1
|
Saldaña-Ahuactzi Z, Soria-Bustos J, Martínez-Santos VI, Yañez-Santos JA, Martínez-Laguna Y, Cedillo-Ramirez ML, Puente JL, Girón JA. The Fis Nucleoid Protein Negatively Regulates the Phase Variation fimS Switch of the Type 1 Pilus Operon in Enteropathogenic Escherichia coli. Front Microbiol 2022; 13:882563. [PMID: 35572706 PMCID: PMC9096935 DOI: 10.3389/fmicb.2022.882563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/23/2022] [Indexed: 01/02/2023] Open
Abstract
In Escherichia coli the expression of type 1 pili (T1P) is determined by the site-specific inversion of the fimS ON–OFF switch located immediately upstream of major fimbrial subunit gene fimA. Here we investigated the role of virulence (Ler, GrlR, and GrlA) and global regulators (H-NS, IHF, and Fis) in the regulation of the fimS switch in the human enteropathogenic E. coli (EPEC) O127:H6 strain E2348/69. This strain does not produce detectable T1P and PCR analysis of the fimS switch confirmed that it is locked in the OFF orientation. Among the regulator mutants analyzed, only the ∆fis mutant produced significantly high levels of T1P on its surface and yielded high titers of agglutination of guinea pig erythrocytes. Expression analysis of the fimA, fimB, and fimE promoters using lacZ transcriptional fusions indicated that only PfimA activity is enhanced in the absence of Fis. Collectively, these data demonstrate that Fis is a negative regulator of T1P expression in EPEC and suggest that it is required for the FimE-dependent inversion of the fimS switch from the ON-to-OFF direction. It is possible that a similar mechanism of T1P regulation exists in other intestinal and extra-intestinal pathogenic classes of E. coli.
Collapse
Affiliation(s)
- Zeus Saldaña-Ahuactzi
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Jorge Soria-Bustos
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Pachuca, Mexico
| | | | - Jorge A Yañez-Santos
- Facultad de Estomatología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Ygnacio Martínez-Laguna
- Centro de Investigaciones en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | | | - José L Puente
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Jorge A Girón
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| |
Collapse
|
2
|
Kahmann R. My Personal Journey from the Fascination for Phages to a Tumor-Inducing Fungal Pathogen of Corn. Annu Rev Microbiol 2022; 76:1-19. [PMID: 35395169 DOI: 10.1146/annurev-micro-121721-111032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
My path in science began with a fascination for microbiology and phages and later involved a switch of subjects to the fungus Ustilago maydis and how it causes disease in maize. I will not provide a review of my work but rather focus on decisive findings, serendipitous, lucky moments when major advances made the U. maydis-maize system what it is now-a well-established model for biotrophic fungi. I also want to share with you the joy of finding the needle in a haystack at the very end of my scientific career, a fungal structure likely used for effector delivery, and how we were able to translate this into a potential application in agriculture. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Regine Kahmann
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany;
| |
Collapse
|
3
|
Pusic P, Sonnleitner E, Bläsi U. Specific and Global RNA Regulators in Pseudomonas aeruginosa. Int J Mol Sci 2021; 22:8632. [PMID: 34445336 PMCID: PMC8395346 DOI: 10.3390/ijms22168632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 01/20/2023] Open
Abstract
Pseudomonas aeruginosa (Pae) is an opportunistic pathogen showing a high intrinsic resistance to a wide variety of antibiotics. It causes nosocomial infections that are particularly detrimental to immunocompromised individuals and to patients suffering from cystic fibrosis. We provide a snapshot on regulatory RNAs of Pae that impact on metabolism, pathogenicity and antibiotic susceptibility. Different experimental approaches such as in silico predictions, co-purification with the RNA chaperone Hfq as well as high-throughput RNA sequencing identified several hundreds of regulatory RNA candidates in Pae. Notwithstanding, using in vitro and in vivo assays, the function of only a few has been revealed. Here, we focus on well-characterized small base-pairing RNAs, regulating specific target genes as well as on larger protein-binding RNAs that sequester and thereby modulate the activity of translational repressors. As the latter impact large gene networks governing metabolism, acute or chronic infections, these protein-binding RNAs in conjunction with their cognate proteins are regarded as global post-transcriptional regulators.
Collapse
Affiliation(s)
- Petra Pusic
- Max Perutz Labs, Department of Microbiology, Immunobiology and Genetics, Centre of Molecular Biology, Vienna Biocenter (VBC), University of Vienna, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| | - Elisabeth Sonnleitner
- Max Perutz Labs, Department of Microbiology, Immunobiology and Genetics, Centre of Molecular Biology, Vienna Biocenter (VBC), University of Vienna, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| | - Udo Bläsi
- Max Perutz Labs, Department of Microbiology, Immunobiology and Genetics, Centre of Molecular Biology, Vienna Biocenter (VBC), University of Vienna, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| |
Collapse
|
4
|
Fitting Pieces into the Puzzle of Pseudomonas aeruginosa Type III Secretion System Gene Expression. J Bacteriol 2019; 201:JB.00209-19. [PMID: 31010903 DOI: 10.1128/jb.00209-19] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Type III secretion systems (T3SS) are widely distributed in Gram-negative microorganisms and critical for host-pathogen and host-symbiont interactions with plants and animals. Central features of the T3SS are a highly conserved set of secretion and translocation genes and contact dependence wherein host-pathogen interactions trigger effector protein delivery and serve as an inducing signal for T3SS gene expression. In addition to these conserved features, there are pathogen-specific properties that include a unique repertoire of effector genes and mechanisms to control T3SS gene expression. The Pseudomonas aeruginosa T3SS serves as a model system to understand transcriptional and posttranscriptional mechanisms involved in the control of T3SS gene expression. The central regulatory feature is a partner-switching system that controls the DNA-binding activity of ExsA, the primary regulator of T3SS gene expression. Superimposed upon the partner-switching mechanism are cyclic AMP and cyclic di-GMP signaling systems, two-component systems, global regulators, and RNA-binding proteins that have positive and negative effects on ExsA transcription and/or synthesis. In the present review, we discuss advances in our understanding of how these regulatory systems orchestrate the activation of T3SS gene expression in the context of acute infections and repression of the T3SS as P. aeruginosa adapts to and colonizes the cystic fibrosis airways.
Collapse
|
5
|
Gruber S. Multilayer chromosome organization through DNA bending, bridging and extrusion. Curr Opin Microbiol 2015; 22:102-10. [PMID: 25460803 DOI: 10.1016/j.mib.2014.09.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 11/25/2022]
Abstract
All living cells have to master the extraordinarily extended and tangly nature of genomic DNA molecules — in particular during cell division when sister chromosomes are resolved from one another and confined to opposite halves of a cell. Bacteria have evolved diverse sets of proteins, which collectively ensure the formation of compact and yet highly dynamic nucleoids. Some of these players act locally by changing the path of DNA through the bending of its double helical backbone. Other proteins have wider or even global impact on chromosome organization, for example by interconnecting two distant segments of chromosomal DNA or by actively relocating DNA within a cell. Here, I highlight different modes of chromosome organization in bacteria and on this basis consider models for the function of SMC protein complexes, whose mechanism of action is only poorly understood so far.
Collapse
Affiliation(s)
- Stephan Gruber
- Chromosome Organization and Dynamics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
6
|
Abstract
Reversible site-specific DNA inversion reactions are widely distributed in bacteria and their viruses. They control a range of biological reactions that most often involve alterations of molecules on the surface of cells or phage. These programmed DNA rearrangements usually occur at a low frequency, thereby preadapting a small subset of the population to a change in environmental conditions, or in the case of phages, an expanded host range. A dedicated recombinase, sometimes with the aid of additional regulatory or DNA architectural proteins, catalyzes the inversion of DNA. RecA or other components of the general recombination-repair machinery are not involved. This chapter discusses site-specific DNA inversion reactions mediated by the serine recombinase family of enzymes and focuses on the extensively studied serine DNA invertases that are stringently controlled by the Fis-bound enhancer regulatory system. The first section summarizes biological features and general properties of inversion reactions by the Fis/enhancer-dependent serine invertases and the recently described serine DNA invertases in Bacteroides. Mechanistic studies of reactions catalyzed by the Hin and Gin invertases are then discussed in more depth, particularly with regards to recent advances in our understanding of the function of the Fis/enhancer regulatory system, the assembly of the active recombination complex (invertasome) containing the Fis/enhancer, and the process of DNA strand exchange by rotation of synapsed subunit pairs within the invertasome. The role of DNA topological forces that function in concert with the Fis/enhancer controlling element in specifying the overwhelming bias for DNA inversion over deletion and intermolecular recombination is emphasized.
Collapse
Affiliation(s)
- Reid C. Johnson
- Department of Biological Chemistry, UCLA School of Medicine, Los Angeles, CA 90095-1737, Phone: 310 825-7800, Fax: 310 206-5272
| |
Collapse
|
7
|
Flåtten I, Skarstad K. The Fis protein has a stimulating role in initiation of replication in Escherichia coli in vivo. PLoS One 2013; 8:e83562. [PMID: 24358293 PMCID: PMC3865182 DOI: 10.1371/journal.pone.0083562] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 11/13/2013] [Indexed: 12/31/2022] Open
Abstract
The Fis protein is a nucleoid associated protein that has previously been reported to act negatively in initiation of replication in Escherichia coli. In this work we have examined the influence of this protein on the initiation of replication under different growth conditions using flow cytometry. The Fis protein was found to be increasingly important with increasing growth rate. During multi-fork replication severe under-initiation occurred in cells lacking the Fis protein; the cells initiated at an elevated mass, had fewer origins per cell and the origins were not initiated in synchrony. These results suggest a positive role for the Fis protein in the initiation of replication.
