1
|
He N, Wei Q, Li Y, Hu S, Xian Y, Yang M, Wu P, Lu Z, Zhang G. A sensitive, portable, and smartphone-based whole-cell biosensor device for salicylic acid monitoring. Biosens Bioelectron 2024; 257:116329. [PMID: 38677023 DOI: 10.1016/j.bios.2024.116329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/14/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Considerable effort has been invested in developing salicylic acid (SA) biosensors for various application purposes. Here, by engineering the sensing modules and host cell chassis, we have gradually optimized the NahR-Psal/Pr-based SA biosensor, increasing the sensitivity and maximum output by 17.2-fold and 9.4-fold, respectively, and improving the detection limit by 800-fold, from 80 μM to 0.1 μM. A portable SA sensing device was constructed by embedding a gelatin-based hydrogel containing an optimized biosensor into the perforations of tape adhered to glass slide, which allowed good determination of SA in the range of 0.1 μM-10 μM. Then, we developed a customized smartphone App to measure the fluorescence intensity of each perforation and automatically calculate the corresponding SA concentration so that we could detect SA concentrations in real cosmetic samples. We anticipate that this smartphone-based imaging biosensor, with its compact size, higher sensitivity, cost-effectiveness, and easy data transfer, will be useful for long-term monitoring of SA.
Collapse
Affiliation(s)
- Nisha He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan,430062, Hubei, China
| | - Qin Wei
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan,430062, Hubei, China
| | - Yiwen Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan,430062, Hubei, China
| | - Shantong Hu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yufan Xian
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Mo Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan,430062, Hubei, China
| | - Pan Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan,430062, Hubei, China
| | - Zhenghui Lu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan,430062, Hubei, China.
| | - Guimin Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan,430062, Hubei, China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
2
|
Henry C, Kaur G, Cherry ME, Henrikus SS, Bonde N, Sharma N, Beyer H, Wood EA, Chitteni-Pattu S, van Oijen A, Robinson A, Cox M. RecF protein targeting to post-replication (daughter strand) gaps II: RecF interaction with replisomes. Nucleic Acids Res 2023; 51:5714-5742. [PMID: 37125644 PMCID: PMC10287930 DOI: 10.1093/nar/gkad310] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 04/09/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023] Open
Abstract
The bacterial RecF, RecO, and RecR proteins are an epistasis group involved in loading RecA protein into post-replication gaps. However, the targeting mechanism that brings these proteins to appropriate gaps is unclear. Here, we propose that targeting may involve a direct interaction between RecF and DnaN. In vivo, RecF is commonly found at the replication fork. Over-expression of RecF, but not RecO or a RecF ATPase mutant, is extremely toxic to cells. We provide evidence that the molecular basis of the toxicity lies in replisome destabilization. RecF over-expression leads to loss of genomic replisomes, increased recombination associated with post-replication gaps, increased plasmid loss, and SOS induction. Using three different methods, we document direct interactions of RecF with the DnaN β-clamp and DnaG primase that may underlie the replisome effects. In a single-molecule rolling-circle replication system in vitro, physiological levels of RecF protein trigger post-replication gap formation. We suggest that the RecF interactions, particularly with DnaN, reflect a functional link between post-replication gap creation and gap processing by RecA. RecF's varied interactions may begin to explain how the RecFOR system is targeted to rare lesion-containing post-replication gaps, avoiding the potentially deleterious RecA loading onto thousands of other gaps created during replication.
Collapse
Affiliation(s)
- Camille Henry
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI53706-1544, USA
| | - Gurleen Kaur
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
- Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Megan E Cherry
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
- Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Sarah S Henrikus
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
- Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Nina J Bonde
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI53706-1544, USA
| | - Nischal Sharma
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
- Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Hope A Beyer
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI53706-1544, USA
| | - Elizabeth A Wood
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI53706-1544, USA
| | - Sindhu Chitteni-Pattu
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI53706-1544, USA
| | - Antoine M van Oijen
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
- Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Andrew Robinson
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
- Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI53706-1544, USA
| |
Collapse
|
3
|
Pham P, Wood EA, Cox MM, Goodman MF. RecA and SSB genome-wide distribution in ssDNA gaps and ends in Escherichia coli. Nucleic Acids Res 2023; 51:5527-5546. [PMID: 37070184 PMCID: PMC10287960 DOI: 10.1093/nar/gkad263] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/19/2023] Open
Abstract
Single-stranded DNA (ssDNA) gapped regions are common intermediates in DNA transactions. Using a new non-denaturing bisulfite treatment combined with ChIP-seq, abbreviated 'ssGap-seq', we explore RecA and SSB binding to ssDNA on a genomic scale in E. coli in a wide range of genetic backgrounds. Some results are expected. During log phase growth, RecA and SSB assembly profiles coincide globally, concentrated on the lagging strand and enhanced after UV irradiation. Unexpected results also abound. Near the terminus, RecA binding is favored over SSB, binding patterns change in the absence of RecG, and the absence of XerD results in massive RecA assembly. RecA may substitute for the absence of XerCD to resolve chromosome dimers. A RecA loading pathway may exist that is independent of RecBCD and RecFOR. Two prominent and focused peaks of RecA binding revealed a pair of 222 bp and GC-rich repeats, equidistant from dif and flanking the Ter domain. The repeats, here named RRS for replication risk sequence, trigger a genomically programmed generation of post-replication gaps that may play a special role in relieving topological stress during replication termination and chromosome segregation. As demonstrated here, ssGap-seq provides a new window on previously inaccessible aspects of ssDNA metabolism.
Collapse
Affiliation(s)
- Phuong Pham
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089-2910, USA
| | - Elizabeth A Wood
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706-1544, USA
| | - Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706-1544, USA
| | - Myron F Goodman
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089-2910, USA
| |
Collapse
|
4
|
Positive Charges Are Important for the SOS Constitutive Phenotype in recA730 and recA1202 Mutants of Escherichia coli K-12. J Bacteriol 2022; 204:e0008122. [PMID: 35442066 DOI: 10.1128/jb.00081-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli K-12, RecA binds to single-strand DNA (ssDNA) created by DNA damage to form a protein-DNA helical filament that serves to catalyze LexA autoproteolysis, which induces the SOS response. The SOS constitutive (SOSC) mutations recA730(E38K) and recA1202(Q184K) are both on the outside of the RecA filament, opposite to the face that binds DNA. recA730(E38K) is also able to suppress the UV sensitivity caused by recF mutations. Both SOSC expression and recF suppression are thought to be due to RecA730's ability to compete better for ssDNA coated with ssDNA-binding protein than the wild type. We tested whether other positively charged residues at these two positions would lead to SOSC expression and recF suppression. We found that 5/6 positively charged residues were SOSC and 4/5 of these were also recF suppressors. While other mutations at these two positions (and others) were recF suppressors, none were SOSC. Three recF suppressors could be made moderately SOSC by adding a recA operator mutation. We hypothesize two mechanisms for SOSC expression: the first suggests that the positive charge at positions 38 and 184 attract negatively charged molecules that block interactions that would destabilize the RecA-DNA filament, and the second involves more stable filaments caused by increases in mutant RecA concentration. IMPORTANCE In Escherichia coli K-12, SOS constitutive (SOSC) mutants of recA turn on the SOS response in the absence of DNA damage. Some SOSC mutants are also able to indirectly suppress the UV sensitivity of recF mutations. Two SOSC mutations, recA730(E38K) and recA1202(Q184K), define a surface on the RecA-DNA filament opposite the surface that binds DNA. Both introduce positive charges, and recA730 is a recF suppressor. We tested whether the positive charge at these two positions was required for SOSC expression and recF suppression. We found a high correlation between the positive charge, SOSC expression and recF suppression. We also found several other mutations (different types) that provide recF suppression but no SOSC expression.
Collapse
|
5
|
Elucidating Recombination Mediator Function Using Biophysical Tools. BIOLOGY 2021; 10:biology10040288. [PMID: 33916151 PMCID: PMC8066028 DOI: 10.3390/biology10040288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary This review recapitulates the initial knowledge acquired with genetics and biochemical experiments on Recombination mediator proteins in different domains of life. We further address how recent in vivo and in vitro biophysical tools were critical to deepen the understanding of RMPs molecular mechanisms in DNA and replication repair, and unveiled unexpected features. For instance, in bacteria, genetic and biochemical studies suggest a close proximity and coordination of action of the RecF, RecR and RecO proteins in order to ensure their RMP function, which is to overcome the single-strand binding protein (SSB) and facilitate the loading of the recombinase RecA onto ssDNA. In contrary to this expectation, using single-molecule fluorescent imaging in living cells, we showed recently that RecO and RecF do not colocalize and moreover harbor different spatiotemporal behavior relative to the replication machinery, suggesting distinct functions. Finally, we address how new biophysics tools could be used to answer outstanding questions about RMP function. Abstract The recombination mediator proteins (RMPs) are ubiquitous and play a crucial role in genome stability. RMPs facilitate the loading of recombinases like RecA onto single-stranded (ss) DNA coated by single-strand binding proteins like SSB. Despite sharing a common function, RMPs are the products of a convergent evolution and differ in (1) structure, (2) interaction partners and (3) molecular mechanisms. The RMP function is usually realized by a single protein in bacteriophages and eukaryotes, respectively UvsY or Orf, and RAD52 or BRCA2, while in bacteria three proteins RecF, RecO and RecR act cooperatively to displace SSB and load RecA onto a ssDNA region. Proteins working alongside to the RMPs in homologous recombination and DNA repair notably belongs to the RAD52 epistasis group in eukaryote and the RecF epistasis group in bacteria. Although RMPs have been studied for several decades, molecular mechanisms at the single-cell level are still not fully understood. Here, we summarize the current knowledge acquired on RMPs and review the crucial role of biophysical tools to investigate molecular mechanisms at the single-cell level in the physiological context.
