1
|
De Paepe B, De Mey M. Biological Switches: Past and Future Milestones of Transcription Factor-Based Biosensors. ACS Synth Biol 2025; 14:72-86. [PMID: 39709556 PMCID: PMC11745168 DOI: 10.1021/acssynbio.4c00689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024]
Abstract
Since the description of the lac operon in 1961 by Jacob and Monod, transcriptional regulation in prokaryotes has been studied extensively and has led to the development of transcription factor-based biosensors. Due to the broad variety of detectable small molecules and their various applications across biotechnology, biosensor research and development have increased exponentially over the past decades. Throughout this period, key milestones in fundamental knowledge, synthetic biology, analytical tools, and computational learning have led to an immense expansion of the biosensor repertoire and its application portfolio. Over the years, biosensor engineering became a more multidisciplinary discipline, combining high-throughput analytical tools, DNA randomization strategies, forward engineering, and advanced protein engineering workflows. Despite these advances, many obstacles remain to fully unlock the potential of biosensor technology. This review analyzes the timeline of key milestones on fundamental research (1960s to 2000s) and engineering strategies (2000s onward), on both the DNA and protein level of biosensors. Moreover, insights into the future perspectives, remaining hurdles, and unexplored opportunities of this promising field are discussed.
Collapse
Affiliation(s)
- Brecht De Paepe
- Centre
for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| | - Marjan De Mey
- Centre
for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
2
|
Demeester W, De Paepe B, De Mey M. Fundamentals and Exceptions of the LysR-type Transcriptional Regulators. ACS Synth Biol 2024; 13:3069-3092. [PMID: 39306765 PMCID: PMC11495319 DOI: 10.1021/acssynbio.4c00219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/17/2024] [Accepted: 08/13/2024] [Indexed: 10/19/2024]
Abstract
LysR-type transcriptional regulators (LTTRs) are emerging as a promising group of macromolecules for the field of biosensors. As the largest family of bacterial transcription factors, the LTTRs represent a vast and mostly untapped repertoire of sensor proteins. To fully harness these regulators for transcription factor-based biosensor development, it is crucial to understand their underlying mechanisms and functionalities. In the first part, this Review discusses the established model and features of LTTRs. As dual-function regulators, these inducible transcription factors exude precise control over their regulatory targets. In the second part of this Review, an overview is given of the exceptions to the "classic" LTTR model. While a general regulatory mechanism has helped elucidate the intricate regulation performed by LTTRs, it is essential to recognize the variations within the family. By combining this knowledge, characterization of new regulators can be done more efficiently and accurately, accelerating the expansion of transcriptional sensors for biosensor development. Unlocking the pool of LTTRs would significantly expand the currently limited range of detectable molecules and regulatory functions available for the implementation of novel synthetic genetic circuitry.
Collapse
Affiliation(s)
- Wouter Demeester
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| | - Brecht De Paepe
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| | - Marjan De Mey
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
3
|
Verschueren KHG, Dodson EJ, Wilkinson AJ. The Structure of the LysR-type Transcriptional Regulator, CysB, Bound to the Inducer, N-acetylserine. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2024; 53:311-326. [PMID: 38976018 PMCID: PMC11329422 DOI: 10.1007/s00249-024-01716-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/18/2024] [Indexed: 07/09/2024]
Abstract
In Escherichia coli and Salmonella typhimurium, cysteine biosynthesis requires the products of 20 or more cys genes co-ordinately regulated by CysB. Under conditions of sulphur limitation and in the presence of the inducer, N-acetylserine, CysB binds to cys promoters and activates the transcription of the downstream coding sequences. CysB is a homotetramer, comprising an N-terminal DNA binding domain (DBD) and a C-terminal effector binding domain (EBD). The crystal structure of a dimeric EBD fragment of CysB from Klebsiella aerogenes revealed a protein fold similar to that seen in Lac repressor but with a different symmetry in the dimer so that the mode of DNA binding was not apparent. To elucidate the subunit arrangement in the tetramer, we determined the crystal structure of intact CysB in complex with N-acetylserine. The tetramer has two subunit types that differ in the juxtaposition of their winged helix-turn-helix DNA binding domains with respect to the effector binding domain. In the assembly, the four EBDs form a core with the DNA binding domains arranged in pairs on the surface. N-acetylserine makes extensive polar interactions in an enclosed binding site, and its binding is accompanied by substantial conformational rearrangements of surrounding residues that are propagated to the protein surface where they appear to alter the arrangement of the DNA binding domains. The results are (i) discussed in relation to the extensive mutational data available for CysB and (ii) used to propose a structural mechanism of N-acetylserine induced CysB activation.