Collapse
Affiliation(s)
- Ingvild Flåtten
- Department of Cell Biology, Institute for Cancer Research, The Norwegian Radiumhospital, Oslo University Hospital, Oslo, Norway
| | - Kirsten Skarstad
- Department of Cell Biology, Institute for Cancer Research, The Norwegian Radiumhospital, Oslo University Hospital, Oslo, Norway
- * E-mail:
| |
Collapse
|
8
|
Malagon F. RNase III is required for localization to the nucleoid of the 5' pre-rRNA leader and for optimal induction of rRNA synthesis in E. coli. RNA (NEW YORK, N.Y.) 2013; 19:1200-7. [PMID: 23893733 PMCID: PMC3753927 DOI: 10.1261/rna.038588.113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 06/14/2013] [Indexed: 05/24/2023]
Abstract
It has recently been demonstrated that ribosomes are preferentially localized outside the nucleoid in Escherichia coli, but little is known about the spatial regulation of pre-rRNA processing. In this work, I investigate the cellular distribution of leader pre-rRNAs using RNA-FISH. In contrast to mature rRNA, the 5' proximal leader region associates with the nucleoid, and this association occurs in an RNase III-dependent manner. Moreover, RNase III plays a role in the rapid induction of ribosomal operons during outgrowth and is essential in the absence of the transcriptional regulator Fis, suggesting a linkage of transcription and RNA processing for ribosomal operons in E. coli.
Collapse
Affiliation(s)
- Francisco Malagon
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4264, USA.
| |
Collapse
|
9
|
Prigent-Combaret C, Zghidi-Abouzid O, Effantin G, Lejeune P, Reverchon S, Nasser W. The nucleoid-associated protein Fis directly modulates the synthesis of cellulose, an essential component of pellicle-biofilms in the phytopathogenic bacterium Dickeya dadantii. Mol Microbiol 2012; 86:172-86. [PMID: 22925161 DOI: 10.1111/j.1365-2958.2012.08182.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bacteria use biofilm structures to colonize surfaces and to survive in hostile conditions, and numerous bacteria produce cellulose as a biofilm matrix polymer. Hence, expression of the bcs operon, responsible for cellulose biosynthesis, must be finely regulated in order to allow bacteria to adopt the proper surface-associated behaviours. Here we show that in the phytopathogenic bacterium, Dickeya dadantii, production of cellulose is required for pellicle-biofilm formation and resistance to chlorine treatments. Expression of the bcs operon is growth phase-regulated and is stimulated in biofilms. Furthermore, we unexpectedly found that the nucleoid-associated protein and global regulator of virulence functions, Fis, directly represses bcs operon expression by interacting with an operator that is absent from the bcs operon of animal pathogenic bacteria and the plant pathogenic bacterium Pectobacterium. Moreover, production of cellulose enhances plant surface colonization by D. dadantii. Overall, these data suggest that cellulose production and biofilm formation may be important factors for surface colonization by D. dadantii and its subsequent survival in hostile environments. This report also presents a new example of how bacteria can modulate the action of a global regulator to co-ordinate basic metabolism, virulence and modifications of lifestyle.
Collapse
|
10
|
Robust translation of the nucleoid protein Fis requires a remote upstream AU element and is enhanced by RNA secondary structure. J Bacteriol 2012; 194:2458-69. [PMID: 22389479 DOI: 10.1128/jb.00053-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Synthesis of the Fis nucleoid protein rapidly increases in response to nutrient upshifts, and Fis is one of the most abundant DNA binding proteins in Escherichia coli under nutrient-rich growth conditions. Previous work has shown that control of Fis synthesis occurs at transcription initiation of the dusB-fis operon. We show here that while translation of the dihydrouridine synthase gene dusB is low, unusual mechanisms operate to enable robust translation of fis. At least two RNA sequence elements located within the dusB coding region are responsible for high fis translation. The most important is an AU element centered 35 nucleotides (nt) upstream of the fis AUG, which may function as a binding site for ribosomal protein S1. In addition, a 44-nt segment located upstream of the AU element and predicted to form a stem-loop secondary structure plays a prominent role in enhancing fis translation. On the other hand, mutations close to the AUG, including over a potential Shine-Dalgarno sequence, have little effect on Fis protein levels. The AU element and stem-loop regions are phylogenetically conserved within dusB-fis operons of representative enteric bacteria.
Collapse
|
11
|
Abstract
Bacteria and bacteriophages have evolved DNA modification as a strategy to protect their genomes. Mom protein of bacteriophage Mu modifies the phage DNA, rendering it refractile to numerous restriction enzymes and in turn enabling the phage to successfully invade a variety of hosts. A strong fortification, a combined activity of the phage and host factors, prevents untimely expression of mom and associated toxic effects. Here, we identify the bacterial chromatin architectural protein Fis as an additional player in this crowded regulatory cascade. Both in vivo and in vitro studies described here indicate that Fis acts as a transcriptional repressor of mom promoter. Further, our data shows that Fis mediates its repressive effect by denying access to RNA polymerase at mom promoter. We propose that a combined repressive effect of Fis and previously characterized negative regulatory factors could be responsible to keep the gene silenced most of the time. We thus present a new facet of Fis function in Mu biology. In addition to bringing about overall downregulation of Mu genome, it also ensures silencing of the advantageous but potentially lethal mom gene.
Collapse
Affiliation(s)
- Shweta Karambelkar
- Department of Microbiology and Cell Biology, Indian Institute of Science and Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560012, India
| | | | | |
Collapse
|
12
|
Cameron ADS, Stoebel DM, Dorman CJ. DNA supercoiling is differentially regulated by environmental factors and FIS in Escherichia coli and Salmonella enterica. Mol Microbiol 2011; 80:85-101. [DOI: 10.1111/j.1365-2958.2011.07560.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Pul Ü, Wurm R, Arslan Z, Geißen R, Hofmann N, Wagner R. Identification and characterization ofE. coliCRISPR-caspromoters and their silencing by H-NS. Mol Microbiol 2010; 75:1495-512. [DOI: 10.1111/j.1365-2958.2010.07073.x] [Citation(s) in RCA: 226] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Shao Y, Feldman-Cohen LS, Osuna R. Biochemical identification of base and phosphate contacts between Fis and a high-affinity DNA binding site. J Mol Biol 2008; 380:327-39. [PMID: 18514225 DOI: 10.1016/j.jmb.2008.04.075] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 04/23/2008] [Accepted: 04/29/2008] [Indexed: 10/22/2022]
Abstract
Fis (factor for inversion stimulation) is a nucleoid-associated protein in Escherichia coli and other bacteria that stimulates certain site-specific DNA recombination events, alters DNA topology, and serves as a global gene regulator. DNA binding is central to the functions of Fis and involves a helix-turn-helix DNA binding motif located in the carboxy-terminal region. Specific DNA binding is observed at a number of sites exhibiting poorly related sequences. Such interactions require four critical base pairs positioned -7, -3, +3, and +7 nucleotides relative to the central nucleotide of a 15-bp core-binding site. To further understand how Fis interacts with DNA, we identified the positions of 14 DNA phosphates (based on ethylation interference assays) that are required for Fis binding. These are the 5' phosphates of the nucleotides at positions -8, -7, -6, +1, +2, +3, and +4 relative to the central nucleotide on both DNA strands. Another five phosphates located in the flanking regions from positions +10 through +14 can serve as additional contact sites. Using a combination of biochemical approaches and various mutant Fis proteins, we probed possible interactions between several key Fis residues and DNA bases or phosphates within a high-affinity binding site. We provide evidence in support of interactions between the R85 Fis residue and a highly conserved guanine at position -7 and between T87 and the critical base pairs at -3 and +3. In addition, we present evidence in support of interactions between N84 and the phosphate 5' to the base at +4, between R89 and the -7 phosphate, between T87 and the +3 and +4 phosphates, and between K90 and the +3 phosphate. This work provides functional evidence for some of the most critical interactions between Fis and DNA required for a high binding affinity and demonstrates the large contribution made by numerous phosphates to the stability of the Fis-DNA complex.
Collapse
Affiliation(s)
- Yongping Shao
- Department of Biological Sciences, University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA
| | | | | |
Collapse
|
15
|
Neußer T, Gildehaus N, Wurm R, Wagner R. Studies on the expression of 6S RNA from E. coli: involvement of regulators important for stress and growth adaptation. Biol Chem 2008; 389:285-97. [DOI: 10.1515/bc.2008.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe small bacterial 6S RNA has been recognized as a transcriptional regulator, facilitating the transition from exponential to stationary growth phase by preferentially inhibiting Eσ70RNA polymerase holoenzyme transcription. Consistent with this function, the cellular concentration of 6S RNA increases with stationary phase. We have studied the underlying mechanisms responsible for the growth phase-dependent differences in 6S RNA concentration. To this aim, we have analyzed the effects of the typical bacterial growth phase and stress regulators FIS, H-NS, LRP and StpA on 6S RNA expression. Measurements of 6S RNA accumulation in strains deficient in each one of these proteins support their contribution as potential regulators. Specific binding of the four proteins to DNA fragments containing 6S RNA promoters was demonstrated by gel retardation and DNase I footprinting. Moreover,in vitrotranscription analysis with both RNA polymerase holoenzymes, Eσ70and Eσ38, demonstrated a direct inhibition of 6S RNA transcription by H-NS, StpA and LRP, while FIS seems to act as a dual regulator.In vitrotranscription in the presence of ppGpp indicates that 6S RNA promoters are not stringently regulated. Our results underline that regulation of 6S RNA transcription depends on a complex network, involving a set of bacterial regulators with general importance in the adaptation to changing growth conditions.