Collapse
|
6
|
Henrikus SS, Henry C, Ghodke H, Wood EA, Mbele N, Saxena R, Basu U, van Oijen AM, Cox MM, Robinson A. RecFOR epistasis group: RecF and RecO have distinct localizations and functions in Escherichia coli. Nucleic Acids Res 2019; 47:2946-2965. [PMID: 30657965 PMCID: PMC6451095 DOI: 10.1093/nar/gkz003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/03/2018] [Accepted: 01/10/2019] [Indexed: 01/31/2023] Open
Abstract
In bacteria, genetic recombination is a major mechanism for DNA repair. The RecF, RecO and RecR proteins are proposed to initiate recombination by loading the RecA recombinase onto DNA. However, the biophysical mechanisms underlying this process remain poorly understood. Here, we used genetics and single-molecule fluorescence microscopy to investigate whether RecF and RecO function together, or separately, in live Escherichia coli cells. We identified conditions in which RecF and RecO functions are genetically separable. Single-molecule imaging revealed key differences in the spatiotemporal behaviours of RecF and RecO. RecF foci frequently colocalize with replisome markers. In response to DNA damage, colocalization increases and RecF dimerizes. The majority of RecF foci are dependent on RecR. Conversely, RecO foci occur infrequently, rarely colocalize with replisomes or RecF and are largely independent of RecR. In response to DNA damage, RecO foci appeared to spatially redistribute, occupying a region close to the cell membrane. These observations indicate that RecF and RecO have distinct functions in the DNA damage response. The observed localization of RecF to the replisome supports the notion that RecF helps to maintain active DNA replication in cells carrying DNA damage.
Collapse
Affiliation(s)
- Sarah S Henrikus
- Molecular Horizons Institute and School of Chemistry and Biomolecular Science, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2500, Australia
| | - Camille Henry
- Department of Biochemistry, University of Wisconsin-Madison, WI 53706-1544, USA
| | - Harshad Ghodke
- Molecular Horizons Institute and School of Chemistry and Biomolecular Science, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2500, Australia
| | - Elizabeth A Wood
- Department of Biochemistry, University of Wisconsin-Madison, WI 53706-1544, USA
| | - Neema Mbele
- Department of Biochemistry, University of Wisconsin-Madison, WI 53706-1544, USA
| | - Roopashi Saxena
- Department of Biochemistry, University of Wisconsin-Madison, WI 53706-1544, USA
| | - Upasana Basu
- Department of Biochemistry, University of Wisconsin-Madison, WI 53706-1544, USA
| | - Antoine M van Oijen
- Molecular Horizons Institute and School of Chemistry and Biomolecular Science, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2500, Australia
| | - Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, WI 53706-1544, USA
| | - Andrew Robinson
- Molecular Horizons Institute and School of Chemistry and Biomolecular Science, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2500, Australia
| |
Collapse
|
7
|
Leite WC, Galvão CW, Saab SC, Iulek J, Etto RM, Steffens MBR, Chitteni-Pattu S, Stanage T, Keck JL, Cox MM. Structural and Functional Studies of H. seropedicae RecA Protein - Insights into the Polymerization of RecA Protein as Nucleoprotein Filament. PLoS One 2016; 11:e0159871. [PMID: 27447485 PMCID: PMC4957752 DOI: 10.1371/journal.pone.0159871] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/08/2016] [Indexed: 11/18/2022] Open
Abstract
The bacterial RecA protein plays a role in the complex system of DNA damage repair. Here, we report the functional and structural characterization of the Herbaspirillum seropedicae RecA protein (HsRecA). HsRecA protein is more efficient at displacing SSB protein from ssDNA than Escherichia coli RecA protein. HsRecA also promotes DNA strand exchange more efficiently. The three dimensional structure of HsRecA-ADP/ATP complex has been solved to 1.7 Å resolution. HsRecA protein contains a small N-terminal domain, a central core ATPase domain and a large C-terminal domain, that are similar to homologous bacterial RecA proteins. Comparative structural analysis showed that the N-terminal polymerization motif of archaeal and eukaryotic RecA family proteins are also present in bacterial RecAs. Reconstruction of electrostatic potential from the hexameric structure of HsRecA-ADP/ATP revealed a high positive charge along the inner side, where ssDNA is bound inside the filament. The properties of this surface may explain the greater capacity of HsRecA protein to bind ssDNA, forming a contiguous nucleoprotein filament, displace SSB and promote DNA exchange relative to EcRecA. Our functional and structural analyses provide insight into the molecular mechanisms of polymerization of bacterial RecA as a helical nucleoprotein filament.
Collapse
Affiliation(s)
- Wellington C. Leite
- Department of Physics, Ponta Grossa State University (UEPG), Av. Carlos Cavalcanti, 4748, CEP. 84.030–900, Ponta Grossa, PR, Brazil
- * E-mail: (MC); (WL)
| | - Carolina W. Galvão
- Department of Structural and Molecular Biology and Genetics, Ponta Grossa State University (UEPG), CEP 84030–900, Ponta Grossa, PR, Brazil
| | - Sérgio C. Saab
- Department of Physics, Ponta Grossa State University (UEPG), Av. Carlos Cavalcanti, 4748, CEP. 84.030–900, Ponta Grossa, PR, Brazil
| | - Jorge Iulek
- Department of Chemistry, Ponta Grossa State University (UEPG), CEP 84030–900, Ponta Grossa, PR, Brazil
| | - Rafael M. Etto
- Department of Chemistry, Ponta Grossa State University (UEPG), CEP 84030–900, Ponta Grossa, PR, Brazil
| | - Maria B. R. Steffens
- Department of Biochemistry and Molecular Biology, Federal University of Parana, CEP 81531–980 Curitiba, Brazil
| | - Sindhu Chitteni-Pattu
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI, 53706–1544, United States of America
| | - Tyler Stanage
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI, 53706–1544, United States of America
| | - James L. Keck
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706, United States of America
| | - Michael M. Cox
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI, 53706–1544, United States of America
- * E-mail: (MC); (WL)
| |
Collapse
|
8
|
Kowalczykowski SC. An Overview of the Molecular Mechanisms of Recombinational DNA Repair. Cold Spring Harb Perspect Biol 2015; 7:a016410. [PMID: 26525148 PMCID: PMC4632670 DOI: 10.1101/cshperspect.a016410] [Citation(s) in RCA: 341] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Recombinational DNA repair is a universal aspect of DNA metabolism and is essential for genomic integrity. It is a template-directed process that uses a second chromosomal copy (sister, daughter, or homolog) to ensure proper repair of broken chromosomes. The key steps of recombination are conserved from phage through human, and an overview of those steps is provided in this review. The first step is resection by helicases and nucleases to produce single-stranded DNA (ssDNA) that defines the homologous locus. The ssDNA is a scaffold for assembly of the RecA/RAD51 filament, which promotes the homology search. On finding homology, the nucleoprotein filament catalyzes exchange of DNA strands to form a joint molecule. Recombination is controlled by regulating the fate of both RecA/RAD51 filaments and DNA pairing intermediates. Finally, intermediates that mature into Holliday structures are disjoined by either nucleolytic resolution or topological dissolution.
Collapse
Affiliation(s)
- Stephen C Kowalczykowski
- Department of Microbiology & Molecular Genetics and Department of Molecular and Cellular Biology, University of California, Davis, Davis, California 95616
| |
Collapse
|
9
|
Abstract
Homologous DNA pairing and strand exchange are at the core of homologous recombination. These reactions are promoted by a DNA-strand-exchange protein assembled into a nucleoprotein filament comprising the DNA-pairing protein, ATP, and single-stranded DNA. The catalytic activity of this molecular machine depends on control of its dynamic instability by accessory factors. Here we discuss proteins known as recombination mediators that facilitate formation and functional activation of the DNA-strand-exchange protein filament. Although the basics of homologous pairing and DNA-strand exchange are highly conserved in evolution, differences in mediator function are required to cope with differences in how single-stranded DNA is packaged by the single-stranded DNA-binding protein in different species, and the biochemical details of how the different DNA-strand-exchange proteins nucleate and extend into a nucleoprotein filament. The set of (potential) mediator proteins has apparently expanded greatly in evolution, raising interesting questions about the need for additional control and coordination of homologous recombination in more complex organisms.
Collapse
Affiliation(s)
- Alex Zelensky
- Department of Genetics, Cancer Genomics Netherlands, Erasmus Medical Center Cancer Institute, 3000 CA, Rotterdam, The Netherlands
| | - Roland Kanaar
- Department of Genetics, Cancer Genomics Netherlands, Erasmus Medical Center Cancer Institute, 3000 CA, Rotterdam, The Netherlands Department of Radiation Oncology, Erasmus Medical Center Cancer Institute, 3000 CA, Rotterdam, The Netherlands
| | - Claire Wyman
- Department of Genetics, Cancer Genomics Netherlands, Erasmus Medical Center Cancer Institute, 3000 CA, Rotterdam, The Netherlands Department of Radiation Oncology, Erasmus Medical Center Cancer Institute, 3000 CA, Rotterdam, The Netherlands
| |
Collapse
|
10
|
Radzimanowski J, Dehez F, Round A, Bidon-Chanal A, McSweeney S, Timmins J. An 'open' structure of the RecOR complex supports ssDNA binding within the core of the complex. Nucleic Acids Res 2013; 41:7972-86. [PMID: 23814185 PMCID: PMC3763555 DOI: 10.1093/nar/gkt572] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 06/06/2013] [Accepted: 06/06/2013] [Indexed: 01/19/2023] Open
Abstract
Efficient DNA repair is critical for cell survival and the maintenance of genome integrity. The homologous recombination pathway is responsible for the repair of DNA double-strand breaks within cells. Initiation of this pathway in bacteria can be carried out by either the RecBCD or the RecFOR proteins. An important regulatory player within the RecFOR pathway is the RecOR complex that facilitates RecA loading onto DNA. Here we report new data regarding the assembly of Deinococcus radiodurans RecOR and its interaction with DNA, providing novel mechanistic insight into the mode of action of RecOR in homologous recombination. We present a higher resolution crystal structure of RecOR in an 'open' conformation in which the tetrameric RecR ring flanked by two RecO molecules is accessible for DNA binding. We show using small-angle neutron scattering and mutagenesis studies that DNA binding does indeed occur within the RecR ring. Binding of single-stranded DNA occurs without any major conformational changes of the RecOR complex while structural rearrangements are observed on double-stranded DNA binding. Finally, our molecular dynamics simulations, supported by our biochemical data, provide a detailed picture of the DNA binding motif of RecOR and reveal that single-stranded DNA is sandwiched between the two facing oligonucleotide binding domains of RecO within the RecR ring.
