1
|
O'Connor PBF. The Evolutionary Transition of the RNA World to Obcells to Cellular-Based Life. J Mol Evol 2024; 92:278-285. [PMID: 38683368 DOI: 10.1007/s00239-024-10171-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/08/2024] [Indexed: 05/01/2024]
Abstract
The obcell hypothesis is a proposed route for the RNA world to develop into a primitive cellular one. It posits that this transition began with the emergence of the proto-ribosome which enabled RNA to colonise the external surface of lipids by the synthesis of amphipathic peptidyl-RNAs. The obcell hypothesis also posits that the emergence of a predation-based ecosystem provided a selection mechanism for continued sophistication amongst early life forms. Here, I argue for this hypothesis owing to its significant explanatory power; it offers a rationale why a ribosome which initially was capable only of producing short non-coded peptides was advantageous and it forgoes issues related to maintaining a replicating RNA inside a lipid enclosure. I develop this model by proposing that the evolutionary selection for improved membrane anchors resulted in the emergence of primitive membrane pores which enabled obcells to gradually evolve into a cellular morphology. Moreover, I introduce a model of obcell production which advances that tRNAs developed from primers of the RNA world.
Collapse
|
2
|
Ono C, Sunami S, Ishii Y, Kim HJ, Kakegawa T, Benner SA, Furukawa Y. Abiotic Ribose Synthesis Under Aqueous Environments with Various Chemical Conditions. ASTROBIOLOGY 2024; 24:489-497. [PMID: 38696654 DOI: 10.1089/ast.2023.0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Ribose is the defining sugar in ribonucleic acid (RNA), which is often proposed to have carried the genetic information and catalyzed the biological reactions of the first life on Earth. Thus, abiological processes that yield ribose under prebiotic conditions have been studied for decades. However, aqueous environments required for the formation of ribose from materials available in quantity under geologically reasonable models, where the ribose formed is not immediately destroyed, remain unclear. This is due in large part to the challenge of analysis of carbohydrates formed under a wide range of aqueous conditions. Thus, the formation of ribose on prebiotic Earth has sometimes been questioned. We investigated the quantitative effects of pH, temperature, cation, and the concentrations of formaldehyde and glycolaldehyde on the synthesis of diverse sugars, including ribose. The results suggest a range of conditions that produce ribose and that ribose could have formed in constrained aquifers on prebiotic Earth.
Collapse
Affiliation(s)
- Chinatsu Ono
- Department of Earth Science, Tohoku University, Aoba-ku, Sendai, Japan
| | - Sako Sunami
- Department of Earth Science, Tohoku University, Aoba-ku, Sendai, Japan
| | - Yuka Ishii
- Department of Earth Science, Tohoku University, Aoba-ku, Sendai, Japan
| | - Hyo-Joong Kim
- Foundation for Applied Molecular Evolution, Alachua, Florida, USA
- Firebird Biomolecular Sciences LLC, Alachua, Florida, USA
| | - Takeshi Kakegawa
- Department of Earth Science, Tohoku University, Aoba-ku, Sendai, Japan
| | - Steven A Benner
- Foundation for Applied Molecular Evolution, Alachua, Florida, USA
- Firebird Biomolecular Sciences LLC, Alachua, Florida, USA
| | | |
Collapse
|
3
|
Ariza-Mateos A, Briones C, Perales C, Bayo-Jiménez MT, Domingo E, Gómez J. Viruses as archaeological tools for uncovering ancient molecular relationships. Ann N Y Acad Sci 2023; 1529:3-13. [PMID: 37801367 DOI: 10.1111/nyas.15071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
The entry of a virus into the host cell always implies the alteration of certain intracellular molecular relationships, some of which may involve the recovery of ancient cellular activities. In this sense, viruses are archaeological tools for identifying unexpressed activities in noninfected cells. Among these, activities that hinder virus propagation may represent cellular defense mechanisms, for example, activities that mutagenize the viral genome such as ADAR-1 or APOBEC activities. Instead, those that facilitate virus propagation can be interpreted as the result of viral adaptation to-or mimicking-cellular structures, enabling the virus to perform anthropomorphic activities, including hijacking, manipulating, and reorganizing cellular factors for their own benefit. The alternative we consider here is that some of these second set of cellular activities were already in the uninfected cell but silenced, under the negative control of the cell or lineage, and that they represent a necessary precondition for viral infection. For example, specifically loading an amino acid at the 3'-end of the mRNA of some plant viruses by aminoacyl-tRNA synthetases has proved essential for virus infection despite this reaction not occurring with cellular mRNAs. Other activities of this type are discussed here, together with the biological context in which they acquire a coherent meaning, that is, genetic latency and molecular conflict.
Collapse
Affiliation(s)
- Ascensión Ariza-Mateos
- Laboratory of RNA Archaeology, Instituto de Parasitología y Biomedicina "López-Neyra" (CSIC), Granada, Spain
| | - Carlos Briones
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| | - Celia Perales
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - María Teresa Bayo-Jiménez
- Laboratory of RNA Archaeology, Instituto de Parasitología y Biomedicina "López-Neyra" (CSIC), Granada, Spain
| | - Esteban Domingo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Jordi Gómez
- Laboratory of RNA Archaeology, Instituto de Parasitología y Biomedicina "López-Neyra" (CSIC), Granada, Spain
| |
Collapse
|
4
|
Hughes LA, Rudler DL, Siira SJ, McCubbin T, Raven SA, Browne JM, Ermer JA, Rientjes J, Rodger J, Marcellin E, Rackham O, Filipovska A. Copy number variation in tRNA isodecoder genes impairs mammalian development and balanced translation. Nat Commun 2023; 14:2210. [PMID: 37072429 PMCID: PMC10113395 DOI: 10.1038/s41467-023-37843-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/29/2023] [Indexed: 04/20/2023] Open
Abstract
The number of tRNA isodecoders has increased dramatically in mammals, but the specific molecular and physiological reasons for this expansion remain elusive. To address this fundamental question we used CRISPR editing to knockout the seven-membered phenylalanine tRNA gene family in mice, both individually and combinatorially. Using ATAC-Seq, RNA-seq, ribo-profiling and proteomics we observed distinct molecular consequences of single tRNA deletions. We show that tRNA-Phe-1-1 is required for neuronal function and its loss is partially compensated by increased expression of other tRNAs but results in mistranslation. In contrast, the other tRNA-Phe isodecoder genes buffer the loss of each of the remaining six tRNA-Phe genes. In the tRNA-Phe gene family, the expression of at least six tRNA-Phe alleles is required for embryonic viability and tRNA-Phe-1-1 is most important for development and survival. Our results reveal that the multi-copy configuration of tRNA genes is required to buffer translation and viability in mammals.
Collapse
Affiliation(s)
- Laetitia A Hughes
- Harry Perkins Institute of Medical Research, Perth, WA, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA, 6009, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, WA, 6009, Australia
| | - Danielle L Rudler
- Harry Perkins Institute of Medical Research, Perth, WA, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA, 6009, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, WA, 6009, Australia
| | - Stefan J Siira
- Harry Perkins Institute of Medical Research, Perth, WA, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA, 6009, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, WA, 6009, Australia
| | - Tim McCubbin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, 4072, QLD, Australia
| | - Samuel A Raven
- Harry Perkins Institute of Medical Research, Perth, WA, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA, 6009, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, WA, 6009, Australia
| | - Jasmin M Browne
- Harry Perkins Institute of Medical Research, Perth, WA, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA, 6009, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, WA, 6009, Australia
| | - Judith A Ermer
- Harry Perkins Institute of Medical Research, Perth, WA, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA, 6009, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, WA, 6009, Australia
| | - Jeanette Rientjes
- Monash Genome Modification Platform, Monash University, 35 Rainforest Walk, Clayton, VIC, 3800, Australia
| | - Jennifer Rodger
- School of Biological Sciences (Physiology), The University of Western Australia, Crawley, WA, 6009, Australia
- Perron Institute for Neurological and Translational Sciences, Nedlands, WA, 6009, Australia
| | - Esteban Marcellin
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA, 6009, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, 4072, QLD, Australia
- Queensland Metabolomics and Proteomics (Q-MAP), The University of Queensland, Brisbane, 4072, QLD, Australia
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research, Perth, WA, Australia.
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA, 6009, Australia.
- Curtin Medical School, Curtin University, Bentley, WA, 6102, Australia.
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, 6102, Australia.
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, WA, Australia.
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research, Perth, WA, Australia.
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA, 6009, Australia.
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, WA, 6009, Australia.
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, WA, Australia.
| |
Collapse
|
5
|
Mechanism of Chiral-Selective Aminoacylation of an RNA Minihelix Explored by QM/MM Free-Energy Simulations. Life (Basel) 2023; 13:life13030722. [PMID: 36983877 PMCID: PMC10057131 DOI: 10.3390/life13030722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 03/10/2023] Open
Abstract
Aminoacylation of a primordial RNA minihelix composed of D-ribose shows L-amino acid preference over D-amino acid without any ribozymes or enzymes. This preference in the amino acylation reaction likely plays an important role in the establishment of homochirality in L-amino acid in modern proteins. However, molecular mechanisms of the chiral selective reaction remain unsolved mainly because of difficulty in direct observation of the reaction at the molecular scale by experiments. For seeking a possible mechanism of the chiral selectivity, quantum mechanics/molecular mechanics (QM/MM) umbrella sampling molecular dynamics (MD) simulations of the aminoacylation reactions in a modeled RNA were performed to investigate differences in their free-energy profiles along the reactions for L- and D-alanine and its physicochemical origin. The reaction is initiated by approaching a 3′-oxygen of the RNA minihelix to the carbonyl carbon of an aminoacyl phosphate oligonucleotide. The QM/MM umbrella sampling MD calculations showed that the height of the free-energy barrier for L-alanine aminoacylation reaction was 17 kcal/mol, which was 9 kcal/mol lower than that for the D-alanine system. At the transition state, the distance between the negatively charged 3′-oxygen and the positively charged amino group of L-alanine was shorter than that of D-alanine, which was caused by the chirality difference of the amino acid. These results indicate that the transition state for L-alanine is more electrostatically stabilized than that for D-alanine, which would be a plausible mechanism previously unexplained for chiral selectivity in the RNA minihelix aminoacylation.
