha expression by augmenting the Sp1 activity. However, neither the Sp1 mRNA nor its protein was induced by 5-azaC. These results suggest that in HA-A cells, TGF-alpha expression is down-modulated by DNA methylation. In addition, this process may involve the specific regulation of Sp1 activity without altering the amount of the transcription factor.
Collapse
|
17
|
Shin TH, Paterson AJ, Grant JH, Meluch AA, Kudlow JE. 5-Azacytidine treatment of HA-A melanoma cells induces Sp1 activity and concomitant transforming growth factor alpha expression. Mol Cell Biol 1992; 12:3998-4006. [PMID: 1380648 PMCID: PMC360286 DOI: 10.1128/mcb.12.9.3998-4006.1992] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Evidence indicates DNA methylation as a part of the regulatory machinery controlling mammalian gene expression. The human melanoma cell line HA-A expresses low levels of transforming growth factor alpha (TGF-alpha). TGF-alpha mRNA accumulated, however, in response to DNA demethylation induced by a nucleoside analog, 5-azacytidine (5-azaC). The importance of DNA methylation in the TGF-alpha promoter region was examined by a transient transfection assay with luciferase reporter plasmids containing a portion of the TGF-alpha promoter. 5-azaC treatment of HA-A cells before the transfection caused a significant increase in the luciferase activity. Since input plasmids were confirmed to remain unmethylated, DNA demethylation of the TGF-alpha promoter itself does not account for the observed increase in TGF-alpha mRNA. Using an electrophoretic mobility shift assay, enhanced formation of protein-TGF-alpha promoter complex was detected in response to 5-azaC treatment. This 5-azaC-induced complex was shown to contain the transcription factor Sp1 by the following criteria: the protein-DNA complex formed on the TGF-alpha promoter contained immunoreactive Sp1; the mobility of the complex in an electrophoretic mobility shift assay was similar to that formed by recombinant Sp1; and DNase I footprinting analysis demonstrated that the 5-azaC-induced complex produced a footprint on the TGF-alpha promoter identical to that of authentic Sp1. These observations suggest that 5-azaC induces TGF-alpha expression by augmenting the Sp1 activity. However, neither the Sp1 mRNA nor its protein was induced by 5-azaC. These results suggest that in HA-A cells, TGF-alpha expression is down-modulated by DNA methylation. In addition, this process may involve the specific regulation of Sp1 activity without altering the amount of the transcription factor.
Collapse
Affiliation(s)
- T H Shin
- Department of Cell Biology, University of Alabama, Birmingham 35294
| | | | | | | | | |
Collapse
|
18
|
Affiliation(s)
- H M Blau
- Department of Pharmacology, Stanford University School of Medicine, California 94305
| | | |
Collapse
|
19
|
Bloemendal H, de Jong WW. Lens proteins and their genes. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1991; 41:259-81. [PMID: 1882078 DOI: 10.1016/s0079-6603(08)60012-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- H Bloemendal
- Department of Biochemistry, University of Nijmegen, The Netherlands
| | | |
Collapse
|
20
|
Affiliation(s)
- R Holliday
- CSIRO Laboratory for Molecular Biology, Sydney, NSW, Australia
| |
Collapse
|
21
|
Frank D, Lichtenstein M, Paroush Z, Bergman Y, Shani M, Razin A, Cedar H. Demethylation of genes in animal cells. Philos Trans R Soc Lond B Biol Sci 1990; 326:241-51. [PMID: 1968661 DOI: 10.1098/rstb.1990.0008] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Tissue-specific animal cell genes are usually fully methylated in the germ line and become demethylated in those cell types in which they are expressed. To investigate this process, we inserted a methylated IgG kappa gene into fibroblasts and lymphocytes at various stages of development. The results show that this gene undergoes demethylation only in the mature lymphocytes and therefore suggest that the ability to demethylate a gene is developmentally regulated. These studies were supported by similar experiments using the rat Insulin I gene, and in this case it appears that the cis-acting elements that control demethylation may be different from those responsible for gene activation. The ability to demethylate the housekeeping gene APRT is also under developmental control, because this occurs only in embryonic cells, both in tissue culture and in transgenic mice.
Collapse
Affiliation(s)
- D Frank
- Department of Cellular Biochemistry, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
22
|
Developmental regulation of hypomethylation of delta-crystallin genes in chicken embryo lens cells. Mol Cell Biol 1989. [PMID: 2779557 DOI: 10.1128/mcb.9.7.3132] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sequences in the two delta-crystallin genes become hypomethylated when they are expressed in the chick lens. This system is particularly advantageous for studying temporal changes in hypomethylation, since lens tissue can be isolated at all developmental stages. In previous work we have shown that most HpaII sites become hypomethylated within the delta 1-crystallin gene long after delta-crystallin gene activation. One site is hypomethylated when crystallin mRNA begins to be synthesized at high levels at 50 h; we show here that this site maps to the 3' end (intron 15) of the delta 1-crystallin gene. In addition, we have examined the methylation status of HpaII and HhaI sites found near the 5' end of the delta 1-crystallin gene. Two HhaI sites adjacent to a viral core enhancer sequence in intron 2 are also first hypomethylated at 50 h. These findings point to regions of the delta 1 gene that should be investigated further for functional significance in regulating delta-crystallin transcription.
Collapse
|
23
|
Sullivan CH, Norman JT, Borrás T, Grainger RM. Developmental regulation of hypomethylation of delta-crystallin genes in chicken embryo lens cells. Mol Cell Biol 1989; 9:3132-5. [PMID: 2779557 PMCID: PMC362788 DOI: 10.1128/mcb.9.7.3132-3135.1989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Sequences in the two delta-crystallin genes become hypomethylated when they are expressed in the chick lens. This system is particularly advantageous for studying temporal changes in hypomethylation, since lens tissue can be isolated at all developmental stages. In previous work we have shown that most HpaII sites become hypomethylated within the delta 1-crystallin gene long after delta-crystallin gene activation. One site is hypomethylated when crystallin mRNA begins to be synthesized at high levels at 50 h; we show here that this site maps to the 3' end (intron 15) of the delta 1-crystallin gene. In addition, we have examined the methylation status of HpaII and HhaI sites found near the 5' end of the delta 1-crystallin gene. Two HhaI sites adjacent to a viral core enhancer sequence in intron 2 are also first hypomethylated at 50 h. These findings point to regions of the delta 1 gene that should be investigated further for functional significance in regulating delta-crystallin transcription.
Collapse
Affiliation(s)
- C H Sullivan
- Department of Biology, Gilmer Hall, University of Virginia, Charlottesville 22901
| | | | | | | |
Collapse
|