Collapse
Affiliation(s)
- Koen H G Verschueren
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK
- Unit for Structural Biology, VIB Center for Inflammation Research, Ghent, Belgium; Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Eleanor J Dodson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Anthony J Wilkinson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK.
| |
Collapse
|
4
|
Choi HY, Kim WG. Tyrosol blocks E. coli anaerobic biofilm formation via YbfA and FNR to increase antibiotic susceptibility. Nat Commun 2024; 15:5683. [PMID: 38971825 PMCID: PMC11227560 DOI: 10.1038/s41467-024-50116-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 06/28/2024] [Indexed: 07/08/2024] Open
Abstract
Bacteria within mature biofilms are highly resistant to antibiotics than planktonic cells. Oxygen limitation contributes to antibiotic resistance in mature biofilms. Nitric oxide (NO) induces biofilm dispersal; however, low NO levels stimulate biofilm formation, an underexplored process. Here, we introduce a mechanism of anaerobic biofilm formation by investigating the antibiofilm activity of tyrosol, a component in wine. Tyrosol inhibits E. coli and Pseudomonas aeruginosa biofilm formation by enhancing NO production. YbfA is identified as a target of tyrosol and its downstream targets are sequentially determined. YbfA activates YfeR, which then suppresses the anaerobic regulator FNR. This suppression leads to decreased NO production, elevated bis-(3'-5')-cyclic dimeric GMP levels, and finally stimulates anaerobic biofilm formation in the mature stage. Blocking YbfA with tyrosol treatment renders biofilm cells as susceptible to antibiotics as planktonic cells. Thus, this study presents YbfA as a promising antibiofilm target to address antibiotic resistance posed by biofilm-forming bacteria, with tyrosol acting as an inhibitor.
Collapse
Affiliation(s)
- Ha-Young Choi
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Yusong, Daejeon, 34141, Republic of Korea
| | - Won-Gon Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Yusong, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
5
|
Zhang L, Fu Y, Xu Q, Chen X, Xie Y, Zhang B, Lin X. Quantitative proteomics reveals the complex regulatory networks of LTTR-type regulators in pleiotropic functions of Aeromonas hydrophila. Int J Biol Macromol 2024; 270:132315. [PMID: 38740149 DOI: 10.1016/j.ijbiomac.2024.132315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
LysR-type transcriptional regulators (LTTRs) are ubiquitously distributed and abundant transcriptional regulators in prokaryotes, playing pivotal roles in diverse physiological processes. Nonetheless, despite their prevalence, the intricate functionalities and physiological implications of this protein family remain incompletely elucidated. In this study, we employed a comprehensive approach to deepen our understanding of LTTRs by generating a collection of 20 LTTR gene-deletion strains in Aeromonas hydrophila, accounting for 42.6 % of the predicted total LTTR repertoire, and subjected them to meticulous assessment of their physiological phenotypes. Leveraging quantitative proteomics, we conducted a comparative analysis of protein expression variations between six representative mutants and the wild-type strain. Subsequent bioinformatics analysis unveiled the involvement of these LTTRs in modulating a wide array of biological processes, notably including two-component regulatory systems (TCSs) and intracellular central metabolism. Moreover, employing subsequent microbiological methodologies, we experimentally verified the direct involvement of at least six LTTRs in the regulation of galactose metabolism. Importantly, through ELISA and competitive ELISA assays, we demonstrated the competitive binding capabilities of these LTTRs with the promoter of the α-galactosidase gene AHA_1897 and identified that four LTTRs (XapR, YidZ, YeeY, and AHA_1805) do not engage in competitive binding with other LTTRs. Overall, our comprehensive findings not only provide fundamental insights into the regulatory mechanisms governing crucial physiological functions of bacteria through LTTR family proteins but also uncover an intricate and interactive regulatory network mediated by LTTRs.