Collapse
|
6
|
Demongeot J, Seligmann H. Evolution of small and large ribosomal RNAs from accretion of tRNA subelements. Biosystems 2022; 222:104796. [DOI: 10.1016/j.biosystems.2022.104796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/02/2022]
|
7
|
Robin AN, Denton KK, Horna Lowell ES, Dulay T, Ebrahimi S, Johnson GC, Mai D, O’Fallon S, Philson CS, Speck HP, Zhang XP, Nonacs P. Major Evolutionary Transitions and the Roles of Facilitation and Information in Ecosystem Transformations. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.711556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A small number of extraordinary “Major Evolutionary Transitions” (METs) have attracted attention among biologists. They comprise novel forms of individuality and information, and are defined in relation to organismal complexity, irrespective of broader ecosystem-level effects. This divorce between evolutionary and ecological consequences qualifies unicellular eukaryotes, for example, as a MET although they alone failed to significantly alter ecosystems. Additionally, this definition excludes revolutionary innovations not fitting into either MET type (e.g., photosynthesis). We recombine evolution with ecology to explore how and why entire ecosystems were newly created or radically altered – as Major System Transitions (MSTs). In doing so, we highlight important morphological adaptations that spread through populations because of their immediate, direct-fitness advantages for individuals. These are Major Competitive Transitions, or MCTs. We argue that often multiple METs and MCTs must be present to produce MSTs. For example, sexually-reproducing, multicellular eukaryotes (METs) with anisogamy and exoskeletons (MCTs) significantly altered ecosystems during the Cambrian. Therefore, we introduce the concepts of Facilitating Evolutionary Transitions (FETs) and Catalysts as key events or agents that are insufficient themselves to set a MST into motion, but are essential parts of synergies that do. We further elucidate the role of information in MSTs as transitions across five levels: (I) Encoded; (II) Epigenomic; (III) Learned; (IV) Inscribed; and (V) Dark Information. The latter is ‘authored’ by abiotic entities rather than biological organisms. Level IV has arguably allowed humans to produce a MST, and V perhaps makes us a FET for a future transition that melds biotic and abiotic life into one entity. Understanding the interactive processes involved in past major transitions will illuminate both current events and the surprising possibilities that abiotically-created information may produce.
Collapse
|
8
|
Martínez-Giménez JA, Tabares-Seisdedos R. Possible Ancestral Functions of the Genetic and RNA Operational Precodes and the Origin of the Genetic System. ORIGINS LIFE EVOL B 2021; 51:167-183. [PMID: 34097191 DOI: 10.1007/s11084-021-09610-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/17/2021] [Indexed: 11/24/2022]
Abstract
The origin of genetic systems is the central problem in the study of the origin of life for which various explanatory hypotheses have been presented. One model suggests that both ancestral transfer ribonucleic acid (tRNA) molecules and primitive ribosomes were originally involved in RNA replication (Campbell 1991). According to this model the early tRNA molecules catalyzed their own self-loading with a trinucleotide complementary to their anticodon triplet, while the primordial ribosome (protoribosome) catalyzed the transfer of these terminal trinucleotides from one tRNA to another tRNA harboring the growing RNA polymer at the 3´-end.Here we present the notion that the anticodon-codon-like pairs presumably located in the acceptor stem of primordial tRNAs (Rodin et al. 1996) (thus being and remaining, after the code and translation origins, the major contributor to the RNA operational code (Schimmel et al. 1993)) might have originally been used for RNA replication rather than translation; these anticodon and acceptor stem triplets would have been involved in accurately loading the 3'-end of tRNAs with a trinucleotide complementary to their anticodon triplet, thus allowing the accurate repair of tRNAs for their use by the protoribosome during RNA replication.We propose that tRNAs could have catalyzed their own trinucleotide self-loading by forming catalytic tRNA dimers which would have had polymerase activity. Therefore, the loading mechanism and its evolution may have been a basic step in the emergence of new genetic mechanisms such as genetic translation. The evolutionary implications of this proposed loading mechanism are also discussed.
Collapse
Affiliation(s)
| | - Rafael Tabares-Seisdedos
- Departamento de Medicina, Facultad de Medicina de Valencia, Universidad de Valencia, Av. Blasco Ibañez 17, 46010, Valencia, Spain.
| |
Collapse
|
9
|
Cojocaru R, Unrau PJ. Processive RNA polymerization and promoter recognition in an RNA World. Science 2021; 371:1225-1232. [PMID: 33737482 DOI: 10.1126/science.abd9191] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 02/04/2021] [Indexed: 12/21/2022]
Abstract
Early life is thought to have required the self-replication of RNA by RNA replicases. However, how such replicases evolved and subsequently enabled gene expression remains largely unexplored. We engineered and selected a holopolymerase ribozyme that uses a sigma factor-like specificity primer to first recognize an RNA promoter sequence and then, in a second step, rearrange to a processive elongation form. Using its own sequence, the polymerase can also program itself to polymerize from certain RNA promoters and not others. This selective promoter-based polymerization could allow an RNA replicase ribozyme to define "self" from "nonself," an important development for the avoidance of replicative parasites. Moreover, the clamp-like mechanism of this polymerase could eventually enable strand invasion, a critical requirement for replication in the early evolution of life.
Collapse
Affiliation(s)
- Razvan Cojocaru
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Peter J Unrau
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6.
| |
Collapse
|
10
|
Zhong Q, Fu X, Zhang T, Zhou T, Yue M, Liu J, Li Z. Phylogeny and evolution of chloroplast tRNAs in Adoxaceae. Ecol Evol 2021; 11:1294-1309. [PMID: 33598131 PMCID: PMC7863635 DOI: 10.1002/ece3.7133] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 11/14/2020] [Accepted: 11/23/2020] [Indexed: 12/24/2022] Open
Abstract
Chloroplasts are semiautonomous organelles found in photosynthetic plants. The major functions of chloroplasts include photosynthesis and carbon fixation, which are mainly regulated by its circular genomes. In the highly conserved chloroplast genome, the chloroplast transfer RNA genes (cp tRNA) play important roles in protein translation within chloroplasts. However, the evolution of cp tRNAs remains unclear. Thus, in the present study, we investigated the evolutionary characteristics of chloroplast tRNAs in five Adoxaceae species using 185 tRNA gene sequences. In total, 37 tRNAs encoding 28 anticodons are found in the chloroplast genome in Adoxaceae species. Some consensus sequences are found within the Ψ-stem and anticodon loop of the tRNAs. Some putative novel structures were also identified, including a new stem located in the variable region of tRNATyr in a similar manner to the anticodon stem. Furthermore, phylogenetic and evolutionary analyses indicated that synonymous tRNAs may have evolved from multiple ancestors and frequent tRNA duplications during the evolutionary process may have been primarily caused by positive selection and adaptive evolution. The transition and transversion rates are uneven among different tRNA isotypes. For all tRNAs, the transition rate is greater with a transition/transversion bias of 3.13. Phylogenetic analysis of cp tRNA suggested that the type I introns in different taxa (including eukaryote organisms and cyanobacteria) share the conserved sequences "U-U-x2-C" and "U-x-G-x2-T," thereby indicating the diverse cyanobacterial origins of organelles. This detailed study of cp tRNAs in Adoxaceae may facilitate further investigations of the evolution, phylogeny, structure, and related functions of chloroplast tRNAs.
Collapse
Affiliation(s)
- Qiu‐Yi Zhong
- Shaanxi Key Laboratory for Animal ConservationKey Laboratory of Resource Biology and Biotechnology in Western ChinaMinistry of EducationCollege of Life SciencesNorthwest UniversityXi'anChina
- Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of BotanyChinese Academy of SciencesKunmingChina
| | - Xiao‐Gang Fu
- Shaanxi Key Laboratory for Animal ConservationKey Laboratory of Resource Biology and Biotechnology in Western ChinaMinistry of EducationCollege of Life SciencesNorthwest UniversityXi'anChina
| | - Ting‐Ting Zhang
- Shaanxi Key Laboratory for Animal ConservationKey Laboratory of Resource Biology and Biotechnology in Western ChinaMinistry of EducationCollege of Life SciencesNorthwest UniversityXi'anChina
| | - Tong Zhou
- Shaanxi Key Laboratory for Animal ConservationKey Laboratory of Resource Biology and Biotechnology in Western ChinaMinistry of EducationCollege of Life SciencesNorthwest UniversityXi'anChina
| | - Ming Yue
- Shaanxi Key Laboratory for Animal ConservationKey Laboratory of Resource Biology and Biotechnology in Western ChinaMinistry of EducationCollege of Life SciencesNorthwest UniversityXi'anChina
| | - Jian‐Ni Liu
- Department of GeologyState Key Laboratory of Continental DynamicsEarly Life InstituteNorthwest UniversityXi'anChina
| | - Zhong‐Hu Li
- Shaanxi Key Laboratory for Animal ConservationKey Laboratory of Resource Biology and Biotechnology in Western ChinaMinistry of EducationCollege of Life SciencesNorthwest UniversityXi'anChina
| |
Collapse
|
11
|
Szilágyi A, Kovács VP, Szathmáry E, Santos M. Evolution of linkage and genome expansion in protocells: The origin of chromosomes. PLoS Genet 2020; 16:e1009155. [PMID: 33119583 PMCID: PMC7665907 DOI: 10.1371/journal.pgen.1009155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 11/13/2020] [Accepted: 09/24/2020] [Indexed: 11/18/2022] Open
Abstract
Chromosomes are likely to have assembled from unlinked genes in early evolution. Genetic linkage reduces the assortment load and intragenomic conflict in reproducing protocell models to the extent that chromosomes can go to fixation even if chromosomes suffer from a replicative disadvantage, relative to unlinked genes, proportional to their length. Here we numerically show that chromosomes spread within protocells even if recurrent deleterious mutations affecting replicating genes (as ribozymes) are considered. Dosage effect selects for optimal genomic composition within protocells that carries over to the genic composition of emerging chromosomes. Lacking an accurate segregation mechanism, protocells continue to benefit from the stochastic corrector principle (group selection of early replicators), but now at the chromosome level. A remarkable feature of this process is the appearance of multigene families (in optimal genic proportions) on chromosomes. An added benefit of chromosome formation is an increase in the selectively maintainable genome size (number of different genes), primarily due to the marked reduction of the assortment load. The establishment of chromosomes is under strong positive selection in protocells harboring unlinked genes. The error threshold of replication is raised to higher genome size by linkage due to the fact that deleterious mutations affecting protocells metabolism (hence fitness) show antagonistic (diminishing return) epistasis. This result strengthens the established benefit conferred by chromosomes on protocells allowing for the fixation of highly specific and efficient enzymes. The emergence of chromosomes harboring several genes is a crucial ingredient of the major evolutionary transition from naked replicators to cells. Linkage of replicating genes reduces conflict between them and alleviates the problem of chance loss of genes upon stochastic protocell fission. The emerging organization of protocells maintaining several segregating chromosomes with balanced gene composition also allows for an increase in the number of gene types despite recurrent deleterious mutations. We suggest that this interim genomic organization enabled protocells to evolve specific and efficient enzymes and paved the way toward an accurate mechanism for chromosome segregation later in evolution.