Collapse
|
16
|
O Cróinín T, Dorman CJ. Expression of the Fis protein is sustained in late-exponential- and stationary-phase cultures of Salmonella enterica serovar Typhimurium grown in the absence of aeration. Mol Microbiol 2007; 66:237-51. [PMID: 17784910 DOI: 10.1111/j.1365-2958.2007.05916.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The classic expression pattern of the Fis global regulatory protein during batch culture consists of a high peak in the early logarithmic phase of growth, followed by a sharp decrease through mid-exponential growth phase until Fis is almost undetectable at the end of the exponential phase. We discovered that this pattern is contingent on the growth regime. In Salmonella enterica serovar Typhimurium cultures grown in non-aerated SPI1-inducing conditions, Fis can be detected readily in stationary phase. On the other hand, cultures grown with standard aeration showed the classic Fis expression pattern. Sustained Fis expression in non-aerated cultures was also detected in some Escherichia coli strains, but not in others. This novel pattern of Fis expression was independent of sequence differences in the fis promoter regions of Salmonella and E. coli. Instead, a clear negative correlation between the expression of the Fis protein and of the stress-and-stationary-phase sigma factor RpoS was observed in a variety of strains. An rpoS mutant displayed elevated levels of Fis and had a higher frequency of epithelial cell invasion under these growth conditions. We discuss a model whereby Fis and RpoS levels vary in response to environmental signals allowing the expression and repression of SPI1 invasion genes.
Collapse
Affiliation(s)
- Tadhg O Cróinín
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Ireland
| | | |
Collapse
|
17
|
Pul U, Wurm R, Wagner R. The role of LRP and H-NS in transcription regulation: involvement of synergism, allostery and macromolecular crowding. J Mol Biol 2006; 366:900-15. [PMID: 17196617 DOI: 10.1016/j.jmb.2006.11.067] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 11/10/2006] [Accepted: 11/21/2006] [Indexed: 11/18/2022]
Abstract
LRP has recently been shown to interact with the regulatory regions of bacterial ribosomal RNA promoters. Here we study details of the LRP-rDNA interaction by gel retardation and high-resolution footprinting techniques. We show that a second regulator for rRNA transcription, H-NS, facilitates the formation of a higher-order LRP-nucleoprotein complex, probably acting transiently as a DNA chaperone. The macromolecular crowding substance ectoine stabilizes the formation of this dynamic complex, while the amino acid leucine, as a metabolic effector, has the opposite effect. DNase I and hydroxyl radical footprint experiments with LRP-DNA complexes reveal a periodic change of the target DNA structure, which implies extensive DNA wrapping reaching into the promoter core region. We show furthermore that LRP binding is able to constrain supercoils, providing a link between DNA topology and regulation. The results support the conclusion that the bacterial DNA-binding protein LRP, assisted by H-NS, forms a repressive nucleoprotein structure involved in regulation of rRNA transcription. The formation of this regulatory structure appears to be directly affected by environmental changes.
Collapse
Affiliation(s)
- Umit Pul
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr 1, D-40225 Düsseldorf, Germany
| | | | | |
Collapse
|
18
|
Zhang X, Liang ST, Bremer H. Feedback control of ribosome synthesis in Escherichia coli is dependent on eight critical amino acids. Biochimie 2006; 88:1145-55. [PMID: 16675089 DOI: 10.1016/j.biochi.2006.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Accepted: 03/30/2006] [Indexed: 11/23/2022]
Abstract
When bacteria growing in minimal medium are supplied with exogenous amino acids, they respond by increasing the synthesis of ribosomes; this leads to more protein synthesis capacity and faster growth. To examine how amino acids control the synthesis of ribosomes, two strategies were used. First, single amino acids were added to bacteria growing in minimal medium and their effect on the relative strength of the rrnB P1 promoter was determined. The addition of any one of eight amino acids (alanine, glutamine, and glutamic acid, isoleucine, leucine, methionine, serine, valine) increased the strength of the P1 promoter by 1.25- to 2.0-fold with no appreciable effect on transcription from an isolated rrn P2 promoter or on the bacterial growth rate. The effects of adding combinations of these critical amino acids were partially additive. When any one of the other amino acids was added, no discernable stimulation in relative P1 expression or growth was observed. In the second strategy, all amino acids were present in the growth medium, but the carbon source was altered to change the growth rate. In this case the relative strength of the P1 promoter was always constant and maximal. We suggest that addition of any of the eight critical amino acids reduces the ppGpp synthesis activity of the spoT gene product; the lower ppGpp levels, in turn, increase the strength of the rrn P1 promoters. It is suggested that these amino acids are involved in a feedback chain of reactions that control the rate of ribosome function by adjusting the rate of ribosome synthesis.
Collapse
Affiliation(s)
- Xiangyang Zhang
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75083-0688, USA.
| | | | | |
Collapse
|
19
|
Smulczyk-Krawczyszyn A, Jakimowicz D, Ruban-Osmialowska B, Zawilak-Pawlik A, Majka J, Chater K, Zakrzewska-Czerwinska J. Cluster of DnaA boxes involved in regulation of Streptomyces chromosome replication: from in silico to in vivo studies. J Bacteriol 2006; 188:6184-94. [PMID: 16923885 PMCID: PMC1595370 DOI: 10.1128/jb.00528-06] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Accepted: 06/12/2006] [Indexed: 11/20/2022] Open
Abstract
In Streptomyces coelicolor, replication is initiated by the DnaA protein in the centrally located oriC region and proceeds bidirectionally until the replication forks reach the ends of the linear chromosome. We identified three clusters of DnaA boxes (H69, H24, and D78) which are in a relatively short segment of the chromosome centered on the oriC region. Of the clusters analyzed, D78 exhibited the highest affinity for the DnaA protein; the affinity of DnaA for the D78 cluster was about eightfold higher than the affinity for oriC. The high-affinity DnaA boxes appear to be involved in the control of chromosome replication. Deletion of D78 resulted in more frequent chromosome replication (an elevated ratio of origins to chromosome ends was observed) and activated aerial mycelium formation, leading to earlier colony maturation. In contrast, extra copies of D78 (delivered on a plasmid) caused slow colony growth, presumably because of a reduction in the frequency of initiation of chromosome replication. This suggests that the number of high-affinity DnaA boxes is relatively constant in hyphal compartments and that deletion of D78 therefore permits an increased copy number of either the chromosomal origin region or a plasmid harboring the D78 cluster. This system conceivably influences the timing of decisions to initiate aerial mycelial formation and sporulation.
Collapse
Affiliation(s)
- Aleksandra Smulczyk-Krawczyszyn
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Weigla 12, 53-114 Wrocław, Poland
| | | | | | | | | | | | | |
Collapse
|
20
|
Hillebrand A, Wurm R, Menzel A, Wagner R. The seven E. coli ribosomal RNA operon upstream regulatory regions differ in structure and transcription factor binding efficiencies. Biol Chem 2005; 386:523-34. [PMID: 16006239 DOI: 10.1515/bc.2005.062] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Ribosomal RNAs in E. coli are transcribed from seven operons, which are highly conserved in their organization and sequence. However, the upstream regulatory DNA regions differ considerably, suggesting differences in regulation. We have therefore analyzed the conformation of all seven DNA elements located upstream of the major E. coli rRNA P1 promoters. As judged by temperature-dependent gel electrophoresis with isolated DNA fragments comprising the individual P1 promoters and the complete upstream regulatory regions, all seven rRNA upstream sequences are intrinsically curved. The degree of intrinsic curvature was highest for the rrnB and rrnD fragments and less pronounced for the rrnA and rrnE operons. Comparison of the experimentally determined differences in curvature with programs for the prediction of DNA conformation revealed a generally high degree of conformity. Moreover, the analysis showed that the center of curvature is located at about the same position in all fragments. The different upstream regions were analyzed for their capacity to bind the transcription factors FIS and H-NS, which are known as antagonists in the regulation of rRNA synthesis. Gel retardation experiments revealed that both proteins interact with the upstream promoter regions of all seven rDNA fragments, with the affinities of the different DNA fragments for FIS and H-NS and the structure of the resulting complexes deviating considerably. FIS binding was non-cooperative, and at comparable protein concentrations the occupancy of the different DNA fragments varied between two and four binding sites. In contrast, H-NS was shown to bind cooperatively and intermediate states of occupancy could not be resolved for each fragment. The different gel electrophoretic mobilities of the individual DNA/protein complexes indicate variable structures and topologies of the upstream activating sequence regulatory complexes. Our results are highly suggestive of differential regulation of the individual rRNA operons.
Collapse
Affiliation(s)
- Annette Hillebrand
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | | | | | | |
Collapse
|
21
|
Chen H, Ponniah G, Salonen N, Blum P. Culture-independent analysis of fecal enterobacteria in environmental samples by single-cell mRNA profiling. Appl Environ Microbiol 2004; 70:4432-9. [PMID: 15294770 PMCID: PMC492453 DOI: 10.1128/aem.70.8.4432-4439.2004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A culture-independent method called mRNA profiling has been developed for the analysis of fecal enterobacteria and their physiological status in environmental samples. This taxon-specific approach determines the single-cell content of selected gene transcripts whose abundance is either directly or inversely proportional to growth state. Fluorescence in situ hybridization using fluorochrome-labeled oligonucleotide probes was used to measure the cellular concentration of fis and dps mRNA. Relative levels of these transcripts provided a measure of cell growth state and the ability to enumerate fecal enterobacterial cell number. Orthologs were cloned by inverse PCR from several major enterobacterial genera, and probes specific for fecal enterobacteria were designed using multiple DNA sequence alignments. Probe specificity was determined experimentally using pure and mixed cultures of the major enterobacterial genera as well as secondary treated wastewater samples seeded with pure culture inocula. Analysis of the fecal enterobacterial community resident in unseeded secondary treated wastewater detected fluctuations in transcript abundance that were commensurate with incubation time and nutrient availability and demonstrated the utility of the method using environmental samples. mRNA profiling provides a new strategy to improve wastewater disinfection efficiency by accelerating water quality analysis.