Collapse
Affiliation(s)
- Lishan Zhang
- College of JunCao Science and Ecology, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuying Fu
- School of Safety and Environment, Fujian Chuanzheng Communications College, Fuzhou, Fujian Province 350007, China
| | - Qiaozhen Xu
- College of JunCao Science and Ecology, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xin Chen
- College of JunCao Science and Ecology, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuyue Xie
- College of JunCao Science and Ecology, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Binghui Zhang
- College of JunCao Science and Ecology, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Tobacco Science, Fujian Provincial Tobacco Company, Fuzhou 350003, China
| | - Xiangmin Lin
- College of JunCao Science and Ecology, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
6
|
Deery J, Carmody M, Flavin R, Tomanek M, O'Keeffe M, McGlacken GP, Reen FJ. Comparative genomics reveals distinct diversification patterns among LysR-type transcriptional regulators in the ESKAPE pathogen Pseudomonas aeruginosa. Microb Genom 2024; 10:001205. [PMID: 38421269 PMCID: PMC10926688 DOI: 10.1099/mgen.0.001205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
Pseudomonas aeruginosa, a harmful nosocomial pathogen associated with cystic fibrosis and burn wounds, encodes for a large number of LysR-type transcriptional regulator proteins. To understand how and why LTTR proteins evolved with such frequency and to establish whether any relationships exist within the distribution we set out to identify the patterns underpinning LTTR distribution in P. aeruginosa and to uncover cluster-based relationships within the pangenome. Comparative genomic studies revealed that in the JGI IMG database alone ~86 000 LTTRs are present across the sequenced genomes (n=699). They are widely distributed across the species, with core LTTRs present in >93 % of the genomes and accessory LTTRs present in <7 %. Analysis showed that subsets of core LTTRs can be classified as either variable (typically specific to P. aeruginosa) or conserved (and found to be distributed in other Pseudomonas species). Extending the analysis to the more extensive Pseudomonas database, PA14 rooted analysis confirmed the diversification patterns and revealed PqsR, the receptor for the Pseudomonas quinolone signal (PQS) and 2-heptyl-4-quinolone (HHQ) quorum-sensing signals, to be amongst the most variable in the dataset. Successful complementation of the PAO1 pqsR - mutant using representative variant pqsR sequences suggests a degree of structural promiscuity within the most variable of LTTRs, several of which play a prominent role in signalling and communication. These findings provide a new insight into the diversification of LTTR proteins within the P. aeruginosa species and suggests a functional significance to the cluster, conservation and distribution patterns identified.
Collapse
Affiliation(s)
- Jamie Deery
- School of Microbiology, University College Cork, Cork, Ireland
| | - Muireann Carmody
- School of Microbiology, University College Cork, Cork, Ireland
- School of Chemistry, University College Cork, Cork, Ireland
| | - Rhiannon Flavin
- School of Microbiology, University College Cork, Cork, Ireland
| | - Malwina Tomanek
- School of Microbiology, University College Cork, Cork, Ireland
| | - Maria O'Keeffe
- School of Microbiology, University College Cork, Cork, Ireland
| | - Gerard P. McGlacken
- School of Chemistry, University College Cork, Cork, Ireland
- Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork, Ireland
| | - F. Jerry Reen
- School of Microbiology, University College Cork, Cork, Ireland
- Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork, Ireland
| |
Collapse
|
7
|
Shapira N, Zusman T, Segal G. The LysR-type transcriptional regulator LelA co-regulates various effectors in different Legionella species. Mol Microbiol 2024; 121:243-259. [PMID: 38153189 DOI: 10.1111/mmi.15214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/29/2023]
Abstract
The intracellular pathogen Legionella pneumophila translocates more than 300 effector proteins into its host cells. The expression levels of the genes encoding these effectors are orchestrated by an intricate regulatory network. Here, we introduce LelA, the first L. pneumophila LysR-type transcriptional regulator of effectors. Through bioinformatic and experimental analyses, we identified the LelA target regulatory element and demonstrated that it directly activates the expression of three L. pneumophila effectors (legL7, legL6, and legU1). We further found that the gene encoding LelA is positively regulated by the RpoS sigma factor, thus linking it to the known effector regulatory network. Examination of other species throughout the Legionella genus revealed that this regulatory element is found upstream of 34 genes encoding validated effectors, putative effectors, and hypothetical proteins. Moreover, ten of these genes were examined and found to be activated by the L. pneumophila LelA as well as by their orthologs in the corresponding species. LelA represents a novel type of Legionella effector regulator, which coordinates the expression of both adjacently and distantly located effector-encoding genes, thus forming small groups of co-regulated effectors.