Collapse
Affiliation(s)
- Jens Radzimanowski
- Structural Biology Group, European Synchrotron Radiation Facility, 6 rue Jules Horowitz, 38043 Grenoble cedex 9, France, Université de Lorraine, BP239, 54506 Vandoeuvre-lès-Nancy Cedex, France, CNRS, UMR N°7565, 54506 Vandoeuvre-les-Nancy, France, European Molecular Biology Laboratory, Grenoble Outstation, 6 rue Jules Horowitz, 38042 Grenoble, France, Unit for Virus Host-Cell Interactions, Univ. Grenoble Alpes-EMBL-CNRS, 6 rue Jules Horowitz, 38042 Grenoble, France and Institut de Biologie Structurale, CNRS/CEA/Université de Grenoble, 41 rue Jules Horowitz, 38027 Grenoble cedex 1, France
| | - François Dehez
- Structural Biology Group, European Synchrotron Radiation Facility, 6 rue Jules Horowitz, 38043 Grenoble cedex 9, France, Université de Lorraine, BP239, 54506 Vandoeuvre-lès-Nancy Cedex, France, CNRS, UMR N°7565, 54506 Vandoeuvre-les-Nancy, France, European Molecular Biology Laboratory, Grenoble Outstation, 6 rue Jules Horowitz, 38042 Grenoble, France, Unit for Virus Host-Cell Interactions, Univ. Grenoble Alpes-EMBL-CNRS, 6 rue Jules Horowitz, 38042 Grenoble, France and Institut de Biologie Structurale, CNRS/CEA/Université de Grenoble, 41 rue Jules Horowitz, 38027 Grenoble cedex 1, France
| | - Adam Round
- Structural Biology Group, European Synchrotron Radiation Facility, 6 rue Jules Horowitz, 38043 Grenoble cedex 9, France, Université de Lorraine, BP239, 54506 Vandoeuvre-lès-Nancy Cedex, France, CNRS, UMR N°7565, 54506 Vandoeuvre-les-Nancy, France, European Molecular Biology Laboratory, Grenoble Outstation, 6 rue Jules Horowitz, 38042 Grenoble, France, Unit for Virus Host-Cell Interactions, Univ. Grenoble Alpes-EMBL-CNRS, 6 rue Jules Horowitz, 38042 Grenoble, France and Institut de Biologie Structurale, CNRS/CEA/Université de Grenoble, 41 rue Jules Horowitz, 38027 Grenoble cedex 1, France
| | - Axel Bidon-Chanal
- Structural Biology Group, European Synchrotron Radiation Facility, 6 rue Jules Horowitz, 38043 Grenoble cedex 9, France, Université de Lorraine, BP239, 54506 Vandoeuvre-lès-Nancy Cedex, France, CNRS, UMR N°7565, 54506 Vandoeuvre-les-Nancy, France, European Molecular Biology Laboratory, Grenoble Outstation, 6 rue Jules Horowitz, 38042 Grenoble, France, Unit for Virus Host-Cell Interactions, Univ. Grenoble Alpes-EMBL-CNRS, 6 rue Jules Horowitz, 38042 Grenoble, France and Institut de Biologie Structurale, CNRS/CEA/Université de Grenoble, 41 rue Jules Horowitz, 38027 Grenoble cedex 1, France
| | - Sean McSweeney
- Structural Biology Group, European Synchrotron Radiation Facility, 6 rue Jules Horowitz, 38043 Grenoble cedex 9, France, Université de Lorraine, BP239, 54506 Vandoeuvre-lès-Nancy Cedex, France, CNRS, UMR N°7565, 54506 Vandoeuvre-les-Nancy, France, European Molecular Biology Laboratory, Grenoble Outstation, 6 rue Jules Horowitz, 38042 Grenoble, France, Unit for Virus Host-Cell Interactions, Univ. Grenoble Alpes-EMBL-CNRS, 6 rue Jules Horowitz, 38042 Grenoble, France and Institut de Biologie Structurale, CNRS/CEA/Université de Grenoble, 41 rue Jules Horowitz, 38027 Grenoble cedex 1, France
| | - Joanna Timmins
- Structural Biology Group, European Synchrotron Radiation Facility, 6 rue Jules Horowitz, 38043 Grenoble cedex 9, France, Université de Lorraine, BP239, 54506 Vandoeuvre-lès-Nancy Cedex, France, CNRS, UMR N°7565, 54506 Vandoeuvre-les-Nancy, France, European Molecular Biology Laboratory, Grenoble Outstation, 6 rue Jules Horowitz, 38042 Grenoble, France, Unit for Virus Host-Cell Interactions, Univ. Grenoble Alpes-EMBL-CNRS, 6 rue Jules Horowitz, 38042 Grenoble, France and Institut de Biologie Structurale, CNRS/CEA/Université de Grenoble, 41 rue Jules Horowitz, 38027 Grenoble cedex 1, France
| |
Collapse
|
11
|
Abstract
Homologous recombination is an ubiquitous process that shapes genomes and repairs DNA damage. The reaction is classically divided into three phases: presynaptic, synaptic, and postsynaptic. In Escherichia coli, the presynaptic phase involves either RecBCD or RecFOR proteins, which act on DNA double-stranded ends and DNA single-stranded gaps, respectively; the central synaptic steps are catalyzed by the ubiquitous DNA-binding protein RecA; and the postsynaptic phase involves either RuvABC or RecG proteins, which catalyze branch-migration and, in the case of RuvABC, the cleavage of Holliday junctions. Here, we review the biochemical properties of these molecular machines and analyze how, in light of these properties, the phenotypes of null mutants allow us to define their biological function(s). The consequences of point mutations on the biochemical properties of recombination enzymes and on cell phenotypes help refine the molecular mechanisms of action and the biological roles of recombination proteins. Given the high level of conservation of key proteins like RecA and the conservation of the principles of action of all recombination proteins, the deep knowledge acquired during decades of studies of homologous recombination in bacteria is the foundation of our present understanding of the processes that govern genome stability and evolution in all living organisms.
Collapse
|
12
|
Morimatsu K, Wu Y, Kowalczykowski SC. RecFOR proteins target RecA protein to a DNA gap with either DNA or RNA at the 5' terminus: implication for repair of stalled replication forks. J Biol Chem 2012; 287:35621-35630. [PMID: 22902627 DOI: 10.1074/jbc.m112.397034] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The repair of single-stranded gaps in duplex DNA by homologous recombination requires the proteins of the RecF pathway. The assembly of RecA protein onto gapped DNA (gDNA) that is complexed with the single-stranded DNA-binding protein is accelerated by the RecF, RecO, and RecR (RecFOR) proteins. Here, we show the RecFOR proteins specifically target RecA protein to gDNA even in the presence of a thousand-fold excess of single-stranded DNA (ssDNA). The binding constant of RecF protein, in the presence of the RecOR proteins, to the junction of ssDNA and dsDNA within a gap is 1-2 nm, suggesting that a few RecF molecules in the cell are sufficient to recognize gDNA. We also found that the nucleation of a RecA filament on gDNA in the presence of the RecFOR proteins occurs at a faster rate than filament elongation, resulting in a RecA nucleoprotein filament on ssDNA for 1000-2000 nucleotides downstream (5' → 3') of the junction with duplex DNA. Thus, RecA loading by RecFOR is localized to a region close to a junction. RecFOR proteins also recognize RNA at the 5'-end of an RNA-DNA junction within an ssDNA gap, which is compatible with their role in the repair of lagging strand gaps at stalled replication forks.
Collapse
Affiliation(s)
- Katsumi Morimatsu
- Department of Microbiology and of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Yun Wu
- Department of Microbiology and of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Stephen C Kowalczykowski
- Department of Microbiology and of Molecular and Cellular Biology, University of California, Davis, California 95616.
| |
Collapse
|
13
|
Wang X, Yue J, Ren X, Wang Y, Tan M, Li B, Liang L. Modularity analysis based on predicted protein-protein interactions provides new insights into pathogenicity and cellular process of Escherichia coli O157:H7. Theor Biol Med Model 2011; 8:47. [PMID: 22188601 PMCID: PMC3275473 DOI: 10.1186/1742-4682-8-47] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 12/22/2011] [Indexed: 12/19/2022] Open
Abstract
Background With the development of experimental techniques and bioinformatics, the quantity of data available from protein-protein interactions (PPIs) is increasing exponentially. Functional modules can be identified from protein interaction networks. It follows that the investigation of functional modules will generate a better understanding of cellular organization, processes, and functions. However, experimental PPI data are still limited, and no modularity analysis of PPIs in pathogens has been published to date. Results In this study, we predict and analyze the functional modules of E. coli O157:H7 systemically by integrating several bioinformatics methods. After evaluation, most of the predicted modules are found to be biologically significant and functionally homogeneous. Six pathogenicity-related modules were discovered and analyzed, including novel modules. These modules provided new information on the pathogenicity of O157:H7. The modularity of cellular function and cooperativity between modules are also discussed. Moreover, modularity analysis of O157:H7 can provide possible candidates for biological pathway extension and clues for discovering new pathways of cross-talk. Conclusions This article provides the first modularity analysis of a pathogen and sheds new light on the study of pathogens and cellular processes. Our study also provides a strategy for applying modularity analysis to any sequenced organism.