Collapse
Affiliation(s)
- Han Chen
- E234 Beadle Center for Genetics, University of Nebraska, Lincoln, NE 68588-0666, USA
| | | | | | | |
Collapse
|
22
|
Owens RM, Pritchard G, Skipp P, Hodey M, Connell SR, Nierhaus KH, O'Connor CD. A dedicated translation factor controls the synthesis of the global regulator Fis. EMBO J 2004; 23:3375-85. [PMID: 15297874 PMCID: PMC514516 DOI: 10.1038/sj.emboj.7600343] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Accepted: 07/05/2004] [Indexed: 11/09/2022] Open
Abstract
BipA is a highly conserved protein with global regulatory properties in Escherichia coli. We show here that it functions as a translation factor that is required specifically for the expression of the transcriptional modulator Fis. BipA binds to ribosomes at a site that coincides with that of elongation factor G and has a GTPase activity that is sensitive to high GDP:GTP ratios and stimulated by 70S ribosomes programmed with mRNA and aminoacylated tRNAs. The growth rate-dependent induction of BipA allows the efficient expression of Fis, thereby modulating a range of downstream processes, including DNA metabolism and type III secretion. We propose a model in which BipA destabilizes unusually strong interactions between the 5' untranslated region of fis mRNA and the ribosome. Since BipA spans phylogenetic domains, transcript-selective translational control for the 'fast-track' expression of specific mRNAs may have wider significance.
Collapse
Affiliation(s)
- Róisín M Owens
- School of Biological Sciences, University of Southampton, Southampton, UK
- Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
| | - Gareth Pritchard
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Paul Skipp
- School of Biological Sciences, University of Southampton, Southampton, UK
- Centre for Proteomic Research, University of Southampton, Southampton, UK
| | - Michelle Hodey
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Sean R Connell
- Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
| | | | - C David O'Connor
- School of Biological Sciences, University of Southampton, Southampton, UK
- Centre for Proteomic Research, University of Southampton, Southampton, UK
| |
Collapse
|
23
|
Hinde P, Meadows J, Saunders J, Edwards C. The potential of site-specific recombinases as novel reporters in whole-cell biosensors of pollution. ADVANCES IN APPLIED MICROBIOLOGY 2003; 52:29-74. [PMID: 12964239 DOI: 10.1016/s0065-2164(03)01002-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
DNA recombinases show some promise as reporters of pollutants providing that appropriate promoters are used and that the apparent dependence of expression on cell density can be solved. Further work is in progress using different recombinases and other promoters to optimize recombinase expression as well as to test these genetic constructs in contaminated environmental samples such as soil and water. It may be that a graded response reflecting pollutant concentration may not be possible. However, they show great promise for providing definitive detection systems for the presence of a pollutant and may be applicable to address the problem of bioavailability of pollutants in complex environments such as soil.
Collapse
Affiliation(s)
- Paul Hinde
- School of Biological Sciences, University of Liverpool, Liverpool, L69 7ZB United Kingdom
| | | | | | | |
Collapse
|
24
|
Auner H, Buckle M, Deufel A, Kutateladze T, Lazarus L, Mavathur R, Muskhelishvili G, Pemberton I, Schneider R, Travers A. Mechanism of transcriptional activation by FIS: role of core promoter structure and DNA topology. J Mol Biol 2003; 331:331-44. [PMID: 12888342 DOI: 10.1016/s0022-2836(03)00727-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Escherichia coli DNA architectural protein FIS activates transcription from stable RNA promoters on entry into exponential growth and also reduces the level of negative supercoiling. Here we show that such a reduction decreases the activity of the tyrT promoter but that activation by FIS rescues tyrT transcription at non-optimal superhelical densities. Additionally we show that three different "up" mutations in the tyrT core promoter either abolish or reduce the dependence of tyrT transcription on both high negative superhelicity and FIS in vivo and infer that the specific sequence organisation of the core promoter couples the control of transcription initiation by negative superhelicity and FIS. In vitro all the mutations potentiate FIS-independent untwisting of the -10 region while at the wild-type promoter FIS facilitates this step. We propose that this untwisting is a crucial limiting step in the initiation of tyrT RNA synthesis. The tyrT core promoter structure is thus optimised to combine high transcriptional activity with acute sensitivity to at least three major independent regulatory inputs: negative superhelicity, FIS and ppGpp.
Collapse
Affiliation(s)
- Helge Auner
- Institut für Genetik und Mikrobiologie, LMU, München, Maria-Ward-Str 1a, 80638, München, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ponniah G, Chen H, Michielutti R, Salonen N, Blum P. Single-cell protein profiling of wastewater enterobacterial communities predicts disinfection efficiency. Appl Environ Microbiol 2003; 69:4227-35. [PMID: 12839804 PMCID: PMC165178 DOI: 10.1128/aem.69.7.4227-4235.2003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2002] [Accepted: 04/01/2003] [Indexed: 11/20/2022] Open
Abstract
The efficiency of enterobacterial disinfection is dependent largely on enterobacterial community physiology. However, the relationship between enterobacterial community physiology and wastewater processing is unclear. The purpose of this study was to investigate this relationship. The influence of wastewater treatment processes on enterobacterial community physiology was examined at the single-cell level by using culture-independent methods. Intracellular concentrations of two conserved proteins, the growth-related protein Fis and the stationary-phase protein Dps, were analyzed by epifluoresence microscopy of uncultivated cells by using enterobacterial group-specific polyclonal fluorochrome-coupled antibodies. Enterobacterial single-cell community protein profiles were distinct for different types of biological treatment. The differences were not apparent when bulk methods of protein analysis were used. Trickling filter wastewater yielded Fis-enriched communities compared to the communities in submerged aeration basin wastewater. Community differences in Fis and Dps contents were used to predict disinfection efficiency. Disinfection of community samples by heat exposure combined with cultivation in selective media confirmed that enterobacterial communities exhibited significant differences in sensitivity to disinfection. These findings provide strategies that can be used to increase treatment plant performance, reduce the enterobacterial content in municipal wastewater, and minimize the release of disinfection by-products into receiving water.
Collapse
Affiliation(s)
- Gomathinayagam Ponniah
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588-0666, USA
| | | | | | | | | |
Collapse
|
26
|
Waldron DE, Owen P, Dorman CJ. Competitive interaction of the OxyR DNA-binding protein and the Dam methylase at the antigen 43 gene regulatory region in Escherichia coli. Mol Microbiol 2002; 44:509-20. [PMID: 11972787 DOI: 10.1046/j.1365-2958.2002.02905.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The antigen 43 surface protein of Escherichia coli is expressed in a phase-variable manner by a mechanism involving alternative activation and repression of transcription of the agn43 gene. The repressor is the OxyR DNA-binding protein, and its binding site was found to be located downstream of the agn43 transcription start site in a region of DNA that encompasses three 5'-GATC-3' sequences that are subject to Dam-mediated DNA methylation. It has been suggested previously that the phase-variable expression of antigen 43 results from a competition between Dam methylase and the OxyR repressor for these sites. The 5'-GATC-3' sequences were inactivated for methylation by site-directed mutagenesis, and all possible combinations of inactive and active sites were assessed for effects on phase-variable expression of the agn43 gene. Inactivation of any 5'-GATC-3' site individually had no effect; at least two sites had to be inactivated to disrupt the normal pattern of expression. Studies of OxyR interaction with agn43 DNA showed that methylation of any two 5'-GATC-3' sites was necessary and sufficient to block binding of the repressor. It was also found that the adenines of the second and third 5'-GATC-3' sites are required for OxyR binding, demonstrating that the sites for Dam methylation and for repressor binding are intimately associated. This is consistent with a competition model in which Dam and OxyR share a preference for specific DNA sequences in the regulatory region of the agn43 gene.
Collapse
Affiliation(s)
- Denise E Waldron
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin 2, Republic of Ireland
| | | | | |
Collapse
|
27
|
Nasser W, Rochman M, Muskhelishvili G. Transcriptional regulation of fis operon involves a module of multiple coupled promoters. EMBO J 2002; 21:715-24. [PMID: 11847119 PMCID: PMC125868 DOI: 10.1093/emboj/21.4.715] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The transcription of the Escherichia coli fis gene is strongly activated during the outgrowth of cells from stationary phase. The high activity of the promoter of the fis operon requires the transcription factor IHF. Previously, we identified a divergent promoter, div, located upstream of the fis promoter. In this study we demonstrate that at least two additional promoters, designated fis P2 and fis P3, are located in the control region of the fis operon. The fis P2 and div promoters overlap completely, whereas fis P3 and div P are arranged as face-to-face divergent promoters. We show that the div and the tandem fis promoters counterbalance each other, such that their activity is kept on a lower than potentially attainable level. Furthermore, we demonstrate an unusual activation mechanism by IHF, involving a coordinated shift in the balance of promoter activities. We infer that these coupled promoters represent a regulatory module and propose a novel "dynamic balance" mechanism involved in the transcriptional control of the fis operon.