Collapse
Affiliation(s)
- András Szilágyi
- Institute of Evolution, Centre for Ecological Research, Tihany, Hungary
- Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Budapest, Hungary
- Center for the Conceptual Foundations of Science, Parmenides Foundation, Pullach/Munich, Germany
| | | | - Eörs Szathmáry
- Institute of Evolution, Centre for Ecological Research, Tihany, Hungary
- Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Budapest, Hungary
- Center for the Conceptual Foundations of Science, Parmenides Foundation, Pullach/Munich, Germany
- * E-mail:
| | - Mauro Santos
- Institute of Evolution, Centre for Ecological Research, Tihany, Hungary
- Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GGBE), Departament de Genètica i de Microbiologia, Universitat Autonòma de Barcelona, Bellaterra, Barcelona, Spain
| |
Collapse
|
12
|
Iwasaki Y, Ikemura T, Kurokawa K, Okada N. Implication of a new function of human tDNAs in chromatin organization. Sci Rep 2020; 10:17440. [PMID: 33060757 PMCID: PMC7567086 DOI: 10.1038/s41598-020-74499-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/14/2020] [Indexed: 02/03/2023] Open
Abstract
Transfer RNA genes (tDNAs) are essential genes that encode tRNAs in all species. To understand new functions of tDNAs, other than that of encoding tRNAs, we used ENCODE data to examine binding characteristics of transcription factors (TFs) for all tDNA regions (489 loci) in the human genome. We divided the tDNAs into three groups based on the number of TFs that bound to them. At the two extremes were tDNAs to which many TFs bound (Group 1) and those to which no TFs bound (Group 3). Several TFs involved in chromatin remodeling such as ATF3, EP300 and TBL1XR1 bound to almost all Group 1 tDNAs. Furthermore, almost all Group 1 tDNAs included DNase I hypersensitivity sites and may thus interact with other chromatin regions through their bound TFs, and they showed highly conserved synteny across tetrapods. In contrast, Group 3 tDNAs did not possess these characteristics. These data suggest the presence of a previously uncharacterized function of these tDNAs. We also examined binding of CTCF to tDNAs and their involvement in topologically associating domains (TADs) and lamina-associated domains (LADs), which suggest a new perspective on the evolution and function of tDNAs.
Collapse
Affiliation(s)
- Yuki Iwasaki
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
- Center for Information Biology, National Institute of Genetics, Mishima, Japan
| | - Toshimichi Ikemura
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Ken Kurokawa
- Center for Information Biology, National Institute of Genetics, Mishima, Japan
| | - Norihiro Okada
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan.
- School of Pharmacy, Kitasato University, Sagamihara, Kanagawa, Japan.
| |
Collapse
|
13
|
Arutaki M, Kurihara R, Matsuoka T, Inami A, Tokunaga K, Ohno T, Takahashi H, Takano H, Ando T, Mutsuro-Aoki H, Umehara T, Tamura K. G:U-Independent RNA Minihelix Aminoacylation by Nanoarchaeum equitans Alanyl-tRNA Synthetase: An Insight into the Evolution of Aminoacyl-tRNA Synthetases. J Mol Evol 2020; 88:501-509. [PMID: 32382786 PMCID: PMC11392972 DOI: 10.1007/s00239-020-09945-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 04/28/2020] [Indexed: 11/25/2022]
Abstract
Nanoarchaeum equitans is a species of hyperthermophilic archaea with the smallest genome size. Its alanyl-tRNA synthetase genes are split into AlaRS-α and AlaRS-β, encoding the respective subunits. In the current report, we surveyed N. equitans AlaRS-dependent alanylation of RNA minihelices, composed only of the acceptor stem and the T-arm of tRNAAla. Combination of AlaRS-α and AlaRS-β showed a strong alanylation activity specific to a single G3:U70 base pair, known to mark a specific tRNA for charging with alanine. However, AlaRS-α alone had a weak but appreciable alanylation activity that was independent of the G3:U70 base pair. The shorter 16-mer RNA tetraloop substrate mimicking only the first four base pairs of the acceptor stem of tRNAAla, but with C3:G70 base pair, was also successfully aminoacylated by AlaRS-α. The end of the acceptor stem, including CCA-3' terminus and the discriminator A73, was able to function as a minimal structure for the recognition by the enzyme. Our findings imply that aminoacylation by N. equitans AlaRS-α may represent a vestige of a primitive aminoacylation system, before the appearance of the G3:U70 pair as an identity element for alanine.
Collapse
Affiliation(s)
- Misa Arutaki
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Ryodai Kurihara
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Toru Matsuoka
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Ayako Inami
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Kei Tokunaga
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Tomomasa Ohno
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Hiroki Takahashi
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Haruka Takano
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Tadashi Ando
- Department of Applied Electronics, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Hiromi Mutsuro-Aoki
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Takuya Umehara
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Koji Tamura
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan.
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| |
Collapse
|
14
|
Demongeot J, Seligmann H. Comparisons between small ribosomal RNA and theoretical minimal RNA ring secondary structures confirm phylogenetic and structural accretion histories. Sci Rep 2020; 10:7693. [PMID: 32376895 PMCID: PMC7203183 DOI: 10.1038/s41598-020-64627-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 04/01/2020] [Indexed: 12/16/2022] Open
Abstract
Ribosomal RNAs are complex structures that presumably evolved by tRNA accretions. Statistical properties of tRNA secondary structures correlate with genetic code integration orders of their cognate amino acids. Ribosomal RNA secondary structures resemble those of tRNAs with recent cognates. Hence, rRNAs presumably evolved from ancestral tRNAs. Here, analyses compare secondary structure subcomponents of small ribosomal RNA subunits with secondary structures of theoretical minimal RNA rings, presumed proto-tRNAs. Two independent methods determined different accretion orders of rRNA structural subelements: (a) classical comparative homology and phylogenetic reconstruction, and (b) a structural hypothesis assuming an inverted onion ring growth where the three-dimensional ribosome's core is most ancient and peripheral elements most recent. Comparisons between (a) and (b) accretions orders with RNA ring secondary structure scales show that recent rRNA subelements are: 1. more like RNA rings with recent cognates, indicating ongoing coevolution between tRNA and rRNA secondary structures; 2. less similar to theoretical minimal RNA rings with ancient cognates. Our method fits (a) and (b) in all examined organisms, more with (a) than (b). Results stress the need to integrate independent methods. Theoretical minimal RNA rings are potential evolutionary references for any sequence-based evolutionary analyses, independent of the focal data from that study.
Collapse
Affiliation(s)
- Jacques Demongeot
- Université Grenoble Alpes, Faculty of Medicine, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecoms4Health, F-38700, La Tronche, France.
| | - Hervé Seligmann
- Université Grenoble Alpes, Faculty of Medicine, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecoms4Health, F-38700, La Tronche, France
- The National Natural History Collections, The Hebrew University of Jerusalem, 91404, Jerusalem, Israel
| |
Collapse
|
15
|
de Farias ST, José MV. Transfer RNA: The molecular demiurge in the origin of biological systems. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 153:28-34. [PMID: 32105652 DOI: 10.1016/j.pbiomolbio.2020.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/03/2020] [Accepted: 02/11/2020] [Indexed: 01/24/2023]
Abstract
Herein, we review recent works on the role that the tRNA molecule played in the early origins of biological systems. tRNAs gave origin to the first genes (mRNA), the peptidyl transferase center (PTC), the 16S ribosomal molecule, proto-tRNAs were at the core of a proto-translation system, and the anticodon and operational codes appeared in tRNAs molecules. Metabolic pathways emerged from evolutionary pressures of the decoding systems. The transitions from the RNA world to the ribonucleoprotein world to modern biological systems were driven by two kinds of tRNAs transitions, to wit, tRNAs leading to both mRNA and rRNA.
Collapse
Affiliation(s)
- Sávio Torres de Farias
- Laboratório de Genética Evolutiva Paulo Leminsk, Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Brazil.
| | - Marco V José
- Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México CDMX, C.P. 04510, Mexico.
| |
Collapse
|
16
|
RNA Rings Strengthen Hairpin Accretion Hypotheses for tRNA Evolution: A Reply to Commentaries by Z.F. Burton and M. Di Giulio. J Mol Evol 2020; 88:243-252. [PMID: 32025759 DOI: 10.1007/s00239-020-09929-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/07/2020] [Indexed: 01/08/2023]
Abstract
Theoretical minimal RNA ring design ensures coding over the shortest length once for each coding signal (start and stop codons, and each amino acid) and their hairpin configuration. These constraints define 25 RNA rings which surprisingly resemble ancestral tRNA loops, suggesting commonalities between RNA ring design and proto-tRNAs. RNA rings share several other properties with tRNAs, suggesting that primordial RNAs were multifunctional peptide coding sequences and structural RNAs. Two hypotheses, respectively, by M. Di Giulio and Z.F. Burton, derived from cloverleaf structural symmetries suggest that two and three, respectively, stem-loop hairpins agglutinated into tRNAs. Their authors commented that their respective structure-based hypotheses reflect better tRNA structure than RNA rings. Unlike these hypotheses, RNA ring design uses no tRNA-derived information, rendering model predictive power comparisons senseless. Some analyses of RNA ring primary and secondary structures stress RNA ring splicing in their predicted anticodon's midst, indicating ancestrality of split tRNAs, as the two-piece model predicts. Advancement of knowledge, rather than of specific hypotheses, gains foremost by examining independent hypotheses for commonalities, and only secondarily for discordances. RNA rings mimick ancestral biomolecules including tRNAs, and their evolution, and constitute an interesting synthetic system for early prebiotic evolution tests/simulations.