Collapse
Affiliation(s)
- Xia Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Gilbreath JJ, Cody WL, Merrell DS, Hendrixson DR. Change is good: variations in common biological mechanisms in the epsilonproteobacterial genera Campylobacter and Helicobacter. Microbiol Mol Biol Rev 2011; 75:84-132. [PMID: 21372321 PMCID: PMC3063351 DOI: 10.1128/mmbr.00035-10] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Microbial evolution and subsequent species diversification enable bacterial organisms to perform common biological processes by a variety of means. The epsilonproteobacteria are a diverse class of prokaryotes that thrive in diverse habitats. Many of these environmental niches are labeled as extreme, whereas other niches include various sites within human, animal, and insect hosts. Some epsilonproteobacteria, such as Campylobacter jejuni and Helicobacter pylori, are common pathogens of humans that inhabit specific regions of the gastrointestinal tract. As such, the biological processes of pathogenic Campylobacter and Helicobacter spp. are often modeled after those of common enteric pathogens such as Salmonella spp. and Escherichia coli. While many exquisite biological mechanisms involving biochemical processes, genetic regulatory pathways, and pathogenesis of disease have been elucidated from studies of Salmonella spp. and E. coli, these paradigms often do not apply to the same processes in the epsilonproteobacteria. Instead, these bacteria often display extensive variation in common biological mechanisms relative to those of other prototypical bacteria. In this review, five biological processes of commonly studied model bacterial species are compared to those of the epsilonproteobacteria C. jejuni and H. pylori. Distinct differences in the processes of flagellar biosynthesis, DNA uptake and recombination, iron homeostasis, interaction with epithelial cells, and protein glycosylation are highlighted. Collectively, these studies support a broader view of the vast repertoire of biological mechanisms employed by bacteria and suggest that future studies of the epsilonproteobacteria will continue to provide novel and interesting information regarding prokaryotic cellular biology.
Collapse
Affiliation(s)
- Jeremy J. Gilbreath
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - William L. Cody
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - D. Scott Merrell
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - David R. Hendrixson
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
15
|
Handa N, Amitani I, Gumlaw N, Sandler SJ, Kowalczykowski SC. Single molecule analysis of a red fluorescent RecA protein reveals a defect in nucleoprotein filament nucleation that relates to its reduced biological functions. J Biol Chem 2009; 284:18664-73. [PMID: 19419960 PMCID: PMC2707236 DOI: 10.1074/jbc.m109.004895] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Indexed: 11/06/2022] Open
Abstract
Fluorescent fusion proteins are exceedingly useful for monitoring protein localization in situ or visualizing protein behavior at the single molecule level. Unfortunately, some proteins are rendered inactive by the fusion. To circumvent this problem, we fused a hyperactive RecA protein (RecA803 protein) to monomeric red fluorescent protein (mRFP1) to produce a functional protein (RecA-RFP) that is suitable for in vivo and in vitro analysis. In vivo, the RecA-RFP partially restores UV resistance, conjugational recombination, and SOS induction to recA(-) cells. In vitro, the purified RecA-RFP protein forms a nucleoprotein filament whose k(cat) for single-stranded DNA-dependent ATPase activity is reduced approximately 3-fold relative to wild-type protein, and which is largely inhibited by single-stranded DNA-binding protein. However, RecA protein is also a dATPase; dATP supports RecA-RFP nucleoprotein filament formation in the presence of single-stranded DNA-binding protein. Furthermore, as for the wild-type protein, the activities of RecA-RFP are further enhanced by shifting the pH to 6.2. As a consequence, RecA-RFP is proficient for DNA strand exchange with dATP or at lower pH. Finally, using single molecule visualization, RecA-RFP was seen to assemble into a continuous filament on duplex DNA, and to extend the DNA approximately 1.7-fold. Consistent with its attenuated activities, RecA-RFP nucleates onto double-stranded DNA approximately 3-fold more slowly than the wild-type protein, but still requires approximately 3 monomers to form the rate-limited nucleus needed for filament assembly. Thus, RecA-RFP reveals that its attenuated biological functions correlate with a reduced frequency of nucleoprotein filament nucleation at the single molecule level.
Collapse
Affiliation(s)
- Naofumi Handa
- From the Departments of Microbiology and
- Molecular and Cellular Biology, University of California, Davis, California 95616
- the Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Shirokanedai, Tokyo 108-8639, Japan, and
| | - Ichiro Amitani
- From the Departments of Microbiology and
- Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Nathan Gumlaw
- the Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Steven J. Sandler
- the Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Stephen C. Kowalczykowski
- From the Departments of Microbiology and
- Molecular and Cellular Biology, University of California, Davis, California 95616
| |
Collapse
|
16
|
Long JE, Renzette N, Sandler SJ. Suppression of constitutive SOS expression by recA4162 (I298V) and recA4164 (L126V) requires UvrD and RecX in Escherichia coli K-12. Mol Microbiol 2009; 73:226-39. [PMID: 19555451 PMCID: PMC2758083 DOI: 10.1111/j.1365-2958.2009.06765.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Sensing DNA damage and initiation of genetic responses to repair DNA damage are critical to cell survival. In Escherichia coli, RecA polymerizes on ssDNA produced by DNA damage creating a RecA-DNA filament that interacts with the LexA repressor inducing the SOS response. RecA filament stability is negatively modulated by RecX and UvrD. recA730 (E38K) and recA4142 (F217Y) constitutively express the SOS response. recA4162 (I298V) and recA4164 (L126V) are intragenic suppressors of the constitutive SOS phenotype of recA730. Herein, it is shown that these suppressors are not allele specific and can suppress SOS(C) expression of recA730 and recA4142 in cis and in trans. recA4162 and recA4164 single mutants (and the recA730 and recA4142 derivatives) are Rec(+), UV(R) and are able to induce the SOS response after UV treatment like wild-type. UvrD and RecX are required for the suppression in two (recA730,4164 and recA4142,4162) of the four double mutants tested. To explain the data, one model suggests that recA(C) alleles promote SOS(C) expression by mimicking RecA filament structures that induce SOS and the suppressor alleles mimic RecA filament at end of SOS. UvrD and RecX are attracted to these latter structures to help dismantle or destabilize the RecA filament.
Collapse
Affiliation(s)
- Jarukit Edward Long
- Department of Microbiology, Morrill Science Center IV N203, University of Massachusetts at Amherst, Amherst, MA 01003
| | - Nicholas Renzette
- Molecular and Cellular Biology Graduate Program, Morrill Science Center, University of Massachusetts at Amherst, Amherst, MA 01003
| | - Steven J. Sandler
- Department of Microbiology, Morrill Science Center IV N203, University of Massachusetts at Amherst, Amherst, MA 01003
- Molecular and Cellular Biology Graduate Program, Morrill Science Center, University of Massachusetts at Amherst, Amherst, MA 01003
| |
Collapse
|
17
|
Persky NS, Lovett ST. Mechanisms of Recombination: Lessons fromE. coli. Crit Rev Biochem Mol Biol 2009; 43:347-70. [DOI: 10.1080/10409230802485358] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Abstract
The molecular role of the RecF protein in loading RecA protein onto single-stranded DNA (ssDNA)-binding protein-coated ssDNA has been obscured by the facility with which the RecO and RecR proteins alone perform this function. We now show that RecFOR and RecOR define distinct RecA loading functions that operate optimally in different contexts. RecFOR, but not RecOR, is most effective when RecF(R) is bound near an ssDNA/double-stranded (dsDNA) junction. However, RecF(R) has no enhanced binding affinity for such a junction. RecO and RecR proteins are both required under all conditions in which the RecFOR pathway operates. The RecOR pathway is uniquely distinguished by a required interaction between RecO protein and the ssDNA binding protein C terminus. The RecOR pathway is more efficient for RecA loading onto ssDNA when no proximal dsDNA is available. A merger of new and published results leads to a new model for RecFOR function.
Collapse
Affiliation(s)
- Akiko Sakai
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706-1544
| | - Michael M Cox
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706-1544.
| |
Collapse
|
19
|
Abstract
The bacterial RecA protein participates in a remarkably diverse set of functions, all of which are involved in the maintenance of genomic integrity. RecA is a central component in both the catalysis of recombinational DNA repair and the regulation of the cellular SOS response. Despite the mechanistic differences of its functions, all require formation of an active RecA/ATP/DNA complex. RecA is a classic allosterically regulated enzyme, and ATP binding results in a dramatic increase in DNA binding affinity and a cooperative assembly of RecA subunits to form an ordered, helical nucleoprotein filament. The molecular events that underlie this ATP-induced structural transition are becoming increasingly clear. This review focuses on descriptions of our current understanding of the molecular design and allosteric regulation of RecA. We present a comprehensive list of all published recA mutants and use the results of various genetic and biochemical studies, together with available structural information, to develop ideas regarding the design of RecA functional domains and their catalytic organization.
Collapse
Affiliation(s)
- Dharia A McGrew
- Department of Biochemistry and Molecular Pharmacology, Aaron Lazare Research Building, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605-2324, USA
| | | |
Collapse
|
20
|
Gruenig MC, Renzette N, Long E, Chitteni-Pattu S, Inman RB, Cox MM, Sandler SJ. RecA-mediated SOS induction requires an extended filament conformation but no ATP hydrolysis. Mol Microbiol 2008; 69:1165-79. [PMID: 18627467 PMCID: PMC2538424 DOI: 10.1111/j.1365-2958.2008.06341.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The Escherichia coli SOS response to DNA damage is modulated by the RecA protein, a recombinase that forms an extended filament on single-stranded DNA and hydrolyzes ATP. The RecA K72R (recA2201) mutation eliminates the ATPase activity of RecA protein. The mutation also limits the capacity of RecA to form long filaments in the presence of ATP. Strains with this mutation do not undergo SOS induction in vivo. We have combined the K72R variant of RecA with another mutation, RecA E38K (recA730). In vitro, the double mutant RecA E38K/K72R (recA730,2201) mimics the K72R mutant protein in that it has no ATPase activity. The double mutant protein will form long extended filaments on ssDNA and facilitate LexA cleavage almost as well as wild-type, and do so in the presence of ATP. Unlike recA K72R, the recA E38K/K72R double mutant promotes SOS induction in vivo after UV treatment. Thus, SOS induction does not require ATP hydrolysis by the RecA protein, but does require formation of extended RecA filaments. The RecA E38K/K72R protein represents an improved reagent for studies of the function of ATP hydrolysis by RecA in vivo and in vitro.