Collapse
Affiliation(s)
- William Nasser
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse, D-35043 Marburg, Germany
Present address: UMG, UMR-CNRS5122, INSA bât Louis Pasteur, 11 Av. Jean Cappelle, F-69621 Villeurbanne Cedex, France Present address: Department of Cellular Biochemistry, The Hebrew University-Hadassah Medical School, Jerusalem 90101, Israel Corresponding author e-mail:
| | - Mark Rochman
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse, D-35043 Marburg, Germany
Present address: UMG, UMR-CNRS5122, INSA bât Louis Pasteur, 11 Av. Jean Cappelle, F-69621 Villeurbanne Cedex, France Present address: Department of Cellular Biochemistry, The Hebrew University-Hadassah Medical School, Jerusalem 90101, Israel Corresponding author e-mail:
| | - Georgi Muskhelishvili
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse, D-35043 Marburg, Germany
Present address: UMG, UMR-CNRS5122, INSA bât Louis Pasteur, 11 Av. Jean Cappelle, F-69621 Villeurbanne Cedex, France Present address: Department of Cellular Biochemistry, The Hebrew University-Hadassah Medical School, Jerusalem 90101, Israel Corresponding author e-mail:
| |
Collapse
|
28
|
Falconi M, Prosseda G, Giangrossi M, Beghetto E, Colonna B. Involvement of FIS in the H-NS-mediated regulation of virF gene of Shigella and enteroinvasive Escherichia coli. Mol Microbiol 2001; 42:439-52. [PMID: 11703666 DOI: 10.1046/j.1365-2958.2001.02646.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The mechanism of pathogenicity in Shigella and enteroinvasive Escherichia coli (EIEC) requires the co-ordinated expression of several genes located on both the virulence plasmid and the chromosome. We found that cells lacking a functional FIS protein (factor for inversion stimulation) are partially impaired in expressing the virulence genes and that full expression is totally restored when Shigella wild-type fis gene is offered in trans. We also identified virF, among the virulence genes, as a target of FIS-mediated activation and showed that FIS binds to four specific sites in the promoter region of virF. Previous studies have demonstrated that the expression of VirF, the first positive activator of a multistep regulatory cascade, is subject to temperature-dependent regulation by H-NS, one of the main nucleoid-associated proteins. We now demonstrate that two of the four FIS sites overlap one of the two H-NS sites responsible for thermoregulation (H-NS site I). FIS was found to exercise a direct positive transcriptional control at permissive temperature (37 degrees C), when H-NS fails to repress virF, as well as an indirect effect by partially counteracting H-NS inhibition at the transition temperature (32 degrees C). Our data indicate that FIS may be relevant for the rapid increase in virF expression after penetration of bacteria into the host.
Collapse
Affiliation(s)
- M Falconi
- Laboratorio di Genetica, Dipartimento di Biologia MCA, Università di Camerino, 62032 Camerino (MC), Italy
| | | | | | | | | |
Collapse
|
29
|
Brunetti R, Prosseda G, Beghetto E, Colonna B, Micheli G. The looped domain organization of the nucleoid in histone-like protein defective Escherichia coli strains. Biochimie 2001; 83:873-82. [PMID: 11698109 DOI: 10.1016/s0300-9084(01)01331-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We have investigated the major Escherichia coli histone-like proteins (H-NS, HU, FIS, and IHF) as putative factors involved in the maintenance of the overall DNA looped arrangement of the bacterial nucleoid. The long-range architecture of the chromosome has been studied by means of an assay based on in vivo genomic fragmentation mediated by endogenous DNA gyrase in the presence of oxolinic acid. The fragmentation products were analysed by CHEF electrophoresis. The results indicate that in vivo a large fraction of the bacterial chromatin constitutes an adequate substrate for the enzyme. DNA fragments released upon oxo-treatment span a size range from about 1000 kb to a limit-size of about 50 kb. The latter value is in excellent agreement with the average size reported for bacterial chromosomal domains. The DNA gyrase-mediated fragmentation does not appear to be significantly altered in strains depleted in histone-like proteins as compared to an E. coli wild type strain. This suggests that these proteins may not represent critical determinants for the maintenance of the supercoiled loop organisation of the E. coli chromosome.
Collapse
Affiliation(s)
- R Brunetti
- Centro Acidi Nucleici C.N.R., Università La Sapienza, P. le A. Moro 5, Rome 00185, Italy
| | | | | | | | | |
Collapse
|
30
|
Goulsbra AM, Edwards C, Gallagher MP. Surface hygiene monitored using a reporter of fis in Escherichia coli. J Appl Microbiol 2001; 91:104-9. [PMID: 11442719 DOI: 10.1046/j.1365-2672.2001.01344.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To examine the value of the fis promoter in monitoring regrowth of a surface-attached bacterial population following exposure to chemical stress using several candidate reporters, beta-galactosidase (lacZYA), bacterial luciferase (luxAB) and enhanced green fluorescent protein (EGFP). METHODS AND RESULTS The pattern of expression for the reporters within Escherichia coli cells attached to surfaces was determined. Both the bacterial luciferase reporter and EGFP were readily detected, but EGFP was found to overcome problems associated with luciferase and beta-galactosidase. The effect of surface pretreatment, using polymer systems, on bacterial attachment and growth confirmed the usefulness of this approach. CONCLUSION The fis promoter, combined with EGFP, can be used successfully to study adhesion, biocidal damage and recovery. The stability of the EGFP enabled the magnitude of the total recovery response to be monitored as cells remained fluorescent after the decline in fis expression. SIGNIFICANCE AND IMPACT OF THE STUDY The E. coli Pfis-egfp reporter system provides a new, versatile and sensitive tool to investigate bacterial adhesion both quantitatively and qualitatively.
Collapse
Affiliation(s)
- A M Goulsbra
- Unilever Research Port Sunlight, Quarry Road East, Bebington, Wirral CH63 3JW, Scotland, UK.
| | | | | |
Collapse
|
31
|
Nasser W, Schneider R, Travers A, Muskhelishvili G. CRP modulates fis transcription by alternate formation of activating and repressing nucleoprotein complexes. J Biol Chem 2001; 276:17878-86. [PMID: 11279109 DOI: 10.1074/jbc.m100632200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The DNA architectural proteins FIS and CRP are global regulators of transcription in Escherichia coli involved in the adjustment of cellular metabolism to varying growth conditions. We have previously demonstrated that FIS modulates the expression of the crp gene by functioning as its transcriptional repressor. Here we show that in turn, CRP is required to maintain the growth phase pattern of fis expression. We demonstrate the existence of a divergent promoter in the fis regulatory region, which reduces transcription of the fis promoter. In the absence of FIS, CRP activates fis transcription, thereby displacing the polymerase from the divergent promoter, whereas together FIS and CRP synergistically repress fis gene expression. These results provide evidence for a direct cross-talk between global regulators of cellular transcription during the growth phase. This cross-talk is manifested in alternate formation of functional nucleoprotein complexes exerting either activating or repressing effects on transcription.
Collapse
Affiliation(s)
- W Nasser
- Institut für Genetik und Mikrobiologie, Ludwig-Maximilians-Univesitaet, Maria-Ward-Strasse 1a, 80638 München, Germany
| | | | | | | |
Collapse
|
32
|
Abril AM, Salas M, Hermoso JM. Identification of residues within two regions involved in self-association of viral histone-like protein p6 from phage theta29. J Biol Chem 2000; 275:26404-10. [PMID: 10829023 DOI: 10.1074/jbc.m002739200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein p6 of Bacillus subtilis phage theta29 is involved in the initiation of viral DNA replication and transcription by forming a multimeric nucleoprotein complex with the phage DNA. Based on this, together with its abundance and its capacity to bind to the whole viral genome, it has been proposed to be a viral histone-like protein. Protein p6 is in a monomer-dimer-oligomer equilibrium association. We have identified protein p6 mutants deficient in self-association by testing random mutants obtained by degenerated polymerase chain reaction in an in vivo assay for dimer formation. The mutations were mainly clustered in two regions located at the N terminus, and the central part of the protein. Site-directed single mutants, corresponding to those found in vivo, have been constructed and purified. Mutant p6A44V, located at the central part of the protein, showed an impaired dimer formation ability, and a reduced capacity to bind DNA and to activate the initiation of O29 DNA replication. Mutant p6I8T has at least 10-fold reduced self-association capacity, does not bind DNA nor activate O29 DNA initiation of replication. C-terminal deletion mutants showed an enhanced dimer formation capacity. The highly acidic tail, removed in these mutants, is proposed to modulate the protein p6 self-association.
Collapse
Affiliation(s)
- A M Abril
- Centro de Biologia Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Cientificas-Universidad Autónoma de Madrid), Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
33
|
Jakimowicz D, Majkadagger J, Konopa G, Wegrzyn G, Messer W, Schrempf H, Zakrzewska-Czerwińska J. Architecture of the Streptomyces lividans DnaA protein-replication origin complexes. J Mol Biol 2000; 298:351-64. [PMID: 10772855 DOI: 10.1006/jmbi.2000.3686] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Streptomyces oriC region contains two clusters of 19 DnaA boxes separated by a spacer (134 bp). The Streptomyces DnaA protein consists, like all other DnaA proteins, of four domains: domain III and the carboxyterminal part (domain IV) are responsible for binding of ATP and DNA, respectively. Binding of the DnaA protein to the entire oriC region analysed by electron microscopy showed that the DnaA protein forms separate complexes at each of the clusters of DnaA boxes, but not at the spacer separating them. In vivo mutational analysis revealed that the number of DnaA boxes and the presence of the spacer linking both groups of DnaA boxes seem to be important for a functional Streptomyces origin. We suggest that the arrangement of DnaA boxes allows the DNA-bound DnaA protein to induce bending and looping of the oriC region. As it was shown by electrophoretic mobility shift assay and "one hybrid system", two domains, I and III, facilitate interactions between DnaA molecules. We postulate that domain I and domain III could be involved in cooperativity at distant and at closely spaced DnaA boxes, respectively. The long domain II extends the range over which N termini (domain I) of DNA-bound DnaA protein can form dimers. Thus, interactions between DnaA molecules may bring two clusters of DnaA boxes separated by the spacer into functional contact by loop formation. Removal of the spacer region or deletion of domains I and II resulted, respectively, in nucleoprotein complexes which are not fully developed, or huge nucleoprotein aggregates.