Collapse
|
17
|
Demongeot J, Seligmann H. Accretion history of large ribosomal subunits deduced from theoretical minimal RNA rings is congruent with histories derived from phylogenetic and structural methods. Gene 2020; 738:144436. [PMID: 32027954 DOI: 10.1016/j.gene.2020.144436] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/24/2020] [Accepted: 02/01/2020] [Indexed: 12/17/2022]
Abstract
Accretions of tRNAs presumably formed the large complex ribosomal RNA structures. Similarities of tRNA secondary structures with rRNA secondary structures increase with the integration order of their cognate amino acid in the genetic code, indicating tRNA evolution towards rRNA-like structures. Here analyses rank secondary structure subelements of three large ribosomal RNAs (Prokaryota: Archaea: Thermus thermophilus; Bacteria: Escherichia coli; Eukaryota: Saccharomyces cerevisiae) in relation to their similarities with secondary structures formed by presumed proto-tRNAs, represented by 25 theoretical minimal RNA rings. These ranks are compared to those derived from two independent methods (ranks provide a relative evolutionary age to the rRNA substructure), (a) cladistic phylogenetic analyses and (b) 3D-crystallography where core subelements are presumed ancient and peripheral ones recent. Comparisons of rRNA secondary structure subelements with RNA ring secondary structures show congruence between ranks deduced by this method and both (a) and (b) (more with (a) than (b)), especially for RNA rings with predicted ancient cognate amino acid. Reconstruction of accretion histories of large rRNAs will gain from adequately integrating information from independent methods. Theoretical minimal RNA rings, sequences deterministically designed in silico according to specific coding constraints, might produce adequate scales for prebiotic and early life molecular evolution.
Collapse
Affiliation(s)
- Jacques Demongeot
- Université Grenoble Alpes, Faculty of Medicine, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecoms4Health, F-38700 La Tronche, France.
| | - Hervé Seligmann
- Université Grenoble Alpes, Faculty of Medicine, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecoms4Health, F-38700 La Tronche, France; The National Natural History Collections, The Hebrew University of Jerusalem, 91404 Jerusalem, Israel.
| |
Collapse
|
18
|
Villarreal LP, Witzany G. That is life: communicating RNA networks from viruses and cells in continuous interaction. Ann N Y Acad Sci 2019; 1447:5-20. [PMID: 30865312 DOI: 10.1111/nyas.14040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/13/2019] [Accepted: 01/31/2019] [Indexed: 02/06/2023]
Abstract
All the conserved detailed results of evolution stored in DNA must be read, transcribed, and translated via an RNA-mediated process. This is required for the development and growth of each individual cell. Thus, all known living organisms fundamentally depend on these RNA-mediated processes. In most cases, they are interconnected with other RNAs and their associated protein complexes and function in a strictly coordinated hierarchy of temporal and spatial steps (i.e., an RNA network). Clearly, all cellular life as we know it could not function without these key agents of DNA replication, namely rRNA, tRNA, and mRNA. Thus, any definition of life that lacks RNA functions and their networks misses an essential requirement for RNA agents that inherently regulate and coordinate (communicate to) cells, tissues, organs, and organisms. The precellular evolution of RNAs occurred at the core of the emergence of cellular life and the question remained of how both precellular and cellular levels are interconnected historically and functionally. RNA networks and RNA communication can interconnect these levels. With the reemergence of virology in evolution, it became clear that communicating viruses and subviral infectious genetic parasites are bridging these two levels by invading, integrating, coadapting, exapting, and recombining constituent parts in host genomes for cellular requirements in gene regulation and coordination aims. Therefore, a 21st century understanding of life is of an inherently social process based on communicating RNA networks, in which viruses and cells continuously interact.
Collapse
Affiliation(s)
- Luis P Villarreal
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| | | |
Collapse
|
19
|
|
20
|
Mohanta TK, Syed AS, Ameen F, Bae H. Novel Genomic and Evolutionary Perspective of Cyanobacterial tRNAs. Front Genet 2017; 8:200. [PMID: 29321793 PMCID: PMC5733544 DOI: 10.3389/fgene.2017.00200] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 11/21/2017] [Indexed: 11/30/2022] Open
Abstract
Transfer RNA (tRNA) plays a central role in protein synthesis and acts as an adaptor molecule between an mRNA and an amino acid. A tRNA has an L-shaped clover leaf-like structure and contains an acceptor arm, D-arm, D-loop, anti-codon arm, anti-codon loop, variable loop, Ψ-arm and Ψ-loop. All of these arms and loops are important in protein translation. Here, we aimed to delineate the genomic architecture of these arms and loops in cyanobacterial tRNA. Studies from tRNA sequences from 61 cyanobacterial species showed that, except for few tRNAs (tRNAAsn, tRNALeu, tRNAGln, and tRNAMet), all contained a G nucleotide at the 1st position in the acceptor arm. tRNALeu and tRNAMet did not contain any conserved nucleotides at the 1st position whereas tRNAAsn and tRNAGln contained a conserved U1 nucleotide. In several tRNA families, the variable region also contained conserved nucleotides. Except for tRNAMet and tRNAGlu, all other tRNAs contained a conserved A nucleotide at the 1st position in the D-loop. The Ψ-loop contained a conserved U1-U2-C3-x-A5-x-U7 sequence, except for tRNAGly, tRNAAla, tRNAVal, tRNAPhe, tRNAThr, and tRNAGln in which the U7 nucleotide was not conserved. However, in tRNAAsp, the U7 nucleotide was substituted with a C7 nucleotide. Additionally, tRNAArg, tRNAGly, and tRNALys of cyanobacteria contained a group I intron within the anti-codon loop region. Maximum composite likelihood study on the transition/transversion of cyanobacterial tRNA revealed that the rate of transition was higher than the rate of transversion. An evolutionary tree was constructed to understand the evolution of cyanobacterial tRNA and analyses revealed that cyanobacterial tRNA may have evolved polyphyletically with high rate of gene loss.
Collapse
Affiliation(s)
- Tapan K Mohanta
- School of Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Asad S Syed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hanhong Bae
- School of Biotechnology, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
21
|
Chou HJ, Donnard E, Gustafsson HT, Garber M, Rando OJ. Transcriptome-wide Analysis of Roles for tRNA Modifications in Translational Regulation. Mol Cell 2017; 68:978-992.e4. [PMID: 29198561 DOI: 10.1016/j.molcel.2017.11.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/19/2017] [Accepted: 10/31/2017] [Indexed: 12/17/2022]
Abstract
Covalent nucleotide modifications in noncoding RNAs affect a plethora of biological processes, and new functions continue to be discovered even for well-known modifying enzymes. To systematically compare the functions of a large set of noncoding RNA modifications in gene regulation, we carried out ribosome profiling in budding yeast to characterize 57 nonessential genes involved in tRNA modification. Deletion mutants exhibited a range of translational phenotypes, with enzymes known to modify anticodons, or non-tRNA substrates such as rRNA, exhibiting the most dramatic translational perturbations. Our data build on prior reports documenting translational upregulation of the nutrient-responsive transcription factor Gcn4 in response to numerous tRNA perturbations, and identify many additional translationally regulated mRNAs throughout the yeast genome. Our data also uncover unexpected roles for tRNA-modifying enzymes in regulation of TY retroelements, and in rRNA 2'-O-methylation. This dataset should provide a rich resource for discovery of additional links between tRNA modifications and gene regulation.
Collapse
Affiliation(s)
- Hsin-Jung Chou
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Elisa Donnard
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - H Tobias Gustafsson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Manuel Garber
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Oliver J Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
22
|
Ma W. What Does "the RNA World" Mean to "the Origin of Life"? Life (Basel) 2017; 7:life7040049. [PMID: 29186049 PMCID: PMC5745562 DOI: 10.3390/life7040049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 10/30/2017] [Accepted: 11/24/2017] [Indexed: 12/30/2022] Open
Abstract
Corresponding to life’s two distinct aspects: Darwinian evolution and self-sustainment, the origin of life should also split into two issues: the origin of Darwinian evolution and the arising of self-sustainment. Because the “self-sustainment” we concern about life should be the self-sustainment of a relevant system that is “defined” by its genetic information, the self-sustainment could not have arisen before the origin of Darwinian evolution, which was just marked by the emergence of genetic information. The logic behind the idea of the RNA world is not as tenable as it has been believed. That is, genetic molecules and functional molecules, even though not being the same material, could have emerged together in the beginning and launched the evolution—provided that the genetic molecules can “simply” code the functional molecules. However, due to these or those reasons, alternative scenarios are generally much less convincing than the RNA world. In particular, when considering the accumulating experimental evidence that is supporting a de novo origin of the RNA world, it seems now quite reasonable to believe that such a world may have just stood at the very beginning of life on the Earth. Therewith, we acquire a concrete scenario for our attempts to appreciate those fundamental issues that are involved in the origin of life. In the light of those possible scenes included in this scenario, Darwinian evolution may have originated at the molecular level, realized upon a functional RNA. When two or more functional RNAs emerged, for their efficient cooperation, there should have been a selective pressure for the emergence of protocells. But it was not until the appearance of the “unitary-protocell”, which had all of its RNA genes linked into a chromosome, that Darwinian evolution made its full step towards the cellular level—no longer severely constrained by the low-grade evolution at the molecular level. Self-sustainment did not make sense before protocells emerged. The selection pressure that was favoring the exploration of more and more fundamental raw materials resulted in an evolutionary tendency of life to become more and more self-sustained. New functions for the entities to adapt to environments, including those that are involved in the self-sustainment per se, would bring new burdens to the self-sustainment—the advantage of these functions must overweigh the corresponding disadvantage.