Collapse
Affiliation(s)
- Marielle C. Gruenig
- Department of Biochemistry, 433 Babcock Drive, University of Wisconsin, Madison, WI 53706
| | - Nicholas Renzette
- Molecular and Cellular Biology Graduate Program, Morrill Science Center, University of Massachusetts at Amherst, Amherst, MA 01003
| | - Edward Long
- Department of Microbiology, Morrill Science Center IV N203, University of Massachusetts at Amherst, Amherst, MA 01003
| | - Sindhu Chitteni-Pattu
- Department of Biochemistry, 433 Babcock Drive, University of Wisconsin, Madison, WI 53706
| | - Ross B. Inman
- Department of Biochemistry, 433 Babcock Drive, University of Wisconsin, Madison, WI 53706
| | - Michael M. Cox
- Department of Biochemistry, 433 Babcock Drive, University of Wisconsin, Madison, WI 53706
| | - Steven J. Sandler
- Molecular and Cellular Biology Graduate Program, Morrill Science Center, University of Massachusetts at Amherst, Amherst, MA 01003
- Department of Microbiology, Morrill Science Center IV N203, University of Massachusetts at Amherst, Amherst, MA 01003
| |
Collapse
|
21
|
Shereda RD, Kozlov AG, Lohman TM, Cox MM, Keck JL. SSB as an organizer/mobilizer of genome maintenance complexes. Crit Rev Biochem Mol Biol 2008; 43:289-318. [PMID: 18937104 PMCID: PMC2583361 DOI: 10.1080/10409230802341296] [Citation(s) in RCA: 436] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
When duplex DNA is altered in almost any way (replicated, recombined, or repaired), single strands of DNA are usually intermediates, and single-stranded DNA binding (SSB) proteins are present. These proteins have often been described as inert, protective DNA coatings. Continuing research is demonstrating a far more complex role of SSB that includes the organization and/or mobilization of all aspects of DNA metabolism. Escherichia coli SSB is now known to interact with at least 14 other proteins that include key components of the elaborate systems involved in every aspect of DNA metabolism. Most, if not all, of these interactions are mediated by the amphipathic C-terminus of SSB. In this review, we summarize the extent of the eubacterial SSB interaction network, describe the energetics of interactions with SSB, and highlight the roles of SSB in the process of recombination. Similar themes to those highlighted in this review are evident in all biological systems.
Collapse
Affiliation(s)
- Robert D Shereda
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | | | | | | |
Collapse
|
22
|
Abstract
All organisms possess a diverse set of genetic programs that are used to alter cellular physiology in response to environmental cues. The gram-negative bacterium, Escherichia coli, mounts what is known as the "SOS response" following DNA damage, replication fork arrest, and a myriad of other environmental stresses. For over 50 years, E. coli has served as the paradigm for our understanding of the transcriptional, and physiological changes that occur following DNA damage (400). In this chapter, we summarize the current view of the SOS response and discuss how this genetic circuit is regulated. In addition to examining the E. coli SOS response, we also include a discussion of the SOS regulatory networks in other bacteria to provide a broader perspective on how prokaryotes respond to DNA damage.
Collapse
|
23
|
Abstract
The RecA protein is a recombinase functioning in recombinational DNA repair in bacteria. RecA is regulated at many levels. The expression of the recA gene is regulated within the SOS response. The activity of the RecA protein itself is autoregulated by its own C-terminus. RecA is also regulated by the action of other proteins. To date, these include the RecF, RecO, RecR, DinI, RecX, RdgC, PsiB, and UvrD proteins. The SSB protein also indirectly affects RecA function by competing for ssDNA binding sites. The RecO and RecR, and possibly the RecF proteins, all facilitate RecA loading onto SSB-coated ssDNA. The RecX protein blocks RecA filament extension, and may have other effects on RecA activity. The DinI protein stabilizes RecA filaments. The RdgC protein binds to dsDNA and blocks RecA access to dsDNA. The PsiB protein, encoded by F plasmids, is uncharacterized, but may inhibit RecA in some manner. The UvrD helicase removes RecA filaments from RecA. All of these proteins function in a network that determines where and how RecA functions. Additional regulatory proteins may remain to be discovered. The elaborate regulatory pattern is likely to be reprised for RecA homologues in archaeans and eukaryotes.
Collapse
Affiliation(s)
- Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706-1544, USA.
| |
Collapse
|
24
|
Abstract
The RecO and RecR proteins form a complex that promotes the nucleation of RecA protein filaments onto SSB protein-coated single-stranded DNA (ssDNA). However, even when RecO and RecR proteins are provided at optimal concentrations, the loading of RecA protein is surprisingly slow, typically proceeding with a lag of 10 min or more. The rate-limiting step in RecOR-promoted RecA nucleation is the binding of RecOR protein to ssDNA, which is inhibited by SSB protein despite the documented interaction between RecO and SSB. Full activity of RecOR is seen only when RecOR is preincubated with ssDNA prior to the addition of SSB. The slow binding of RecOR to SSB-coated ssDNA involves the C terminus of SSB. When an SSB variant that lacks the C-terminal 8 amino acids is used, the capacity of RecOR to facilitate RecA loading onto the ssDNA is largely abolished. The results are used in an expanded model for RecOR action.
Collapse
Affiliation(s)
- Michael D Hobbs
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706-1544, USA
| | | | | |
Collapse
|
25
|
Genetics of recombination in the model bacterium Escherichia coli. MOLECULAR GENETICS OF RECOMBINATION 2007. [DOI: 10.1007/978-3-540-71021-9_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
26
|
The bacterial RecA protein: structure, function, and regulation. MOLECULAR GENETICS OF RECOMBINATION 2007. [DOI: 10.1007/978-3-540-71021-9_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
27
|
Fujii S, Isogawa A, Fuchs RP. RecFOR proteins are essential for Pol V-mediated translesion synthesis and mutagenesis. EMBO J 2006; 25:5754-63. [PMID: 17139245 PMCID: PMC1698908 DOI: 10.1038/sj.emboj.7601474] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Accepted: 10/26/2006] [Indexed: 11/08/2022] Open
Abstract
When the replication fork moves through the template DNA containing lesions, daughter-strand gaps are formed opposite lesion sites. These gaps are subsequently filled-in either by translesion synthesis (TLS) or by homologous recombination. RecA filaments formed within these gaps are key intermediates for both of the gap-filling pathways. For instance, Pol V, the major lesion bypass polymerase in Escherichia coli, requires a functional interaction with the tip of the RecA filament. Here, we show that all three recombination mediator proteins RecFOR are needed to build a functionally competent RecA filament that supports efficient Pol V-mediated TLS in the presence of ssDNA-binding protein (SSB). A positive contribution of RecF protein to Pol V lesion bypass is demonstrated. When Pol III and Pol V are both present, Pol III imparts a negative effect on Pol V-mediated lesion bypass that is counteracted by the combined action of RecFOR and SSB. Mutations in recF, recO or recR gene abolish induced mutagenesis in E. coli.
Collapse
Affiliation(s)
- Shingo Fujii
- Genome Instability and Carcinogenesis, CNRS FRE2931, Marseille, France
| | - Asako Isogawa
- Genome Instability and Carcinogenesis, CNRS FRE2931, Marseille, France
| | - Robert P Fuchs
- Genome Instability and Carcinogenesis, CNRS FRE2931, Marseille, France
- Genome Instability and Carcinogenesis, CRNS, FRE 2931, 31, chemin Joseph Aiguier, 13402 Marseille cedex 20, 13402, France. Tel.: +33 4 9116 4271; Fax: +33 4 9116 4168; E-mail:
| |
Collapse
|
28
|
Handa N, Kowalczykowski SC. A RecA mutant, RecA(730), suppresses the recombination deficiency of the RecBC(1004)D-chi* interaction in vitro and in vivo. J Mol Biol 2006; 365:1314-25. [PMID: 17141804 PMCID: PMC1847798 DOI: 10.1016/j.jmb.2006.10.090] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 10/20/2006] [Accepted: 10/25/2006] [Indexed: 11/18/2022]
Abstract
In Escherichia coli, homologous recombination initiated at double-stranded DNA breaks requires the RecBCD enzyme, a multifunctional heterotrimeric complex that possesses processive helicase and exonuclease activities. Upon encountering the DNA regulatory sequence, chi, the enzymatic properties of RecBCD enzyme are altered. Its helicase activity is reduced, the 3'-->5'nuclease activity is attenuated, the 5'-->3' nuclease activity is up-regulated, and it manifests an ability to load RecA protein onto single-stranded DNA. The net result of these changes is the production of a highly recombinogenic structure known as the presynaptic filament. Previously, we found that the recC1004 mutation alters chi-recognition so that this mutant enzyme recognizes an altered chi sequence, chi*, which comprises seven of the original nucleotides in chi, plus four novel nucleotides. Although some consequences of this mutant enzyme-mutant chi interaction could be detected in vivo and in vitro, stimulation of recombination in vivo could not. To resolve this seemingly contradictory observation, we examined the behavior of a RecA mutant, RecA(730), that displays enhanced biochemical activity in vitro and possesses suppressor function in vivo. We show that the recombination deficiency of the RecBC(1004)D-chi* interaction can be overcome by the enhanced ability of RecA(730) to assemble on single-stranded DNA in vitro and in vivo. These data are consistent with findings showing that the loading of RecA protein by RecBCD is necessary in vivo, and they show that RecA proteins with enhanced single-stranded DNA-binding capacity can partially bypass the need for RecBCD-mediated loading.