Collapse
MESH Headings
- Allosteric Site
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Bacterial Proteins/ultrastructure
- Chromosomes, Bacterial/chemistry
- Chromosomes, Bacterial/genetics
- Chromosomes, Bacterial/metabolism
- Chromosomes, Bacterial/ultrastructure
- Computer Simulation
- DNA Ligases/metabolism
- DNA Replication/genetics
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA, Bacterial/ultrastructure
- DNA, Circular/chemistry
- DNA, Circular/genetics
- DNA, Circular/metabolism
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/ultrastructure
- Dimerization
- Kinetics
- Microscopy, Electron
- Models, Biological
- Mutation/genetics
- Nucleic Acid Conformation
- Protein Binding
- Protein Structure, Tertiary
- Replication Origin/genetics
- Streptomyces/chemistry
- Streptomyces/genetics
- Transformation, Bacterial/genetics
Collapse
Affiliation(s)
- D Jakimowicz
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Weigla 12, Wroclaw, 53-114, Poland
| | | | | | | | | | | | | |
Collapse
|
34
|
Schneider F, Schwikardi M, Muskhelishvili G, Dröge P. A DNA-binding domain swap converts the invertase gin into a resolvase. J Mol Biol 2000; 295:767-75. [PMID: 10656789 DOI: 10.1006/jmbi.1999.3412] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
DNA resolvases and invertases are closely related, yet catalyze recombination within two distinct nucleoprotein structures termed synaptosomes and invertasomes, respectively. Different protein-protein and protein-DNA interactions guide the assembly of each type of recombinogenic complex, as well as the subsequent activation of DNA strand exchange. Here we show that invertase Gin catalyzes factor for inversion stimulation dependent inversion on isolated copies of sites I from ISXc5 res, which is typically utilized by the corresponding resolvase. The concomitant binding of Gin to sites I and III in res, however, inhibits recombination. A chimeric recombinase, composed of the catalytic domain of Gin and the DNA-binding domain of ISXc5 resolvase, recombines two res with high efficiency. Gin must therefore contain residues proficient for both synaptosome formation and activation of strand exchange. Surprisingly, this chimera is unable to assemble a productive invertasome; a result which implies a role for the C-terminal domain in invertasome formation that goes beyond DNA binding.
Collapse
Affiliation(s)
- F Schneider
- Institute of Genetics, University of Cologne, Cologne, Weyertal 121, D-50931, Germany
| | | | | | | |
Collapse
|
35
|
Schneider R, Travers A, Kutateladze T, Muskhelishvili G. A DNA architectural protein couples cellular physiology and DNA topology in Escherichia coli. Mol Microbiol 1999; 34:953-64. [PMID: 10594821 DOI: 10.1046/j.1365-2958.1999.01656.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Escherichia coli, the transcriptional activity of many promoters is strongly dependent on the negative superhelical density of chromosomal DNA. This, in turn, varies with the growth phase, and is correlated with the overall activity of DNA gyrase, the major topoisomerase involved in the elevation of negative superhelicity. The DNA architectural protein FIS is a regulator of the metabolic reorganization of the cell during early exponential growth phase. We have previously shown that FIS modulates the superhelical density of plasmid DNA in vivo, and on binding reshapes the supercoiled DNA in vitro. Here, we show that, in addition, FIS represses the gyrA and gyrB promoters and reduces DNA gyrase activity. Our results indicate that FIS determines DNA topology both by regulation of topoisomerase activity and, as previously inferred, by directly reshaping DNA. We propose that FIS is involved in coupling cellular physiology to the topology of the bacterial chromosome.
Collapse
MESH Headings
- Base Sequence
- Blotting, Northern
- Blotting, Western
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- DNA Footprinting
- DNA Gyrase
- DNA Topoisomerases, Type II/genetics
- DNA Topoisomerases, Type II/metabolism
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA, Superhelical/chemistry
- DNA, Superhelical/genetics
- DNA, Superhelical/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- DNA-Directed RNA Polymerases/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli/physiology
- Escherichia coli Proteins
- Factor For Inversion Stimulation Protein
- Gene Expression Regulation, Bacterial
- Integration Host Factors
- Molecular Sequence Data
- Promoter Regions, Genetic
- Transcription, Genetic
Collapse
Affiliation(s)
- R Schneider
- Institut für Genetik und Mikrobiologie, LMU München, Maria-Ward-Str. 1a, 80638 München, Germany
| | | | | | | |
Collapse
|
36
|
Rockabrand D, Austin T, Kaiser R, Blum P. Bacterial growth state distinguished by single-cell protein profiling: does chlorination kill coliforms in municipal effluent? Appl Environ Microbiol 1999; 65:4181-8. [PMID: 10473432 PMCID: PMC99757 DOI: 10.1128/aem.65.9.4181-4188.1999] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Municipal effluent is the largest reservoir of human enteric bacteria. Its public health significance, however, depends upon the physiological status of the wastewater bacterial community. A novel immunofluorescence assay was developed and used to examine the bacterial growth state during wastewater disinfection. Quantitative levels of three highly conserved cytosolic proteins (DnaK, Dps, and Fis) were determined by using enterobacterium-specific antibody fluorochrome-coupled probes. Enterobacterial Fis homologs were abundant in growing cells and nearly undetectable in stationary-phase cells. In contrast, enterobacterial Dps homologs were abundant in stationary-phase cells but virtually undetectable in growing cells. The range of variation in the abundance of both proteins was at least 100-fold as determined by Western blotting and immunofluorescence analysis. Enterobacterial DnaK homologs were nearly invariant with growth state, enabling their use as permeabilization controls. The cellular growth states of individual enterobacteria in wastewater samples were determined by measurement of Fis, Dps, and DnaK abundance (protein profiling). Intermediate levels of Fis and Dps were evident and occurred in response to physiological transitions. The results indicate that chlorination failed to kill coliforms but rather elicited nutrient starvation and a reversible nonculturable state. These studies suggest that the current standard procedures for wastewater analysis which rely on detection of culturable cells likely underestimate fecal coliform content.
Collapse
Affiliation(s)
- D Rockabrand
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588-0666, USA
| | | | | | | |
Collapse
|
37
|
Christ N, Dröge P. Alterations in the directionality of lambda site-specific recombination catalyzed by mutant integrases in vivo. J Mol Biol 1999; 288:825-36. [PMID: 10329182 DOI: 10.1006/jmbi.1999.2730] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phage lambda integrative and excisive recombination normally proceeds by a pair of sequential strand exchanges. During the first exchange reaction, the "top" strand in each recombination site is cleaved, exchanged, and religated generating a Holliday junction intermediate. This intermediate DNA structure is resolved through a pair of reciprocal "bottom" strand exchanges, leading to recombinant products. The strict co-ordination of exchange reactions ensures religation between correct partner strands only. Here we show that the directionality of recombination is altered in vivo by two mutant integrases, Int-h (E174 K) and a double mutant Int-h/218 (E174 K/E218 K). This change in directionality leads to deletion instead of inversion on substrates that carry inverted attachment sites and, depending on the pair of target sites employed, requires the presence or absence of integration host factor. Neither Fis nor Xis is involved in deletion. Sequence analyses of deletion products reveal that the newly generated hybrid attachment site exhibits a reversed genetic polarity. We demonstrate that only one of two possible hybrid site configurations is generated and discuss two pathways leading to deletion. In the first, deletion results from a wrong alignment of the two recombination sites within the synaptic complex. In the second pathway, the unco-ordinated cleavage by the mutant integrases of all four DNA strands present in a conventional Holliday junction intermediate leads to two double-stranded breaks, whereby the subsequent rejoining between "wrong" partner strands appears restricted to only two strands.
Collapse
Affiliation(s)
- N Christ
- Institute of Genetics, University of Cologne, Cologne, Weyertal 121, D-50931, Germany
| | | |
Collapse
|
38
|
Henderson IR, Owen P. The major phase-variable outer membrane protein of Escherichia coli structurally resembles the immunoglobulin A1 protease class of exported protein and is regulated by a novel mechanism involving Dam and oxyR. J Bacteriol 1999; 181:2132-41. [PMID: 10094691 PMCID: PMC93626 DOI: 10.1128/jb.181.7.2132-2141.1999] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here we report the characterization of an Escherichia coli gene (agn43) which encodes the principal phase-variable outer membrane protein termed antigen 43 (Ag43). The agn43 gene encodes a precursor protein of 107 kDa containing a 52-amino-acid signal sequence. Posttranslational processing generates an alpha43 subunit (predicted Mr of 49,789) and a C-terminal domain (beta43) with features typical of a bacterial integral outer membrane protein (predicted Mr of 51, 642). Secondary structure analysis predicts that beta43 exists as an 18-stranded beta barrel and that Ag43 shows structural organization closely resembling that of immunoglobulin A1 protease type of exoprotein produced by pathogenic Neisseria and Haemophilus spp. The correct processing of the polyprotein to alpha43 and beta43 in OmpT, OmpP, and DegP protease-deficient E. coli strains points to an autocatalytic cleavage mechanism, a hypothesis supported by the occurrence of an aspartyl protease active site within alpha43. Ag43, a species-specific antigen, possesses two RGD motifs of the type implicated in binding to human integrins. The mechanism of reversible phase variation was studied by immunochemical analysis of a panel of well-defined regulatory mutants and by analysis of DNA sequences upstream of agn43. Evidence strongly suggests that phase variation is regulated by both deoxyadenosine methylase (Dam) and by OxyR. Thus, oxyR mutants are locked on for Ag43 expression, whereas dam mutants are locked off for Ag43 expression. We propose a novel mechanism for the regulation of phase switching in which OxyR competes with Dam for unmethylated GATC sites in the regulatory region of the agn43 gene.