Collapse
Affiliation(s)
- Wentao Ma
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
23
|
Iwasaki Y, Abe T, Wada K, Wada Y, Ikemura T. An artificial intelligence approach fit for tRNA gene studies in the era of big sequence data. Genes Genet Syst 2017; 92:43-54. [PMID: 28344190 DOI: 10.1266/ggs.16-00068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Unsupervised data mining capable of extracting a wide range of knowledge from big data without prior knowledge or particular models is a timely application in the era of big sequence data accumulation in genome research. By handling oligonucleotide compositions as high-dimensional data, we have previously modified the conventional self-organizing map (SOM) for genome informatics and established BLSOM, which can analyze more than ten million sequences simultaneously. Here, we develop BLSOM specialized for tRNA genes (tDNAs) that can cluster (self-organize) more than one million microbial tDNAs according to their cognate amino acid solely depending on tetra- and pentanucleotide compositions. This unsupervised clustering can reveal combinatorial oligonucleotide motifs that are responsible for the amino acid-dependent clustering, as well as other functionally and structurally important consensus motifs, which have been evolutionarily conserved. BLSOM is also useful for identifying tDNAs as phylogenetic markers for special phylotypes. When we constructed BLSOM with 'species-unknown' tDNAs from metagenomic sequences plus 'species-known' microbial tDNAs, a large portion of metagenomic tDNAs self-organized with species-known tDNAs, yielding information on microbial communities in environmental samples. BLSOM can also enhance accuracy in the tDNA database obtained from big sequence data. This unsupervised data mining should become important for studying numerous functionally unclear RNAs obtained from a wide range of organisms.
Collapse
Affiliation(s)
- Yuki Iwasaki
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology
| | - Takashi Abe
- Department of Information Engineering, Faculty of Engineering, Niigata University
| | - Kennosuke Wada
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology
| | - Yoshiko Wada
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology
| | - Toshimichi Ikemura
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology
| |
Collapse
|
24
|
The emerging complexity of the tRNA world: mammalian tRNAs beyond protein synthesis. Nat Rev Mol Cell Biol 2017; 19:45-58. [PMID: 28875994 DOI: 10.1038/nrm.2017.77] [Citation(s) in RCA: 294] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The discovery of the genetic code and tRNAs as decoders of the code transformed life science. However, after establishing the role of tRNAs in protein synthesis, the field moved to other parts of the RNA world. Now, tRNA research is blooming again, with demonstration of the involvement of tRNAs in various other pathways beyond translation and in adapting translation to environmental cues. These roles are linked to the presence of tRNA sequence variants known as isoacceptors and isodecoders, various tRNA base modifications, the versatility of protein binding partners and tRNA fragmentation events, all of which collectively create an incalculable complexity. This complexity provides a vast repertoire of tRNA species that can serve various functions in cellular homeostasis and in adaptation of cellular functions to changing environments, and it likely arose from the fundamental role of RNAs in early evolution.
Collapse
|
25
|
Pak D, Root-Bernstein R, Burton ZF. tRNA structure and evolution and standardization to the three nucleotide genetic code. Transcription 2017. [PMID: 28632998 PMCID: PMC5574529 DOI: 10.1080/21541264.2017.1318811] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cloverleaf tRNA with a 75 nucleotide (nt) core is posited to have evolved from ligation of three 31 nt minihelices followed by symmetric internal deletions of 9 nt within ligated acceptor stems. Statistical tests strongly support the model. Although the tRNA anticodon loop and T loop are homologs, their U-turns have been treated as distinct motifs. An appropriate comparison, however, shows that intercalation of D loop G19 between T loop bases 4 and 5 causes elevation of T loop base 5 and flipping of T loop bases 6 and 7 out of the 7 nt loop. In the anticodon loop, by contrast, loop bases 3–7 stack tightly to form a stiff connection to mRNA. Furthermore, we identify ancient repeat sequences of 3 (GCG), 5 (UAGCC) and 17 nt (∼CCGGGUUCAAAACCCGG) that comprise 75 out of 75 nts of the tRNA cloverleaf core. To present a sufficiently stiff 3-nt anticodon, a 7-nt anticodon loop was necessary with a U-turn between loop positions 2 and 3. Cloverleaf tRNA, therefore, was a radical evolutionary innovation essential for the 3-nt code. Conservation of GCG and UAGCC repeat sequences indicates that cloverleaf tRNA is at the interface between a strange RNA repeat world and the first evolution of molecules that fold to assume biologic functions. We posit that cloverleaf tRNA was the molecular archetype around which translation systems evolved.
Collapse
Affiliation(s)
- Daewoo Pak
- a Center for Statistical Training and Consulting , Michigan State University , East Lansing , MI , USA
| | | | - Zachary F Burton
- c Department of Biochemistry and Molecular Biology , Michigan State University , MI , USA
| |
Collapse
|
26
|
Danchin A. From chemical metabolism to life: the origin of the genetic coding process. Beilstein J Org Chem 2017; 13:1119-1135. [PMID: 28684991 PMCID: PMC5480338 DOI: 10.3762/bjoc.13.111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/19/2017] [Indexed: 12/11/2022] Open
Abstract
Looking for origins is so much rooted in ideology that most studies reflect opinions that fail to explore the first realistic scenarios. To be sure, trying to understand the origins of life should be based on what we know of current chemistry in the solar system and beyond. There, amino acids and very small compounds such as carbon dioxide, dihydrogen or dinitrogen and their immediate derivatives are ubiquitous. Surface-based chemical metabolism using these basic chemicals is the most likely beginning in which amino acids, coenzymes and phosphate-based small carbon molecules were built up. Nucleotides, and of course RNAs, must have come to being much later. As a consequence, the key question to account for life is to understand how chemical metabolism that began with amino acids progressively shaped into a coding process involving RNAs. Here I explore the role of building up complementarity rules as the first information-based process that allowed for the genetic code to emerge, after RNAs were substituted to surfaces to carry over the basic metabolic pathways that drive the pursuit of life.
Collapse
Affiliation(s)
- Antoine Danchin
- Institute of Cardiometabolism and Nutrition, Hôpital de la Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013, Paris, France
| |
Collapse
|
27
|
Wu S, Yu C, Zhang W, Yin S, Chen Y, Feng Y, Ma W. Tag mechanism as a strategy for the RNA replicase to resist parasites in the RNA world. PLoS One 2017; 12:e0172702. [PMID: 28253281 PMCID: PMC5333815 DOI: 10.1371/journal.pone.0172702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 02/08/2017] [Indexed: 01/01/2023] Open
Abstract
The idea that life may have started with an “RNA world” is attractive. Wherein, a crucial event (perhaps at the very beginning of the scenario) should have been the emergence of a ribozyme that catalyzes its own replication, i.e., an RNA replicase. Although now there is experimental evidence supporting the chemical feasibility of such a ribozyme, the evolutionary dynamics of how the replicase could overcome the “parasite” problem (because other RNAs may also exploit this ribozyme) and thrive, as described in the scenario, remains unclear. It has been suggested that spatial limitation may have been important for the replicase to confront parasites. However, more studies showed that such a mechanism is not sufficient when this ribozyme’s altruistic trait is taken into full consideration. “Tag mechanism”, which means labeling the replicase with a short subsequence for recognition in replication, may be a further mechanism supporting the thriving of the replicase. However, because parasites may also “equip” themselves with the tag, it is far from clear whether the tag mechanism could take effect. Here, we conducted a computer simulation using a Monte-Carlo model to study the evolutionary dynamics surrounding the development of a tag-driven (polymerase-type) RNA replicase in the RNA world. We concluded that (1) with the tag mechanism the replicase could resist the parasites and become prosperous, (2) the main underlying reason should be that the parasitic molecules, especially those strong parasites, are more difficult to appear in the tag-driven system, and (3) the tag mechanism has a synergic effect with the spatial limitation mechanism–while the former provides “time” for the replicase to escape from parasites, the latter provides “space” for the replicase to escape. Notably, tags may readily serve as “control handles”, and once the tag mechanism was exploited, the evolution towards complex life may have been much easier.
Collapse
Affiliation(s)
- Sanmao Wu
- College of Life Sciences, Wuhan University, Wuhan, P.R.China
| | - Chunwu Yu
- College of Computer Sciences, Wuhan University, Wuhan, P.R.China
| | - Wentao Zhang
- College of Computer Sciences, Wuhan University, Wuhan, P.R.China
| | - Shaolin Yin
- College of Life Sciences, Wuhan University, Wuhan, P.R.China
| | - Yong Chen
- College of Life Sciences, Wuhan University, Wuhan, P.R.China
| | - Yu Feng
- College of Life Sciences, Wuhan University, Wuhan, P.R.China
| | - Wentao Ma
- College of Life Sciences, Wuhan University, Wuhan, P.R.China
- * E-mail:
| |
Collapse
|
28
|
Macé K, Gillet R. Origins of tmRNA: the missing link in the birth of protein synthesis? Nucleic Acids Res 2016; 44:8041-51. [PMID: 27484476 PMCID: PMC5041485 DOI: 10.1093/nar/gkw693] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/22/2016] [Accepted: 07/26/2016] [Indexed: 12/20/2022] Open
Abstract
The RNA world hypothesis refers to the early period on earth in which RNA was central in assuring both genetic continuity and catalysis. The end of this era coincided with the development of the genetic code and protein synthesis, symbolized by the apparition of the first non-random messenger RNA (mRNA). Modern transfer-messenger RNA (tmRNA) is a unique hybrid molecule which has the properties of both mRNA and transfer RNA (tRNA). It acts as a key molecule during trans-translation, a major quality control pathway of modern bacterial protein synthesis. tmRNA shares many common characteristics with ancestral RNA. Here, we present a model in which proto-tmRNAs were the first molecules on earth to support non-random protein synthesis, explaining the emergence of early genetic code. In this way, proto-tmRNA could be the missing link between the first mRNA and tRNA molecules and modern ribosome-mediated protein synthesis.