Collapse
|
29
|
Lusetti SL, Hobbs MD, Stohl EA, Chitteni-Pattu S, Inman RB, Seifert HS, Cox MM. The RecF protein antagonizes RecX function via direct interaction. Mol Cell 2006; 21:41-50. [PMID: 16387652 PMCID: PMC3894658 DOI: 10.1016/j.molcel.2005.11.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 10/10/2005] [Accepted: 11/04/2005] [Indexed: 10/25/2022]
Abstract
The RecX protein inhibits RecA filament extension, leading to net filament disassembly. The RecF protein physically interacts with the RecX protein and protects RecA from the inhibitory effects of RecX. In vitro, efficient RecA filament formation onto single-stranded DNA binding protein (SSB)-coated circular single-stranded DNA (ssDNA) in the presence of RecX occurs only when all of the RecFOR proteins are present. The RecOR proteins contribute only to RecA filament nucleation onto SSB-coated single-stranded DNA and are unable to counter the inhibitory effects of RecX on RecA filaments. RecF protein uniquely supports substantial RecA filament extension in the presence of RecX. In vivo, RecF protein counters a RecX-mediated inhibition of plasmid recombination. Thus, a significant positive contribution of RecF to RecA filament assembly is to antagonize the effects of the negative modulator RecX, specifically during the extension phase.
Collapse
Affiliation(s)
- Shelley L. Lusetti
- Department of Biochemistry University of Wisconsin–Madison Madison, WI 53706-1544
| | - Michael D. Hobbs
- Department of Biochemistry University of Wisconsin–Madison Madison, WI 53706-1544
| | - Elizabeth A. Stohl
- Department of Microbiology–Immunology Northwestern University Feinberg School of Medicine Chicago, IL 60611
| | - Sindhu Chitteni-Pattu
- Department of Biochemistry University of Wisconsin–Madison Madison, WI 53706-1544
- Institute of Molecular Virology University of Wisconsin-Madison Madison, WI 53706
| | - Ross B. Inman
- Department of Biochemistry University of Wisconsin–Madison Madison, WI 53706-1544
- Institute of Molecular Virology University of Wisconsin-Madison Madison, WI 53706
| | - H. Steven Seifert
- Department of Microbiology–Immunology Northwestern University Feinberg School of Medicine Chicago, IL 60611
| | - Michael M. Cox
- Department of Biochemistry University of Wisconsin–Madison Madison, WI 53706-1544
| |
Collapse
|
30
|
Poteete AR. Modulation of DNA repair and recombination by the bacteriophage lambda Orf function in Escherichia coli K-12. J Bacteriol 2004; 186:2699-707. [PMID: 15090511 PMCID: PMC387792 DOI: 10.1128/jb.186.9.2699-2707.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The orf gene of bacteriophage lambda, fused to a promoter, was placed in the galK locus of Escherichia coli K-12. Orf was found to suppress the recombination deficiency and sensitivity to UV radiation of mutants, in a Delta(recC ptr recB recD)::P(tac) gam bet exo pae cI DeltarecG background, lacking recF, recO, recR, ruvAB, and ruvC functions. It also suppressed defects of these mutants in establishing replication of a pSC101-related plasmid. Compared to orf, the recA803 allele had only small effects on recF, recO, and recR mutant phenotypes and no effect on a ruvAB mutant. In a fully wild-type background with respect to known recombination and repair functions, orf partially suppressed the UV sensitivity of ruvAB and ruvC mutants.
Collapse
Affiliation(s)
- Anthony R Poteete
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, 55 Lake Avenue, Worcester, MA 01655, USA.
| |
Collapse
|
31
|
Chow KH, Courcelle J. RecO Acts with RecF and RecR to Protect and Maintain Replication Forks Blocked by UV-induced DNA Damage in Escherichia coli. J Biol Chem 2004; 279:3492-6. [PMID: 14625283 DOI: 10.1074/jbc.m311012200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Escherichia coli, recF and recR are required to stabilize and maintain replication forks arrested by UV-induced DNA damage. In the absence of RecF, replication fails to recover, and the nascent lagging strand of the arrested replication fork is extensively degraded by the RecQ helicase and RecJ nuclease. recO mutants are epistatic with recF and recR with respect to recombination and survival assays after DNA damage. In this study, we show that RecO functions with RecF and RecR to protect the nascent lagging strand of arrested replication forks after UV-irradiation. In the absence of RecO, the nascent DNA at arrested replication forks is extensively degraded and replication fails to recover. The extent of nascent DNA degradation is equivalent in single, double, or triple mutants of recF, recO, or recR, and the degradation is dependent upon RecJ and RecQ functions. Because RecF has been shown to protect the nascent lagging strand from degradation, these observations indicate that RecR and RecO function with RecF to protect the same nascent strand of the arrested replication fork and are likely to act at a common point during the recovery process. We discuss these results in relation to the biochemical and cellular properties of RecF, RecO, and RecR and their potential role in loading RecA filaments to maintain the replication fork structure after the arrest of replication by UV-induced DNA damage.
Collapse
Affiliation(s)
- Kin-Hoe Chow
- Department of Biological Science, Mississippi State University, Mississippi State, Mississippi 39762, USA.
| | | |
Collapse
|
32
|
Kline KA, Sechman EV, Skaar EP, Seifert HS. Recombination, repair and replication in the pathogenic Neisseriae: the 3 R's of molecular genetics of two human-specific bacterial pathogens. Mol Microbiol 2003; 50:3-13. [PMID: 14507359 DOI: 10.1046/j.1365-2958.2003.03679.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Most of the detailed mechanisms that have been established for the molecular biological processes that mediate recombination, repair and replication of DNA have come from studies of the Escherichia coli paradigm. The human specific pathogens, Neisseria gonorrhoeae and N. meningitidis, are Gram-negative bacteria that have some molecular processes that are similar to E. coli and others that appear to be divergent. We propose that the pathogenic Neisseriae have evolved a specialized collection of molecular mechanisms to adapt to life limited to human hosts. In this MicroReview, we explore what is known about the basic processes of DNA repair, DNA recombination (genetic exchange and pilin variation) and DNA replication in these human specific pathogens.
Collapse
Affiliation(s)
- Kimberly A Kline
- Northwestern University Feinberg School of Medicine, Department of Microbiology and Immunology, Chicago, IL, 60611 USA
| | | | | | | |
Collapse
|
33
|
Eggler AL, Lusetti SL, Cox MM. The C terminus of the Escherichia coli RecA protein modulates the DNA binding competition with single-stranded DNA-binding protein. J Biol Chem 2003; 278:16389-96. [PMID: 12598538 DOI: 10.1074/jbc.m212920200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nucleation step of Escherichia coli RecA filament formation on single-stranded DNA (ssDNA) is strongly inhibited by prebound E. coli ssDNA-binding protein (SSB). The capacity of RecA protein to displace SSB is dramatically enhanced in RecA proteins with C-terminal deletions. The displacement of SSB by RecA protein is progressively improved when 6, 13, and 17 C-terminal amino acids are removed from the RecA protein relative to the full-length protein. The C-terminal deletion mutants also more readily displace yeast replication protein A than does the full-length protein. Thus, the RecA protein has an inherent and robust capacity to displace SSB from ssDNA. However, the displacement function is suppressed by the RecA C terminus, providing another example of a RecA activity with C-terminal modulation. RecADeltaC17 also has an enhanced capacity relative to wild-type RecA protein to bind ssDNA containing secondary structure. Added Mg(2+) enhances the ability of wild-type RecA and the RecA C-terminal deletion mutants to compete with SSB and replication protein A. The overall binding of RecADeltaC17 mutant protein to linear ssDNA is increased further by the mutation E38K, previously shown to enhance SSB displacement from ssDNA. The double mutant RecADeltaC17/E38K displaces SSB somewhat better than either individual mutant protein under some conditions and exhibits a higher steady-state level of binding to linear ssDNA under all conditions.
Collapse
Affiliation(s)
- Aimee L Eggler
- Department of Biochemistry, University of Wisconsin, 433 Babcock Drive, Madison, WI 53706, USA
| | | | | |
Collapse
|
34
|
Morimatsu K, Kowalczykowski SC. RecFOR proteins load RecA protein onto gapped DNA to accelerate DNA strand exchange: a universal step of recombinational repair. Mol Cell 2003; 11:1337-47. [PMID: 12769856 DOI: 10.1016/s1097-2765(03)00188-6] [Citation(s) in RCA: 332] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Genetic evidence suggests that the RecF, RecO, and RecR (RecFOR) proteins participate in a common step of DNA recombination and repair, yet the biochemical event requiring collaboration of all three proteins is unknown. Here, we show that the concerted action of the RecFOR complex directs the loading of RecA protein specifically onto gapped DNA that is coated with single-stranded DNA binding (SSB) protein, thereby accelerating DNA strand exchange. The RecFOR complex recognizes the junction between the ssDNA and dsDNA regions and requires a base-paired 5' terminus at the junction. Thus, the RecFOR complex is a structure-specific mediator that targets recombinational repair to ssDNA-dsDNA junctions. This reaction reconstitutes the initial steps of recombinational gapped DNA repair and uncovers an event also common to the repair of ssDNA-tailed intermediates of dsDNA-break repair. We propose that the behavior of the RecFOR proteins is mimicked by functional counterparts that exist in all organisms.