Collapse
MESH Headings
- Adhesins, Bacterial
- Adhesins, Escherichia coli
- Amino Acid Sequence
- Antigens, Bacterial/chemistry
- Antigens, Bacterial/genetics
- Antigens, Bacterial/metabolism
- Antigens, Surface/chemistry
- Antigens, Surface/genetics
- Antigens, Surface/metabolism
- Bacterial Outer Membrane Proteins/chemistry
- Bacterial Outer Membrane Proteins/genetics
- Bacterial Outer Membrane Proteins/metabolism
- Base Sequence
- DNA, Bacterial
- DNA-Binding Proteins
- Enterobacteriaceae/genetics
- Escherichia coli/genetics
- Escherichia coli/immunology
- Escherichia coli Proteins
- Immunoglobulin A/chemistry
- Immunoglobulin A/genetics
- Molecular Sequence Data
- Protein Processing, Post-Translational
- Protein Structure, Secondary
- Repressor Proteins/metabolism
- Sequence Homology, Amino Acid
- Site-Specific DNA-Methyltransferase (Adenine-Specific)/metabolism
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- I R Henderson
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| | | |
Collapse
|
39
|
Majka J, Jakimowicz D, Messer W, Schrempf H, Lisowski M, Zakrzewska-Czerwińska J. Interactions of the Streptomyces lividans initiator protein DnaA with its target. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 260:325-35. [PMID: 10095766 DOI: 10.1046/j.1432-1327.1999.00168.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Streptomyces lividans DnaA protein (73 kDa) consists, like other bacterial DnaA proteins, of four domains; it binds to 19 DnaA boxes in the complex oriC region. The S. lividans DnaA protein differs from others in that it contains an additional stretch of 120 predominantly acidic amino acids within domain II. Interactions between the DnaA protein and the two DnaA boxes derived from the promoter region of the S. lividans dnaA gene were analysed in vitro using three independent methods: Dnase-I-footprinting experiments, mobility-shift assay and surface plasmon resonance (SPR). The Dnase-I-footprinting analysis showed that the wild-type DnaA protein binds to both DnaA boxes. Thus, as in Escherichia coli and Bacillus subtilis, the S. lividans dnaA gene may be autoregulated. SPR analysis showed that the affinity of the DnaA protein for a DNA fragment containing both DnaA boxes from the dnaA promoter region (KD = 1.25 nM) is 10 times higher than its affinity for the single 'strong' DnaA box (KD = 12.0 nM). The mobility-shift assay suggests the presence of at least two classes of complex containing different numbers of bound DnaA molecules. The above data reveal that the DnaA protein binds to the two DnaA boxes in a cooperative manner. To deduce structural features of the Streptomyces domain II of DnaA protein, the amino acid DnaA sequences of three Streptomyces species were compared. However, according to the secondary structure prediction, Streptomyces domain II does not contain any common relevant secondary structural element(s). It can be assumed that domain II of DnaA protein can play a role as a flexible protein spacer between the N-terminal domain I and the highly conserved C-terminal part of DnaA protein containing ATP-binding domain III and DNA-binding domain IV.
Collapse
Affiliation(s)
- J Majka
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | | | | | | | | | | |
Collapse
|
40
|
Lee SY, Lee HJ, Lee H, Kim S, Cho EH, Lim HM. In vivo assay of protein-protein interactions in Hin-mediated DNA inversion. J Bacteriol 1998; 180:5954-60. [PMID: 9811654 PMCID: PMC107670 DOI: 10.1128/jb.180.22.5954-5960.1998] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/1998] [Accepted: 09/04/1998] [Indexed: 11/20/2022] Open
Abstract
In order to form the catalytic nucleoprotein complex called the invertasome in the Hin-mediated DNA inversion reaction, interactions of the DNA-binding proteins Hin and Fis are required. Assays for these protein-protein interactions have been exploited with protein cross-linkers in vitro. In this study, an in vivo assay system that probes protein-protein interactions was developed. The formation of a DNA loop generated by protein interactions resulted in transcriptional repression of an artificially designed operon, which in turn increased the chance of survival of Escherichia coli host cells in a streptomycin-containing medium. Using this system, we were able to assay the Hin-Hin interaction that results in the pairing of the two recombination sites and protein interactions that result in the formation of the invertasome. This assay system also led us to find that an individual Hin dimer bound on a recombination site can form a stable complex with Fis bound on the recombinational enhancer; this finding has never been observed in in vitro studies. Possible pathways toward the formation of the invertasome are discussed based on the assay results for a previously reported Hin mutant.
Collapse
Affiliation(s)
- S Y Lee
- Department of Biology, College of Natural Sciences, Chungnam National University, Taejon 305-764, Korea
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
42
|
Merickel SK, Haykinson MJ, Johnson RC. Communication between Hin recombinase and Fis regulatory subunits during coordinate activation of Hin-catalyzed site-specific DNA inversion. Genes Dev 1998; 12:2803-16. [PMID: 9732277 PMCID: PMC317131 DOI: 10.1101/gad.12.17.2803] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/1998] [Accepted: 07/20/1998] [Indexed: 11/24/2022]
Abstract
The Hin DNA invertase becomes catalytically activated when assembled in an invertasome complex containing two Fis dimers bound to an enhancer segment. The region of Fis responsible for transactivation of Hin contains a mobile beta-hairpin arm that extends from each dimer subunit. We show here that whereas both Fis dimers must be capable of activating Hin, Fis heterodimers that have only one functional activating beta-arm are sufficient to form catalytically competent invertasomes. Analysis of homodimer and heterodimer mixes of different Hin mutants suggests that Fis must activate each subunit of the two Hin dimers that participate in catalysis. These experiments also indicate that all four Hin subunits must be coordinately activated prior to initiation of the first chemical step of the reaction and that the process of activation is independent of the catalytic steps of recombination. We propose a molecular model for the invertasome structure that is consistent with current information on protein-DNA structures and the topology of the DNA strands within the recombination complex. In this model, a single Fis activation arm could contact amino acids from both Hin subunits at the dimer interface to induce a conformational change that coordinately positions the active sites close to the scissile phosphodiester bonds.
Collapse
Affiliation(s)
- S K Merickel
- Department of Biological Chemistry, School of Medicine, University of California at Los Angeles, Los Angeles, California 90095-1737, USA
| | | | | |
Collapse
|
43
|
Abstract
Regulation of nrd expression in Escherichia coli by cis-acting elements was found to be more complex than previously reported. At least five upstream sites appear to positively regulate nrd expression including a Fis binding site, a DnaA binding site, an AT-rich region, an inverted repeat and a 10 bp site between the AT-rich region and the inverted repeat. Double mutants defective in these sites indicate that all sites tested act independently when regulating nrd expression. As the decrease in nrd expression in exponentially growing cultures paralleled the decrease observed in DNA synthesis-inhibited cultures for all single and double mutants, we concluded that nrd is regulated by the same mechanism in these physiological states. As mutants unable to induce nrd expression during inhibition of DNA synthesis also fail to exhibit cell cycle-regulated nrd expression, we conclude that cell cycle nrd regulation is controlled by these same sites. Site-directed mutagenesis was used to show that the absence of an increase in nrd expression during DNA inhibition previously observed for deletion of the AT-rich region results from deletion of both the Fis binding site and the AT-rich region.
Collapse
Affiliation(s)
- B A Jacobson
- Department of Biochemistry, University of Minnesota, St. Paul 55108, USA
| | | |
Collapse
|
44
|
Jakimowicz D, Majka J, Messer W, Speck C, Fernandez M, Cruz Martin M, Sanchez J, Schauwecker F, Keller U, Schrempf H, Zakrzewska-Czerwinńska J. Structural elements of the Streptomyces oriC region and their interactions with the DnaA protein. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 5):1281-1290. [PMID: 9611803 DOI: 10.1099/00221287-144-5-1281] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Streptomycetes differ from other prokaryotic organisms in their mycelial life cycle and in possessing a large, linear, GC-rich chromosome. To deduce structural features of the Streptomyces origin of chromosomal replication, the oriC sequences of three Streptomyces species (S. antibioticus, S. chrysomallus and S. lividans) were compared. In Streptomyces, the oriC region contains 19 DnaA boxes whose location, orientation and spacing are conserved. The consensus sequence of the DnaA box identified within Streptomyces oriC is (T/C)(T/C)(G/A/C)TCCACA (preferred bases underlined). The interactions of DnaA with DNA fragments containing single, two or three DnaA boxes were studied using surface plasmon resonance. The dissociation constant (KD) for specific binding of individual DnaA boxes varied between 12 and 78 nM. Streptomyces oriC does not contain the three AT-rich 13-mer direct repeats present in the 5' part of the Escherichia coli oriC region. However, short AT-rich sequences are distributed among the DnaA boxes of Streptomyces oriC. Repeated attempts to unwind Streptomyces oriC have been unsuccessful. It remains to be elucidated whether DnaA interacts with putative accessory proteins which help in unwinding Streptomyces oriC.
Collapse
Affiliation(s)
- Dagmara Jakimowicz
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Weigla 12, 53-114 Wroclaw, Poland
| | - Jerzy Majka
- Max-Planck-Institut für Molekulare Genetik, Ihnestraße 73, D-14195 Berlin-Dahlem, Germany
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Weigla 12, 53-114 Wroclaw, Poland
| | - Walter Messer
- Max-Planck-Institut für Molekulare Genetik, Ihnestraße 73, D-14195 Berlin-Dahlem, Germany
| | - Christian Speck
- Max-Planck-Institut für Molekulare Genetik, Ihnestraße 73, D-14195 Berlin-Dahlem, Germany
| | - Marisol Fernandez
- Departamento de Biologia Funcional e Instituto Universitario de Biotecnologia de Asturias, Universidad de Oviedo, J. Claveria 6, Oviedo 33006, Spain
| | - M Cruz Martin
- Departamento de Biologia Funcional e Instituto Universitario de Biotecnologia de Asturias, Universidad de Oviedo, J. Claveria 6, Oviedo 33006, Spain
| | - Jesus Sanchez
- Departamento de Biologia Funcional e Instituto Universitario de Biotecnologia de Asturias, Universidad de Oviedo, J. Claveria 6, Oviedo 33006, Spain
| | - Florian Schauwecker
- Max-Volmer-Institut für Biophysikalische Chemie und Biochemie, Fachgebiet Biochemie und Molekulare Biologie, Technische Universität Berlin, Franklinstrasse 29, D-10587 Berlin, Germany
| | - Ullrich Keller
- Max-Volmer-Institut für Biophysikalische Chemie und Biochemie, Fachgebiet Biochemie und Molekulare Biologie, Technische Universität Berlin, Franklinstrasse 29, D-10587 Berlin, Germany
| | - Hildgund Schrempf
- Fachbereich Biologie/Chemie, Universität Osnabrück, Barbarastraße 11, 49069 Osnabrück, Germany
| | - Jolanta Zakrzewska-Czerwinńska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Weigla 12, 53-114 Wroclaw, Poland
| |
Collapse
|
45
|
Afflerbach H, Schröder O, Wagner R. Effects of the Escherichia coli DNA-binding protein H-NS on rRNA synthesis in vivo. Mol Microbiol 1998; 28:641-53. [PMID: 9632265 DOI: 10.1046/j.1365-2958.1998.00829.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Escherichia coli DNA-binding protein H-NS is known to interact specifically with the upstream region of ribosomal RNA transcription units, where it causes transcriptional repression in vitro. Here, we present results demonstrating the effect of H-NS on rRNA transcription in vivo. rRNA synthesis rates were compared in cells that differ in the expression of functional H-NS or FIS molecules. We could show that in the absence of H-NS derepression of rRNA synthesis occurs at low growth rates. During the cell cycle H-NS is responsible for the rapid shut-off of rRNA synthesis at the end of the exponential phase. As it is known for FIS-dependent activation, the inhibitory function of H-NS is specific for P1, the first of the tandem rRNA promoters. The effect of H-NS on rRNA synthesis was further assessed under stress conditions. While under osmotic upshift the reduction in rRNA synthesis is clearly H-NS-dependent, no such influence could be detected at cold shock. Determination of the cellular ppGpp concentrations revealed that H-NS does not mediate its function via alterations in the synthesis of the global effector ppGpp.