Collapse
Affiliation(s)
- Kevin Macé
- Université de Rennes 1, CNRS UMR 6290 IGDR, Translation and Folding Team, 35042 Rennes cedex, France
| | - Reynald Gillet
- Université de Rennes 1, CNRS UMR 6290 IGDR, Translation and Folding Team, 35042 Rennes cedex, France Institut Universitaire de France
| |
Collapse
|
29
|
The tRNA Elbow in Structure, Recognition and Evolution. Life (Basel) 2016; 6:life6010003. [PMID: 26771646 PMCID: PMC4810234 DOI: 10.3390/life6010003] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/04/2016] [Accepted: 01/06/2016] [Indexed: 01/07/2023] Open
Abstract
Prominent in the L-shaped three-dimensional structure of tRNAs is the "elbow" where their two orthogonal helical stacks meet. It has a conserved structure arising from the interaction of the terminal loops of the D- and T-stem-loops, and presents to solution a flat face of a tertiary base pair between the D- and T-loops. In addition to the ribosome, which interacts with the elbow in all three of its tRNA binding sites, several cellular RNAs and many proteins are known to recognize the elbow. At least three classes of non-coding RNAs, namely 23S rRNA, ribonuclease P, and the T-box riboswitches, recognize the tRNA elbow employing an identical structural motif consisting of two interdigitated T-loops. In contrast, structural solutions to tRNA-elbow recognition by proteins are varied. Some enzymes responsible for post-transcriptional tRNA modification even disrupt the elbow structure in order to access their substrate nucleotides. The evolutionary origin of the elbow is mysterious, but, because it does not explicitly participate in the flow of genetic information, it has been proposed to be a late innovation. Regardless, it is biologically essential. Even some viruses that hijack the cellular machinery using tRNA decoys have convergently evolved near-perfect mimics of the tRNA elbow.
Collapse
|
30
|
Landmarks in the Evolution of (t)-RNAs from the Origin of Life up to Their Present Role in Human Cognition. Life (Basel) 2015; 6:life6010001. [PMID: 26703740 PMCID: PMC4810232 DOI: 10.3390/life6010001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/07/2015] [Accepted: 12/15/2015] [Indexed: 01/28/2023] Open
Abstract
How could modern life have evolved? The answer to that question still remains unclear. However, evidence is growing that, since the origin of life, RNA could have played an important role throughout evolution, right up to the development of complex organisms and even highly sophisticated features such as human cognition. RNA mediated RNA-aminoacylation can be seen as a first landmark on the path from the RNA world to modern DNA- and protein-based life. Likewise, the generation of the RNA modifications that can be found in various RNA species today may already have started in the RNA world, where such modifications most likely entailed functional advantages. This association of modification patterns with functional features was apparently maintained throughout the further course of evolution, and particularly tRNAs can now be seen as paradigms for the developing interdependence between structure, modification and function. It is in this spirit that this review highlights important stepping stones of the development of (t)RNAs and their modifications (including aminoacylation) from the ancient RNA world up until their present role in the development and maintenance of human cognition. The latter can be seen as a high point of evolution at its present stage, and the susceptibility of cognitive features to even small alterations in the proper structure and functioning of tRNAs underscores the evolutionary relevance of this RNA species.
Collapse
|
31
|
Tamura K. Origins and Early Evolution of the tRNA Molecule. Life (Basel) 2015; 5:1687-99. [PMID: 26633518 PMCID: PMC4695843 DOI: 10.3390/life5041687] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 11/16/2022] Open
Abstract
Modern transfer RNAs (tRNAs) are composed of ~76 nucleotides and play an important role as "adaptor" molecules that mediate the translation of information from messenger RNAs (mRNAs). Many studies suggest that the contemporary full-length tRNA was formed by the ligation of half-sized hairpin-like RNAs. A minihelix (a coaxial stack of the acceptor stem on the T-stem of tRNA) can function both in aminoacylation by aminoacyl tRNA synthetases and in peptide bond formation on the ribosome, indicating that it may be a vestige of the ancestral tRNA. The universal CCA-3' terminus of tRNA is also a typical characteristic of the molecule. "Why CCA?" is the fundamental unanswered question, but several findings give a comprehensive picture of its origin. Here, the origins and early evolution of tRNA are discussed in terms of various perspectives, including nucleotide ligation, chiral selectivity of amino acids, genetic code evolution, and the organization of the ribosomal peptidyl transferase center (PTC). The proto-tRNA molecules may have evolved not only as adaptors but also as contributors to the composition of the ribosome.
Collapse
Affiliation(s)
- Koji Tamura
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
32
|
Carter CW. What RNA World? Why a Peptide/RNA Partnership Merits Renewed Experimental Attention. Life (Basel) 2015; 5:294-320. [PMID: 25625599 PMCID: PMC4390853 DOI: 10.3390/life5010294] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/12/2015] [Indexed: 12/16/2022] Open
Abstract
We review arguments that biology emerged from a reciprocal partnership in which small ancestral oligopeptides and oligonucleotides initially both contributed rudimentary information coding and catalytic rate accelerations, and that the superior information-bearing qualities of RNA and the superior catalytic potential of proteins emerged from such complexes only with the gradual invention of the genetic code. A coherent structural basis for that scenario was articulated nearly a decade before the demonstration of catalytic RNA. Parallel hierarchical catalytic repertoires for increasingly highly conserved sequences from the two synthetase classes now increase the likelihood that they arose as translation products from opposite strands of a single gene. Sense/antisense coding affords a new bioinformatic metric for phylogenetic relationships much more distant than can be reconstructed from multiple sequence alignments of a single superfamily. Evidence for distinct coding properties in tRNA acceptor stems and anticodons, and experimental demonstration that the two synthetase family ATP binding sites can indeed be coded by opposite strands of the same gene supplement these biochemical and bioinformatic data, establishing a solid basis for key intermediates on a path from simple, stereochemically coded, reciprocally catalytic peptide/RNA complexes through the earliest peptide catalysts to contemporary aminoacyl-tRNA synthetases. That scenario documents a path to increasing complexity that obviates the need for a single polymer to act both catalytically and as an informational molecule.
Collapse
Affiliation(s)
- Charles W Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260, USA.
| |
Collapse
|
33
|
Structures and functions of Qβ replicase: translation factors beyond protein synthesis. Int J Mol Sci 2014; 15:15552-70. [PMID: 25184952 PMCID: PMC4200798 DOI: 10.3390/ijms150915552] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 08/27/2014] [Accepted: 08/29/2014] [Indexed: 11/19/2022] Open
Abstract
Qβ replicase is a unique RNA polymerase complex, comprising Qβ virus-encoded RNA-dependent RNA polymerase (the catalytic β-subunit) and three host-derived factors: translational elongation factor (EF) -Tu, EF-Ts and ribosomal protein S1. For almost fifty years, since the isolation of Qβ replicase, there have been several unsolved, important questions about the mechanism of RNA polymerization by Qβ replicase. Especially, the detailed functions of the host factors, EF-Tu, EF-Ts, and S1, in Qβ replicase, which are all essential in the Escherichia coli (E. coli) host for protein synthesis, had remained enigmatic, due to the absence of structural information about Qβ replicase. In the last five years, the crystal structures of the core Qβ replicase, consisting of the β-subunit, EF-Tu and Ts, and those of the core Qβ replicase representing RNA polymerization, have been reported. Recently, the structure of Qβ replicase comprising the β-subunit, EF-Tu, EF-Ts and the N-terminal half of S1, which is capable of initiating Qβ RNA replication, has also been reported. In this review, based on the structures of Qβ replicase, we describe our current understanding of the alternative functions of the host translational elongation factors and ribosomal protein S1 in Qβ replicase as replication factors, beyond their established functions in protein synthesis.
Collapse
|
34
|
Takeshita D, Yamashita S, Tomita K. Molecular insights into replication initiation by Qβ replicase using ribosomal protein S1. Nucleic Acids Res 2014; 42:10809-22. [PMID: 25122749 PMCID: PMC4176380 DOI: 10.1093/nar/gku745] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Ribosomal protein S1, consisting of six contiguous OB-folds, is the largest ribosomal protein and is essential for translation initiation in Escherichia coli. S1 is also one of the three essential host-derived subunits of Qβ replicase, together with EF-Tu and EF-Ts, for Qβ RNA replication in E. coli. We analyzed the crystal structure of Qβ replicase, consisting of the virus-encoded RNA-dependent RNA polymerase (β-subunit), EF-Tu, EF-Ts and the N-terminal half of S1, which is capable of initiating Qβ RNA replication. Structural and biochemical studies revealed that the two N-terminal OB-folds of S1 anchor S1 onto the β-subunit, and the third OB-fold is mobile and protrudes beyond the surface of the β-subunit. The third OB-fold mainly interacts with a specific RNA fragment derived from the internal region of Qβ RNA, and its RNA-binding ability is required for replication initiation of Qβ RNA. Thus, the third mobile OB-fold of S1, which is spatially anchored near the surface of the β-subunit, primarily recruits the Qβ RNA toward the β-subunit, leading to the specific and efficient replication initiation of Qβ RNA, and S1 functions as a replication initiation factor, beyond its established function in protein synthesis.
Collapse
Affiliation(s)
- Daijiro Takeshita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Seisuke Yamashita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Kozo Tomita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| |
Collapse
|
35
|
Caetano-Anollés G, Sun FJ. The natural history of transfer RNA and its interactions with the ribosome. Front Genet 2014; 5:127. [PMID: 24847358 PMCID: PMC4023039 DOI: 10.3389/fgene.2014.00127] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 04/22/2014] [Indexed: 12/20/2022] Open
Affiliation(s)
- Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois Urbana-Champaign, IL, USA
| | - Feng-Jie Sun
- School of Science and Technology, Georgia Gwinnett College Lawrenceville, GA, USA
| |
Collapse
|
36
|
Soma A. Circularly permuted tRNA genes: their expression and implications for their physiological relevance and development. Front Genet 2014; 5:63. [PMID: 24744771 PMCID: PMC3978253 DOI: 10.3389/fgene.2014.00063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/12/2014] [Indexed: 12/02/2022] Open
Abstract
A number of genome analyses and searches using programs that focus on the RNA-specific bulge-helix-bulge (BHB) motif have uncovered a wide variety of disrupted tRNA genes. The results of these analyses have shown that genetic information encoding functional RNAs is described in the genome cryptically and is retrieved using various strategies. One such strategy is represented by circularly permuted tRNA genes, in which the sequences encoding the 5′-half and 3′-half of the specific tRNA are separated and inverted on the genome. Biochemical analyses have defined a processing pathway in which the termini of tRNA precursors (pre-tRNAs) are ligated to form a characteristic circular RNA intermediate, which is then cleaved at the acceptor-stem to generate the typical cloverleaf structure with functional termini. The sequences adjacent to the processing site located between the 3′-half and the 5′-half of pre-tRNAs potentially form a BHB motif, which is the dominant recognition site for the tRNA-intron splicing endonuclease, suggesting that circularization of pre-tRNAs depends on the splicing machinery. Some permuted tRNAs contain a BHB-mediated intron in their 5′- or 3′-half, meaning that removal of an intron, as well as swapping of the 5′- and 3′-halves, are required during maturation of their pre-tRNAs. To date, 34 permuted tRNA genes have been identified from six species of unicellular algae and one archaeon. Although their physiological significance and mechanism of development remain unclear, the splicing system of BHB motifs seems to have played a key role in the formation of permuted tRNA genes. In this review, current knowledge of circularly permuted tRNA genes is presented and some unanswered questions regarding these species are discussed.