Collapse
Affiliation(s)
- Katsumi Morimatsu
- Section of Microbiology, Center for Genetics and Development, University of California, Davis, 95616, USA
| | | |
Collapse
|
35
|
Tarkowski TA, Mooney D, Thomason LC, Stahl FW. Gene products encoded in the ninR region of phage lambda participate in Red-mediated recombination. Genes Cells 2002; 7:351-63. [PMID: 11952832 DOI: 10.1046/j.1365-2443.2002.00531.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The ninR region of phage lambda contains two recombination genes, orf (ninB) and rap (ninG), that were previously shown to have roles when the RecF and RecBCD recombination pathways of E. coli, respectively, operate on phage lambda. RESULTS When lambda DNA replication is blocked, recombination is focused at the termini of the virion chromosome. Deletion of the ninR region of lambda decreases the sharpness of the focusing without diminishing the overall rate of recombination. The phenotype is accounted for in large part by the deletion of rap and of orf. Mutation of the recJ gene of the host partially suppresses the Rap- phenotype. CONCLUSION ninR functions Orf and Rap participate in Red recombination, the primary pathway operating when wild-type lambda grows lytically in rec+ cells. The ability of recJ mutation to suppress the Rap- phenotype indicates that RecJ exonuclease can participate in Red-mediated recombination, at least in the absence of Rap function. A model is presented for Red-mediated RecA-dependent recombination that includes these newly identified participants.
Collapse
Affiliation(s)
- Trudee A Tarkowski
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1229, USA
| | | | | | | |
Collapse
|
36
|
Skaar EP, Lazio MP, Seifert HS. Roles of the recJ and recN genes in homologous recombination and DNA repair pathways of Neisseria gonorrhoeae. J Bacteriol 2002; 184:919-27. [PMID: 11807051 PMCID: PMC134828 DOI: 10.1128/jb.184.4.919-927.2002] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The paradigm of homologous recombination comes from Escherichia coli, where the genes involved have been segregated into pathways. In the human pathogen Neisseria gonorrhoeae (the gonococcus), the pathways of homologous recombination are being delineated. To investigate the roles of the gonococcal recN and recJ genes in the recombination-based processes of the gonococcus, these genes were inactivated in the N. gonorrhoeae strain FA1090. We report that both recN and recJ loss-of-function mutants show decreased DNA repair ability. In addition, the recJ mutant was decreased in pilus-dependent colony morphology variation frequency but not DNA transformation efficiency, while the recN mutant was decreased in DNA transformation efficiency but not pilus-dependent variation frequency. We were able to complement all of these deficiencies by supplying an ectopic functional copy of either recJ or recN at an irrelevant locus. These results describe the role of recJ and recN in the recombination-dependent processes of the gonococcus and further define the pathways of homologous recombination in this organism.
Collapse
Affiliation(s)
- Eric P Skaar
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
37
|
Abstract
Replication fork arrest can cause DNA double-strand breaks (DSBs). These DSBs are caused by the action of the Holliday junction resolvase RuvABC, indicating that they are made by resolution of Holliday junctions formed at blocked forks. In this work, we study the homologous recombination functions required for RuvABC-mediated breakage in cells deficient for the accessory replicative helicase Rep or deficient for the main Escherichia coli replicative helicase DnaB. We show that, in the rep mutant, RuvABC-mediated breakage occurs in the absence of the homologous recombination protein RecA. In contrast, in dnaBts mutants, most of the RuvABC-mediated breakage depends on the presence of RecA, which suggests that RecA participates in the formation of Holliday junctions at forks blocked by the inactivation of DnaB. This action of RecA does not involve the induction of the SOS response and does not require any of the recombination proteins essential for the presynaptic step of homologous recombination, RecBCD, RecF or RecO. Consequently, our observations suggest a new function for RecA at blocked replication forks, and we propose that RecA acts by promoting homologous recombination without the assistance of known presynaptic proteins.
Collapse
Affiliation(s)
- M Seigneur
- Laboratoire de Génétique Microbienne, Institut National de la Recherche Agronomique, 78352 Jouy en Josas Cedex, France
| | | | | |
Collapse
|
38
|
Marians KJ. PriA: at the crossroads of DNA replication and recombination. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1999; 63:39-67. [PMID: 10506828 DOI: 10.1016/s0079-6603(08)60719-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PriA is a single-stranded DNA-dependent ATPase, DNA translocase, and DNA helicase that was discovered originally because of its requirement in vitro for the conversion of bacteriophage phi X174 viral DNA to the duplex replicative form. Studies demonstrated that PriA catalyzes the assembly of a primosome, a multiprotein complex that primes DNA synthesis, on phi X174 DNA. The primosome was shown to be capable of providing both the DNA unwinding function and the Okazaki fragment priming function required for replication fork progression. However, whereas seven proteins, PriA, PriB, PriC, DnaT, DnaB, DnaC, and DnaG, were required for primosome assembly on phi X174 DNA, only DnaB, DnaC, and DnaG were required for replication from oriC, suggesting that the other proteins were not involved in chromosomal replication. Strains carrying priA null mutations, however, were constitutively induced for the SOS response, and were defective in homologous recombination, repair of UV-damaged DNA, and double-strand breaks, and both induced and constitutive stable DNA replication. The basis for this phenotype can now be explained by the ability of PriA to load replication forks at a D loop, an intermediate that forms during homologous recombination, double-strand break-repair, and stable DNA replication. Thus, a long-theorized connection between recombination and replication is demonstrated.
Collapse
Affiliation(s)
- K J Marians
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| |
Collapse
|
39
|
Cox MM. Recombinational DNA repair in bacteria and the RecA protein. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1999; 63:311-66. [PMID: 10506835 DOI: 10.1016/s0079-6603(08)60726-6] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In bacteria, the major function of homologous genetic recombination is recombinational DNA repair. This is not a process reserved only for rare double-strand breaks caused by ionizing radiation, nor is it limited to situations in which the SOS response has been induced. Recombinational DNA repair in bacteria is closely tied to the cellular replication systems, and it functions to repair damage at stalled replication forks, Studies with a variety of rec mutants, carried out under normal aerobic growth conditions, consistently suggest that at least 10-30% of all replication forks originating at the bacterial origin of replication are halted by DNA damage and must undergo recombinational DNA repair. The actual frequency may be much higher. Recombinational DNA repair is both the most complex and the least understood of bacterial DNA repair processes. When replication forks encounter a DNA lesion or strand break, repair is mediated by an adaptable set of pathways encompassing most of the enzymes involved in DNA metabolism. There are five separate enzymatic processes involved in these repair events: (1) The replication fork assembled at OriC stalls and/or collapses when encountering DNA damage. (2) Recombination enzymes provide a complementary strand for a lesion isolated in a single-strand gap, or reconstruct a branched DNA at the site of a double-strand break. (3) The phi X174-type primosome (or repair primosome) functions in the origin-independent reassembly of the replication fork. (4) The XerCD site-specific recombination system resolves the dimeric chromosomes that are the inevitable by-product of frequent recombination associated with recombinational DNA repair. (5) DNA excision repair and other repair systems eliminate lesions left behind in double-stranded DNA. The RecA protein plays a central role in the recombination phase of the process. Among its many activities, RecA protein is a motor protein, coupling the hydrolysis of ATP to the movement of DNA branches.
Collapse
Affiliation(s)
- M M Cox
- Department of Biochemistry, University of Wisconsin-Madison 53706, USA
| |
Collapse
|
40
|
Mehr IJ, Seifert HS. Differential roles of homologous recombination pathways in Neisseria gonorrhoeae pilin antigenic variation, DNA transformation and DNA repair. Mol Microbiol 1998; 30:697-710. [PMID: 10094619 DOI: 10.1046/j.1365-2958.1998.01089.x] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neisseria gonorrhoeae (Gc) pili undergo antigenic variation when the amino acid sequence of the pilin protein is changed, aiding in immune avoidance and altering pilus expression. Pilin antigenic variation occurs by RecA-dependent unidirectional transfer of DNA sequences from a silent pilin locus to the expressed pilin gene through high-frequency recombination events that occur at limited regions of homology. We show that the Gc recQ and recO genes are essential for pilin antigenic and phase variation and DNA repair but are not involved in natural DNA transformation. This suggests that a RecF-like pathway of recombination exists in Gc. In addition, mutations in the Gc recB, recC or recD genes revealed that a Gc RecBCD pathway also exists and is involved in DNA transformation and DNA repair but not in pilin antigenic variation.
Collapse
Affiliation(s)
- I J Mehr
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| | | |
Collapse
|
41
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
42
|
Namsaraev EA, Baitin D, Bakhlanova IV, Alexseyev AA, Ogawa H, Lanzov VA. Biochemical basis of hyper-recombinogenic activity of Pseudomonas aeruginosa RecA protein in Escherichia coli cells. Mol Microbiol 1998; 27:727-38. [PMID: 9515699 DOI: 10.1046/j.1365-2958.1998.00718.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The replacement of Escherichia coli recA gene (recA[Ec]) with the Pseudomonas aeruginosa recA(Pa) gene in Escherichia coli cells results in constitutive hyper-recombination (high frequency of recombination exchanges per unit length of DNA) in the absence of constitutive SOS response. To understand the biochemical basis of this unusual in vivo phenotype, we compared in vitro the recombination properties of RecA(Pa) protein with those of RecA(Ec) protein. Consistent with hyper-recombination activity, RecA(Pa) protein appeared to be more proficient both in joint molecule formation, producing extensive DNA networks in strand exchange reaction, and in competition with single-stranded DNA binding (SSB) protein for single-stranded DNA (ssDNA) binding sites. The RecA(Pa) protein showed in vitro a normal ability for cleavage of the E. coli LexA repressor (a basic step in SOS regulon derepression) both in the absence and in the presence (i.e. even under suboptimal conditions for RecA(Ec) protein) of SSB protein. However, unlike other hyper-recombinogenic proteins, such as RecA441 and RecA730, RecA(Pa) protein displaced insufficient SSB protein from ssDNA at low magnesium concentration to induce the SOS response constitutively. In searching for particular characteristics of RecA(Pa) in comparison with RecA(Ec), RecA441 and RecA803 proteins, RecA(Pa) showed unusually high abilities: to be resistant to the displacement by SSB protein from poly(dT); to stabilize a ternary complex RecA::ATP::ssDNA to high salt concentrations; and to be much more rapid in both the nucleation of double-stranded DNA (dsDNA) and the steady-state rate of dsDNA-dependent ATP hydrolysis at pH7.5. We hypothesized that the high affinity of RecA(Pa) protein for ssDNA, and especially dsDNA, is the factor that directs the ternary complex to bind secondary DNA to initiate additional acts of recombination instead of to bind LexA repressor to induce constitutive SOS response.