Collapse
Affiliation(s)
- H Afflerbach
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Germany
| | | | | |
Collapse
|
46
|
Hengen PN, Bartram SL, Stewart LE, Schneider TD. Information analysis of Fis binding sites. Nucleic Acids Res 1997; 25:4994-5002. [PMID: 9396807 PMCID: PMC147151 DOI: 10.1093/nar/25.24.4994] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Originally discovered in the bacteriophage Mu DNA inversion system gin, Fis (Factor for Inversion Stimulation) regulates many genetic systems. To determine the base frequency conservation required for Fis to locate its binding sites, we collected a set of 60 experimentally defined wild-type Fis DNA binding sequences. The sequence logo for Fis binding sites showed the significance and likely kinds of base contacts, and these are consistent with available experimental data. Scanning with an information theory based weight matrix within fis, nrd, tgt/sec and gin revealed Fis sites not previously identified, but for which there are published footprinting and biochemical data. DNA mobility shift experiments showed that a site predicted to be 11 bases from the proximal Salmonella typhimurium hin site and a site predicted to be 7 bases from the proximal P1 cin site are bound by Fis in vitro. Two predicted sites separated by 11 bp found within the nrd promoter region, and one in the tgt/sec promoter, were also confirmed by gel shift analysis. A sequence in aldB previously reported to be a Fis site, for which information theory predicts no site, did not shift. These results demonstrate that information analysis is useful for predicting Fis DNA binding.
Collapse
Affiliation(s)
- P N Hengen
- Laboratory of Mathematical Biology, National Cancer Institute, Frederick Cancer Research and Development Center, PO Box B, Building 469, Room 144, Frederick, MD 21702-1201, USA
| | | | | | | |
Collapse
|
47
|
Bates DB, Boye E, Asai T, Kogoma T. The absence of effect of gid or mioC transcription on the initiation of chromosomal replication in Escherichia coli. Proc Natl Acad Sci U S A 1997; 94:12497-502. [PMID: 9356478 PMCID: PMC25015 DOI: 10.1073/pnas.94.23.12497] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Despite the widely accepted view that transcription of gid and mioC is required for efficient initiation of cloned oriC, we show that these transcriptions have very little effect on initiation of chromosome replication at wild-type chromosomal oriC. Furthermore, neither gid nor mioC transcription is required in cells deficient in the histone-like proteins Fis or IHF. However, oriC that is sufficiently impaired for initiation by deletion of DnaA box R4 requires transcription of at least one of these genes. We conclude that transcription of mioC and especially gid is needed to activate oriC only under suboptimal conditions. We suggest that either the rifampicin-sensitive step of initiation is some other transcription occurring from promoter(s) within oriC, or the original inference of transcriptional activation derived from the rifampicin experiments is incorrect.
Collapse
Affiliation(s)
- D B Bates
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | | | |
Collapse
|
48
|
Claret L, Rouviere-Yaniv J. Variation in HU composition during growth of Escherichia coli: the heterodimer is required for long term survival. J Mol Biol 1997; 273:93-104. [PMID: 9367749 DOI: 10.1006/jmbi.1997.1310] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The histone-like dimeric HU protein of Escherichia coli is encoded by two closely related genes, hupA and hupB. We show here that expression from the single hupA promoter and from the three hupB promoters varies during growth phase. The weak hupB-P4 promoter is active immediately after dilution. Transcription of the hupA gene is activated early in logarithmic phase. A little later, at mid to late exponential phase, RNA originating at the hupB-P2 promoter is detected. The hupB-P3 promoter is activated last when the cells enter stationary phase. Although the hup mRNAs are unstable, the HU protein is very stable so that the variations in the mRNAs synthesis are reflected in the level of the two HU subunits and in the composition of HU dimers. Cells growing exponentially contain a mixture of homodimeric alpha 2 and heterodimeric alpha beta but no beta 2 is detected. In stationary cells, the predominant form is the heterodimer alpha beta. The presence of the heterodimeric form is required for optimal survival of E. coli after prolonged starvation. The three forms of HU are not equivalent, since beta 2 is incapable of promoting formation of DNA supercoiling like alpha beta and alpha 2 do. The putative roles of each form of HU are discussed.
Collapse
MESH Headings
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Blotting, Western
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Culture Media
- DNA Topoisomerases, Type I/metabolism
- DNA, Bacterial/chemistry
- DNA, Bacterial/metabolism
- DNA, Superhelical/chemistry
- DNA, Superhelical/metabolism
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Dimerization
- Electrophoresis, Polyacrylamide Gel
- Escherichia coli/chemistry
- Escherichia coli/genetics
- Escherichia coli/growth & development
- Escherichia coli Proteins
- Gene Expression Regulation, Bacterial
- Genes, Bacterial/genetics
- Integration Host Factors
- Nucleic Acid Conformation
- Promoter Regions, Genetic/genetics
- Protein Conformation
- Protein Denaturation
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Transcription Factors/chemistry
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- L Claret
- Laboratoire de Physiologie Bactérienne, CNRS, UPR 9073, Paris, France
| | | |
Collapse
|
49
|
Deufel A, Hermann T, Kahmann R, Muskhelishvili G. Stimulation of DNA inversion by FIS: evidence for enhancer-independent contacts with the Gin-gix complex. Nucleic Acids Res 1997; 25:3832-9. [PMID: 9380505 PMCID: PMC146962 DOI: 10.1093/nar/25.19.3832] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Efficient DNA inversion catalysed by the invertase Gin requires the cis-acting recombinational enhancer and the Escherichia coliFIS protein. Binding of FIS bends the enhancer DNA and, on a negatively supercoiled DNA inversion substrate, facilitates the formation of a synaptic complex with specific topology. Previous studies have indicated that FIS-independent Gin mutants can be isolated which have lost the topological constraints imposed on the inversion reaction yet remain sensitive to the stimulatory effect of FIS. Whether the effect of FIS is purely architectural, or whether in addition direct protein contacts between Gin and FIS are required for efficient catalysis has remained an unresolved question. Here we show that FIS mutants impaired in DNA binding are capable of either positively or negatively affecting the inversion reaction both in vivo and in vitro. We further demonstrate that the mutant protein FIS K25E/V66A/M67T dramatically enhances the cleavage of recombination sites by FIS-independent Gin in an enhancer-independent manner. Our observations suggest that FIS plays a dual role in the inversion reaction and stimulates both the assembly of the synaptic complex as well as DNA strand cleavage.
Collapse
Affiliation(s)
- A Deufel
- Institut für Genetik und Mikrobiologie der Universität München, Maria-Ward-Strasse 1a, 80638 München, Germany
| | | | | | | |
Collapse
|
50
|
Li S, Waters R. Induction and repair of cyclobutane pyrimidine dimers in the Escherichia coli tRNA gene tyrT: Fis protein affects dimer induction in the control region and suppresses preferential repair in the coding region of the transcribed strand, except in a short region near the transcription start site. J Mol Biol 1997; 271:31-46. [PMID: 9300053 DOI: 10.1006/jmbi.1997.1154] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We analysed induction and repair of UV induced pyrimidine dimers in the Escherichia coli tRNA gene tyrT. In wild-type (WT) log or stationary phase different patterns of induction occurred in the three Fis binding sites and the core promoter -35 sequence of the control region: this was absent in fis- cells. In stationary WT cells, slow, similar rates of repair occurred throughout the non-transcribed strand (NTS). Faster repair occurred in the NTS control region in WT log phase. NTS repair in fis- cells was similar, except the control region differed less between phases. Heterogeneous repair occurred along the transcribed strand (TS). In the control region repair was faster than in the NTS. Repair in the TS coding region changed between growth phases or if repair took place in different media. When irradiated log phase WT cells were in rich medium, two TS domains were evident: a fast-repaired domain within 31 nucleotides from the transcription start site; and a more slowly repaired domain composed of the rest of the TS. A sharp gradient existed in the small domain with very fast repair at the beginning and diminished repair towards the end. Fast transcription coupled repair (TCR) in the small domain was absent in the TS large domain, where repair was similar to the NTS and to the entire TS in mfd- cells. In similarly treated stationary phase WT cells, TCR occurred in the large domain. Depletion of Fis reinstates TCR to a lesser extent, whilst a substitution of five nucleotides at the Fis binding sites in the upstream activating sequence reinstates TCR. Reinstatement of TCR was also achieved by incubating irradiated WT cells in minimal salt medium without the required amino acid. Our results suggest that Fis indirectly suppresses preferential repair in the TS large domain by stimulating transcription.
Collapse
Affiliation(s)
- S Li
- School of Biological Sciences, University of Wales Swansea, UK
| | | |
Collapse
|