Collapse
Affiliation(s)
- Akiko Soma
- Graduate School of Horticulture, Chiba University Matsudo, Japan
| |
Collapse
|
37
|
Kwon SJ, Chaturvedi S, Rao ALN. Repair of the 3' proximal and internal deletions of a satellite RNA associated with Cucumber mosaic virus is directed toward restoring structural integrity. Virology 2014; 450-451:222-32. [PMID: 24503085 DOI: 10.1016/j.virol.2013.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 11/29/2013] [Accepted: 12/08/2013] [Indexed: 11/27/2022]
Abstract
The phenomenon of rapid turnover of 3' proximal nucleotides (nt) lost by the action of nuclease in RNA viruses is integral to replication. Here, a set of six deletions encompassing the 3' 23 nt region of a satellite RNA (satRNA) of Cucumber mosaic virus (CMV) strain Q (Q-sat), were engineered. Repair of the 3' end was not observed in the absence of CMV. However, co-expression with CMV in planta revealed that Q-sat mutants lacking the 3' 18 nt but not the 3' 23 nt are repaired and the progeny accumulation was inversely proportional to the extent of the deletion. Progeny of the 3'Δ3 mutant were repaired to wild type (wt) while those from the remaining four mutants were heterogeneous, exhibiting a wt secondary structure. Analysis of additional 3' internal deletions mutants revealed that progeny with a repaired sequence reminiscent of wt secondary structure were competent for replication and systemic spread.
Collapse
Affiliation(s)
- Sun-Jung Kwon
- Department of Plant Pathology & Microbiology, University of California, Riverside, CA 92521-0122, United States
| | - Sonali Chaturvedi
- Department of Plant Pathology & Microbiology, University of California, Riverside, CA 92521-0122, United States
| | - A L N Rao
- Department of Plant Pathology & Microbiology, University of California, Riverside, CA 92521-0122, United States.
| |
Collapse
|
38
|
The protein invasion: a broad review on the origin of the translational system. J Mol Evol 2013; 77:185-96. [PMID: 24145863 DOI: 10.1007/s00239-013-9592-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 10/12/2013] [Indexed: 12/25/2022]
Abstract
Translation, coded peptide synthesis, arguably exists at the heart of modern cellular life. By orchestrating an incredibly complex interaction between tRNAs, mRNAs, aaRSs, the ribosome, and numerous other small molecules, the translational system allows the interpretation of data in the form of DNA to create massively complex proteins which control and enact almost every cellular function. A natural question then, is how did this system evolve? Here we present a broad review of the existing theories of the last two decades on the origin of the translational system. We attempt to synthesize the wide variety of ideas as well as organize them into modular components, addressing the evolution of the peptide-RNA interaction, tRNA, mRNA, the ribosome, and the first proteins separately. We hope to provide both a comprehensive overview of the literature as well as a framework for future discussions and novel theories.
Collapse
|
39
|
Priore SF, Kierzek E, Kierzek R, Baman JR, Moss WN, Dela-Moss LI, Turner DH. Secondary structure of a conserved domain in the intron of influenza A NS1 mRNA. PLoS One 2013; 8:e70615. [PMID: 24023714 PMCID: PMC3759394 DOI: 10.1371/journal.pone.0070615] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 06/22/2013] [Indexed: 12/04/2022] Open
Abstract
Influenza A virus is a segmented single-stranded (−)RNA virus that causes substantial annual morbidity and mortality. The transcriptome of influenza A is predicted to have extensive RNA secondary structure. The smallest genome segment, segment 8, encodes two proteins, NS1 and NEP, via alternative splicing. A conserved RNA domain in the intron of segment 8 may be important for regulating production of NS1. Two different multi-branch loop structures have been proposed for this region. A combination of in vitro chemical mapping and isoenergetic microarray techniques demonstrate that the consensus sequence for this region folds into a hairpin conformation. These results provide an alternative folding for this region and a foundation for designing experiments to probe its functional role in the influenza life cycle.
Collapse
Affiliation(s)
- Salvatore F. Priore
- Department of Chemistry and Center for RNA Biology, University of Rochester, Rochester, New York, United States of America
| | - Elzbieta Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Ryszard Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Jayson R. Baman
- Department of Chemistry and Center for RNA Biology, University of Rochester, Rochester, New York, United States of America
| | - Walter N. Moss
- Department of Chemistry and Center for RNA Biology, University of Rochester, Rochester, New York, United States of America
| | - Lumbini I. Dela-Moss
- Department of Chemistry and Center for RNA Biology, University of Rochester, Rochester, New York, United States of America
| | - Douglas H. Turner
- Department of Chemistry and Center for RNA Biology, University of Rochester, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
40
|
Zuo Z, Peng D, Yin X, Zhou X, Cheng H, Zhou R. Genome-wide analysis reveals origin of transfer RNA genes from tRNA halves. Mol Biol Evol 2013; 30:2087-98. [PMID: 23744908 DOI: 10.1093/molbev/mst107] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Transfer RNAs (tRNAs) play an important role linking mitochondrial RNA and amino acids during protein biogenesis. Four types of tRNA genes have been identified in living organisms. However, the evolutionary origin of tRNAs remains largely unknown. In this article, we conduct a deep sequence analysis of diverse genomes that cover all three domains of life to unveil the evolutionary history of tRNA genes from tRNA halves. tRNA half homologs were detected in diverse organisms, and some of them were expressed in mouse tissues. Continuous tRNA genes have a conserved pattern similar to indels, which is, more closely flanking regions have higher single nucleotide substitution rates, whereas tRNA half homologs do not have this pattern. In addition, tRNAs tend to break into tRNA halves when tissues are incubated in vitro, the tendency of tRNA to break into tRNA halves may be a "side-effect" of tRNA genes evolving from tRNA halves. These results suggest that modern tRNAs originated from tRNA halves through a repeat element-mediated mechanism. These findings provide insight into the evolutionary origin of tRNA genes.
Collapse
Affiliation(s)
- Zhixiang Zuo
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | | | | | | | | | | |
Collapse
|
41
|
Dewan V, Reader J, Forsyth KM. Role of aminoacyl-tRNA synthetases in infectious diseases and targets for therapeutic development. Top Curr Chem (Cham) 2013; 344:293-329. [PMID: 23666077 DOI: 10.1007/128_2013_425] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aminoacyl-tRNA synthetases (AARSs) play a pivotal role in protein synthesis and cell viability. These 22 "housekeeping" enzymes (1 for each standard amino acid plus pyrrolysine and o-phosphoserine) are specifically involved in recognizing and aminoacylating their cognate tRNAs in the cellular pool with the correct amino acid prior to delivery of the charged tRNA to the protein synthesis machinery. Besides serving this canonical function, higher eukaryotic AARSs, some of which are organized in the cytoplasm as a multisynthetase complex of nine enzymes plus additional cellular factors, have also been implicated in a variety of non-canonical roles. AARSs are involved in the regulation of transcription, translation, and various signaling pathways, thereby ensuring cell survival. Based in part on their versatility, AARSs have been recruited by viruses to perform essential functions. For example, host synthetases are packaged into some retroviruses and are required for their replication. Other viruses mimic tRNA-like structures in their genomes, and these motifs are aminoacylated by the host synthetase as part of the viral replication cycle. More recently, it has been shown that certain large DNA viruses infecting animals and other diverse unicellular eukaryotes encode tRNAs, AARSs, and additional components of the protein-synthesis machinery. This chapter will review our current understanding of the role of host AARSs and tRNA-like structures in viruses and discuss their potential as anti-viral drug targets. The identification and development of compounds that target bacterial AARSs, thereby serving as novel antibiotics, will also be discussed. Particular attention will be given to recent work on a number of tRNA-dependent AARS inhibitors and to advances in a new class of natural "pro-drug" antibiotics called Trojan Horse inhibitors. Finally, we will explore how bacteria that naturally produce AARS-targeting antibiotics must protect themselves against cell suicide using naturally antibiotic resistant AARSs, and how horizontal gene transfer of these AARS genes to pathogens may threaten the future use of this class of antibiotics.
Collapse
Affiliation(s)
- Varun Dewan
- Department of Chemistry and Biochemistry, Ohio State Biochemistry Program, Center for RNA Biology, and Center for Retroviral Research, The Ohio State University, Columbus, OH, 43210, USA
| | | | | |
Collapse
|
42
|
Abstract
The purpose of this section is to detail methods for the computational prediction of RNA secondary structure. This protocol is intended to provide an easy entry into the field of RNA structure prediction for those wishing to utilize it in their research and to suggest 'best practices' for going from sequence to secondary structure depending on the available data.
Collapse
Affiliation(s)
- Walter N Moss
- Department of Chemistry, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
43
|
Spontaneous network formation among cooperative RNA replicators. Nature 2012; 491:72-7. [PMID: 23075853 DOI: 10.1038/nature11549] [Citation(s) in RCA: 219] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 09/06/2012] [Indexed: 12/16/2022]
Abstract
The origins of life on Earth required the establishment of self-replicating chemical systems capable of maintaining and evolving biological information. In an RNA world, single self-replicating RNAs would have faced the extreme challenge of possessing a mutation rate low enough both to sustain their own information and to compete successfully against molecular parasites with limited evolvability. Thus theoretical analyses suggest that networks of interacting molecules were more likely to develop and sustain life-like behaviour. Here we show that mixtures of RNA fragments that self-assemble into self-replicating ribozymes spontaneously form cooperative catalytic cycles and networks. We find that a specific three-membered network has highly cooperative growth dynamics. When such cooperative networks are competed directly against selfish autocatalytic cycles, the former grow faster, indicating an intrinsic ability of RNA populations to evolve greater complexity through cooperation. We can observe the evolvability of networks through in vitro selection. Our experiments highlight the advantages of cooperative behaviour even at the molecular stages of nascent life.