Collapse
Affiliation(s)
- E A Namsaraev
- Division of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute, Russian Academy of Sciences, Gatchina/St Petersburg
| | | | | | | | | | | |
Collapse
|
43
|
Sawitzke JA, Stahl FW. Roles for lambda Orf and Escherichia coli RecO, RecR and RecF in lambda recombination. Genetics 1997; 147:357-69. [PMID: 9335578 PMCID: PMC1208163 DOI: 10.1093/genetics/147.2.357] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bacteriophage lambda lacking its Red recombination functions requires either its own gene product, Orf, or the product of Escherichia coli's recO, recR and recF genes (RecORF) for efficient recombination in recBC sbcB sbcC mutant cells (the RecF pathway). Phage crosses under conditions of a partial block to DNA replication have revealed the following: (1) In the presence of Orf, RecF pathway recombination is similar to lambda Red recombination; (2) Orf is necessary for focusing recombination toward the right end of the chromosome as lambda is conventionally drawn; (3) RecORF-mediated RecF pathway recombination is not focused toward the right end of the chromosome, which may indicate that RecORF travels along the DNA; (4) both Orf- and RecORF-mediated RecF pathway recombination are stimulated by DNA replication; and (5) low level recombination in the simultaneous absence of Orf and RecORF may occur by a break-copy mechanism that is not initiated by a double strand break. Models for the roles of Orf and RecO, RecR and RecF in recombination are presented.
Collapse
Affiliation(s)
- J A Sawitzke
- Institute of Molecular Biology, University of Oregon, Eugene 97403-1229, USA.
| | | |
Collapse
|
44
|
Roca AI, Cox MM. RecA protein: structure, function, and role in recombinational DNA repair. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1997; 56:129-223. [PMID: 9187054 DOI: 10.1016/s0079-6603(08)61005-3] [Citation(s) in RCA: 324] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- A I Roca
- Department of Biochemistry, College of Agriculture and Life Sciences, University of Wisconsin, Madison 53706, USA
| | | |
Collapse
|
45
|
Hegde SP, Qin MH, Li XH, Atkinson MA, Clark AJ, Rajagopalan M, Madiraju MV. Interactions of RecF protein with RecO, RecR, and single-stranded DNA binding proteins reveal roles for the RecF-RecO-RecR complex in DNA repair and recombination. Proc Natl Acad Sci U S A 1996; 93:14468-73. [PMID: 8962075 PMCID: PMC26156 DOI: 10.1073/pnas.93.25.14468] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The products of the recF, recO, and recR genes are thought to interact and assist RecA in the utilization of single-stranded DNA precomplexed with single-stranded DNA binding protein (Ssb) during synapsis. Using immunoprecipitation, size-exclusion chromatography, and Ssb protein affinity chromatography in the absence of any nucleotide cofactors, we have obtained the following results: (i) RecF interacts with RecO, (ii) RecF interacts with RecR in the presence of RecO to form a complex consisting of RecF, RecO, and RecR (RecF-RecO-RecR); (iii) RecF interacts with Ssb protein in the presence of RecO. These data suggested that RecO mediates the interactions of RecF protein with RecR and with Ssb proteins. Incubation of RecF, RecO, RecR, and Ssb proteins resulted in the formation of RecF-RecO-Ssb complexes; i.e., RecR was excluded. Preincubation of RecF, RecO, and RecR proteins prior to addition of Ssb protein resulted in the formation of complexes consisting of RecF, RecO, RecR, and Ssb proteins. These data suggest that one role of RecF is to stabilize the interaction of RecR with RecO in the presence of Ssb protein. Finally, we found that interactions of RecF with RecO are lost in the presence of ATP. We discuss these results to explain how the RecF-RecO-RecR complex functions as an anti-Ssb factor.
Collapse
Affiliation(s)
- S P Hegde
- Department of Microbiology, University of Texas Health Center at Tyler 75710, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Harmon FG, Rehrauer WM, Kowalczykowski SC. Interaction of Escherichia coli RecA Protein with LexA Repressor. J Biol Chem 1996. [DOI: 10.1074/jbc.271.39.23874] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
47
|
Hegde SP, Rajagopalan M, Madiraju MV. Preferential binding of Escherichia coli RecF protein to gapped DNA in the presence of adenosine (gamma-thio) triphosphate. J Bacteriol 1996; 178:184-90. [PMID: 8550414 PMCID: PMC177637 DOI: 10.1128/jb.178.1.184-190.1996] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Escherichia coli RecF protein binds, but does not hydrolyze, ATP. To determine the role that ATP binding to RecF plays in RecF protein-mediated DNA binding, we have determined the interaction between RecF protein and single-stranded (ss)DNA, double-stranded (ds)DNA, and dsDNA containing ssDNA regions (gapped [g]DNA) either alone or in various combinations both in the presence and in the absence of adenosine (gamma-thio) triphosphate, gamma-S-ATP, a nonhydrolyzable ATP analog. Protein-DNA complexes were analyzed by electrophoresis on agarose gels and visualized by autoradiography. The type of protein-DNA complexes formed in the presence of gamma-S-ATP was different with each of the DNA substrates and from those formed in the absence of gamma-S-ATP. Competition experiments with various combinations of DNA substrates indicated that RecF protein preferentially bound gDNA in the presence of gamma-S-ATP, and the order of preference of binding was gDNA > dsDNA > ssDNA. Since gDNA has both ds- and ssDNA components, we suggest that the role for ATP in RecF protein-DNA interactions in vivo is to confer specificity of binding to dsDNA-ssDNA junctions, which is necessary for catalyzing DNA repair and recombination.
Collapse
Affiliation(s)
- S P Hegde
- Department of Microbiology, University of Texas Health Center at Tyler 75710, USA
| | | | | |
Collapse
|
48
|
Luisi-DeLuca C. Homologous pairing of single-stranded DNA and superhelical double-stranded DNA catalyzed by RecO protein from Escherichia coli. J Bacteriol 1995; 177:566-72. [PMID: 7836288 PMCID: PMC176629 DOI: 10.1128/jb.177.3.566-572.1995] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The recO gene product is required for DNA repair and some types of homologous recombination in wild-type Escherichia coli cells. RecO protein has been previously purified and shown to bind to single- and double-stranded DNA and to promote the renaturation of complementary single-stranded DNA molecules. In this study, purified RecO protein was shown to catalyze the assimilation of single-stranded DNA into homologous superhelical double-stranded DNA, an activity also associated with RecA protein. The RecO protein-promoted strand assimilation reaction requires Mg2+ and is ATP independent. Because of the biochemical similarities between RecO and RecA proteins, the ability of RecO protein to substitute for RecA protein in DNA repair in vivo was also assessed in this study. The results show that overexpression of RecO protein partially suppressed the UV repair deficiency of a recA null mutant and support the hypothesis that RecO and RecA proteins are functionally similar with respect to strand assimilation and the ability to enhance UV survival. These results suggest that RecO and RecA proteins may have common functional properties.
Collapse
Affiliation(s)
- C Luisi-DeLuca
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pennsylvania 15261
| |
Collapse
|
49
|
Whitby MC, Lloyd RG. Altered SOS induction associated with mutations in recF, recO and recR. MOLECULAR & GENERAL GENETICS : MGG 1995; 246:174-9. [PMID: 7862088 DOI: 10.1007/bf00294680] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The SOS system of Escherichia coli aids survival following damage to DNA by promoting DNA repair while cell division is delayed. Induction of the SOS response is dependent on RecA and also on the product of recF. We show that normal induction also requires the products of recO and recR. SOS induction was monitored using a sfiA-lacZ fusion strain. Induction was delayed to a similar degree by mutation in recF, recO or recR. A similar effect was observed following overexpression of RecR from a recombinant recR+ plasmid. We show that the overexpression of RecR also reduces the UV resistance of a recBC sbcBC strain and of a sfiA strain, but not of a rec+sfiA+ strain. The implications of these data for the kinetics of DNA repair are discussed.
Collapse
Affiliation(s)
- M C Whitby
- Department of Genetics, University of Nottingham, Queens Medical Centre, UK
| | | |
Collapse
|
50
|
Hegde S, Sandler SJ, Clark AJ, Madiraju MV. recO and recR mutations delay induction of the SOS response in Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1995; 246:254-8. [PMID: 7862097 DOI: 10.1007/bf00294689] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
RecF, RecO and RecR, three of the important proteins of the RecF pathway of recombination, are also needed for repair of DNA damage due to UV irradiation. recF mutants are not proficient in cleaving LexA repressor in vivo following DNA damage: therefore they show a delay of induction of the SOS response. In this communication, by measuring the in vivo levels of LexA repressor using anti-LexA antibodies, we show that recO and recR mutant strains are also not proficient in LexA cleavage reactions. In addition, we show that recO and recR mutations delay induction of beta-galactosidase activity expressed from a lexA-regulated promoter following exposure of cells to UV, thus further supporting the idea that recF, recO and recR gene products are needed for induction of the SOS response.
Collapse
Affiliation(s)
- S Hegde
- Department of Microbiology, University of Texas Health Center, Tyler 75710
| | | | | | | |
Collapse
|