Collapse
|
44
|
Takeshita D, Yamashita S, Tomita K. Mechanism for template-independent terminal adenylation activity of Qβ replicase. Structure 2012; 20:1661-9. [PMID: 22884418 DOI: 10.1016/j.str.2012.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/29/2012] [Accepted: 07/15/2012] [Indexed: 11/29/2022]
Abstract
The genomic RNA of Qβ virus is replicated by Qβ replicase, a template-dependent RNA polymerase complex. Qβ replicase has an intrinsic template-independent RNA 3'-adenylation activity, which is required for efficient viral RNA amplification in the host cells. However, the mechanism of the template-independent 3'-adenylation of RNAs by Qβ replicase has remained elusive. We determined the structure of a complex that includes Qβ replicase, a template RNA, a growing RNA complementary to the template RNA, and ATP. The structure represents the terminal stage of RNA polymerization and reveals that the shape and size of the nucleotide-binding pocket becomes available for ATP accommodation after the 3'-penultimate template-dependent C-addition. The stacking interaction between the ATP and the neighboring Watson-Crick base pair, between the 5'-G in the template and the 3'-C in the growing RNA, contributes to the nucleotide specificity. Thus, the template for the template-independent 3'-adenylation by Qβ replicase is the RNA and protein ribonucleoprotein complex.
Collapse
Affiliation(s)
- Daijiro Takeshita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | | | | |
Collapse
|
45
|
Bernhardt HS. The RNA world hypothesis: the worst theory of the early evolution of life (except for all the others)(a). Biol Direct 2012; 7:23. [PMID: 22793875 PMCID: PMC3495036 DOI: 10.1186/1745-6150-7-23] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 07/11/2012] [Indexed: 01/16/2023] Open
Abstract
The problems associated with the RNA world hypothesis are well known. In the following I discuss some of these difficulties, some of the alternative hypotheses that have been proposed, and some of the problems with these alternative models. From a biosynthetic - as well as, arguably, evolutionary - perspective, DNA is a modified RNA, and so the chicken-and-egg dilemma of "which came first?" boils down to a choice between RNA and protein. This is not just a question of cause and effect, but also one of statistical likelihood, as the chance of two such different types of macromolecule arising simultaneously would appear unlikely. The RNA world hypothesis is an example of a 'top down' (or should it be 'present back'?) approach to early evolution: how can we simplify modern biological systems to give a plausible evolutionary pathway that preserves continuity of function? The discovery that RNA possesses catalytic ability provides a potential solution: a single macromolecule could have originally carried out both replication and catalysis. RNA - which constitutes the genome of RNA viruses, and catalyzes peptide synthesis on the ribosome - could have been both the chicken and the egg! However, the following objections have been raised to the RNA world hypothesis: (i) RNA is too complex a molecule to have arisen prebiotically; (ii) RNA is inherently unstable; (iii) catalysis is a relatively rare property of long RNA sequences only; and (iv) the catalytic repertoire of RNA is too limited. I will offer some possible responses to these objections in the light of work by our and other labs. Finally, I will critically discuss an alternative theory to the RNA world hypothesis known as 'proteins first', which holds that proteins either preceded RNA in evolution, or - at the very least - that proteins and RNA coevolved. I will argue that, while theoretically possible, such a hypothesis is probably unprovable, and that the RNA world hypothesis, although far from perfect or complete, is the best we currently have to help understand the backstory to contemporary biology.
Collapse
Affiliation(s)
- Harold S Bernhardt
- Department of Biochemistry, University of Otago, P,O, Box 56, Dunedin, New Zealand.
| |
Collapse
|
46
|
Abstract
The general notion of an "RNA World" is that, in the early development of life on the Earth, genetic continuity was assured by the replication of RNA and genetically encoded proteins were not involved as catalysts. There is now strong evidence indicating that an RNA World did indeed exist before DNA- and protein-based life. However, arguments regarding whether life on Earth began with RNA are more tenuous. It might be imagined that all of the components of RNA were available in some prebiotic pool, and that these components assembled into replicating, evolving polynucleotides without the prior existence of any evolved macromolecules. A thorough consideration of this "RNA-first" view of the origin of life must reconcile concerns regarding the intractable mixtures that are obtained in experiments designed to simulate the chemistry of the primitive Earth. Perhaps these concerns will eventually be resolved, and recent experimental findings provide some reason for optimism. However, the problem of the origin of the RNA World is far from being solved, and it is fruitful to consider the alternative possibility that RNA was preceded by some other replicating, evolving molecule, just as DNA and proteins were preceded by RNA.
Collapse
Affiliation(s)
- Michael P Robertson
- Departments of Chemistry and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
47
|
Molecular basis for RNA polymerization by Qβ replicase. Nat Struct Mol Biol 2012; 19:229-37. [PMID: 22245970 DOI: 10.1038/nsmb.2204] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 11/15/2011] [Indexed: 12/17/2022]
Abstract
Core Qβ replicase comprises the Qβ virus-encoded RNA-dependent RNA polymerase (β-subunit) and the host Escherichia coli translational elongation factors EF-Tu and EF-Ts. The functions of the host proteins in the viral replicase are not clear. Structural analyses of RNA polymerization by core Qβ replicase reveal that at the initiation stage, the 3'-adenine of the template RNA provides a stable platform for de novo initiation. EF-Tu in Qβ replicase forms a template exit channel with the β-subunit. At the elongation stages, the C-terminal region of the β-subunit, assisted by EF-Tu, splits the temporarily double-stranded RNA between the template and nascent RNAs before translocation of the single-stranded template RNA into the exit channel. Therefore, EF-Tu in Qβ replicase modulates RNA elongation processes in a distinct manner from its established function in protein synthesis.
Collapse
|
48
|
Scholthof KBG, Adkins S, Czosnek H, Palukaitis P, Jacquot E, Hohn T, Hohn B, Saunders K, Candresse T, Ahlquist P, Hemenway C, Foster GD. Top 10 plant viruses in molecular plant pathology. MOLECULAR PLANT PATHOLOGY 2011; 12:938-54. [PMID: 22017770 PMCID: PMC6640423 DOI: 10.1111/j.1364-3703.2011.00752.x] [Citation(s) in RCA: 626] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Many scientists, if not all, feel that their particular plant virus should appear in any list of the most important plant viruses. However, to our knowledge, no such list exists. The aim of this review was to survey all plant virologists with an association with Molecular Plant Pathology and ask them to nominate which plant viruses they would place in a 'Top 10' based on scientific/economic importance. The survey generated more than 250 votes from the international community, and allowed the generation of a Top 10 plant virus list for Molecular Plant Pathology. The Top 10 list includes, in rank order, (1) Tobacco mosaic virus, (2) Tomato spotted wilt virus, (3) Tomato yellow leaf curl virus, (4) Cucumber mosaic virus, (5) Potato virus Y, (6) Cauliflower mosaic virus, (7) African cassava mosaic virus, (8) Plum pox virus, (9) Brome mosaic virus and (10) Potato virus X, with honourable mentions for viruses just missing out on the Top 10, including Citrus tristeza virus, Barley yellow dwarf virus, Potato leafroll virus and Tomato bushy stunt virus. This review article presents a short review on each virus of the Top 10 list and its importance, with the intent of initiating discussion and debate amongst the plant virology community, as well as laying down a benchmark, as it will be interesting to see in future years how perceptions change and which viruses enter and leave the Top 10.
Collapse
Affiliation(s)
- Karen-Beth G Scholthof
- Department of Plant Pathology and Microbiology, 2132 TAMU, Texas A&M University, College Station, TX 77843-2132, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Moss WN, Priore SF, Turner DH. Identification of potential conserved RNA secondary structure throughout influenza A coding regions. RNA (NEW YORK, N.Y.) 2011; 17:991-1011. [PMID: 21536710 PMCID: PMC3096049 DOI: 10.1261/rna.2619511] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Influenza A is a negative sense RNA virus of significant public health concern. While much is understood about the life cycle of the virus, knowledge of RNA secondary structure in influenza A virus is sparse. Predictions of RNA secondary structure can focus experimental efforts. The present study analyzes coding regions of the eight viral genome segments in both the (+) and (-) sense RNA for conserved secondary structure. The predictions are based on identifying regions of unusual thermodynamic stabilities and are correlated with studies of suppression of synonymous codon usage (SSCU). The results indicate that secondary structure is favored in the (+) sense influenza RNA. Twenty regions with putative conserved RNA structure have been identified, including two previously described structured regions. Of these predictions, eight have high thermodynamic stability and SSCU, with five of these corresponding to current annotations (e.g., splice sites), while the remaining 12 are predicted by the thermodynamics alone. Secondary structures with high conservation of base-pairing are proposed within the five regions having known function. A combination of thermodynamics, amino acid and nucleotide sequence comparisons along with SSCU was essential for revealing potential secondary structures.
Collapse
Affiliation(s)
- Walter N Moss
- Department of Chemistry and Center for RNA Biology, University of Rochester, Rochester, New York 14627-0216, USA
| | | | | |
Collapse
|
50
|
Wochner A, Attwater J, Coulson A, Holliger P. Ribozyme-catalyzed transcription of an active ribozyme. Science 2011; 332:209-12. [PMID: 21474753 DOI: 10.1126/science.1200752] [Citation(s) in RCA: 271] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A critical event in the origin of life is thought to have been the emergence of an RNA molecule capable of replicating a primordial RNA "genome." Here we describe the evolution and engineering of an RNA polymerase ribozyme capable of synthesizing RNAs of up to 95 nucleotides in length. To overcome its sequence dependence, we recombined traits evolved separately in different ribozyme lineages. This yielded a more general polymerase ribozyme that was able to synthesize a wider spectrum of RNA sequences, as we demonstrate by the accurate synthesis of an enzymatically active RNA, a hammerhead endonuclease ribozyme. This recapitulates a central aspect of an RNA-based genetic system: the RNA-catalyzed synthesis of an active ribozyme from an RNA template.
Collapse
Affiliation(s)
- Aniela Wochner
- Medical Research Council (MRC) Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | | | | | | |
Collapse
|