Collapse
Affiliation(s)
- Naomi Shapira
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Tal Zusman
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Gil Segal
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
8
|
Van Hofwegen DJ, Hovde CJ, Minnich SA. Comparison of Yersinia enterocolitica DNA Methylation at Ambient and Host Temperatures. EPIGENOMES 2023; 7:30. [PMID: 38131902 PMCID: PMC10742451 DOI: 10.3390/epigenomes7040030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Pathogenic bacteria recognize environmental cues to vary gene expression for host adaptation. Moving from ambient to host temperature, Yersinia enterocolitica responds by immediately repressing flagella synthesis and inducing the virulence plasmid (pYV)-encoded type III secretion system. In contrast, shifting from host to ambient temperature requires 2.5 generations to restore motility, suggesting a link to the cell cycle. We hypothesized that differential DNA methylation contributes to temperature-regulated gene expression. We tested this hypothesis by comparing single-molecule real-time (SMRT) sequencing of Y. enterocolitica DNA from cells growing exponentially at 22 °C and 37 °C. The inter-pulse duration ratio rather than the traditional QV scoring was the kinetic metric to compare DNA from cells grown at each temperature. All 565 YenI restriction sites were fully methylated at both temperatures. Among the 27,118 DNA adenine methylase (Dam) sites, 42 had differential methylation patterns, while 17 remained unmethylated regardless of the temperature. A subset of the differentially methylated Dam sites localized to promoter regions of predicted regulatory genes including LysR-type and PadR-like transcriptional regulators and a cyclic-di-GMP phosphodiesterase. The unmethylated Dam sites localized with a bias to the replication terminus, suggesting they were protected from Dam methylase. No cytosine methylation was detected at Dcm sites.
Collapse
Affiliation(s)
| | | | - Scott A. Minnich
- Department of Animal Veterinary and Food Science, University of Idaho, Moscow, ID 83843, USA; (D.J.V.H.); (C.J.H.)
| |
Collapse
|
9
|
Baugh AC, Momany C, Neidle EL. Versatility and Complexity: Common and Uncommon Facets of LysR-Type Transcriptional Regulators. Annu Rev Microbiol 2023; 77:317-339. [PMID: 37285554 DOI: 10.1146/annurev-micro-050323-040543] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
LysR-type transcriptional regulators (LTTRs) form one of the largest families of bacterial regulators. They are widely distributed and contribute to all aspects of metabolism and physiology. Most are homotetramers, with each subunit composed of an N-terminal DNA-binding domain followed by a long helix connecting to an effector-binding domain. LTTRs typically bind DNA in the presence or absence of a small-molecule ligand (effector). In response to cellular signals, conformational changes alter DNA interactions, contact with RNA polymerase, and sometimes contact with other proteins. Many are dual-function repressor-activators, although different modes of regulation may occur at multiple promoters. This review presents an update on the molecular basis of regulation, the complexity of regulatory schemes, and applications in biotechnology and medicine. The abundance of LTTRs reflects their versatility and importance. While a single regulatory model cannot describe all family members, a comparison of similarities and differences provides a framework for future study.
Collapse
Affiliation(s)
- Alyssa C Baugh
- Department of Microbiology, University of Georgia, Athens, Georgia, USA;
| | - Cory Momany
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia, USA
| | - Ellen L Neidle
- Department of Microbiology, University of Georgia, Athens, Georgia, USA;
| |
Collapse
|
10
|
Yu Y, Wang P, Cao HY, Teng ZJ, Zhu Y, Wang M, McMinn A, Chen Y, Xiang H, Zhang YZ, Chen XL, Zhang YQ. Novel D-glutamate catabolic pathway in marine Proteobacteria and halophilic archaea. THE ISME JOURNAL 2023; 17:537-548. [PMID: 36690779 PMCID: PMC10030869 DOI: 10.1038/s41396-023-01364-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/25/2023]
Abstract
D-glutamate (D-Glu) is an essential component of bacterial peptidoglycans, representing an important, yet overlooked, pool of organic matter in global oceans. However, little is known on D-Glu catabolism by marine microorganisms. Here, a novel catabolic pathway for D-Glu was identified using the marine bacterium Pseudoalteromonas sp. CF6-2 as the model. Two novel enzymes (DgcN, DgcA), together with a transcriptional regulator DgcR, are crucial for D-Glu catabolism in strain CF6-2. Genetic and biochemical data confirm that DgcN is a N-acetyltransferase which catalyzes the formation of N-acetyl-D-Glu from D-Glu. DgcA is a racemase that converts N-acetyl-D-Glu to N-acetyl-L-Glu, which is further hydrolyzed to L-Glu. DgcR positively regulates the transcription of dgcN and dgcA. Structural and biochemical analyses suggested that DgcN and its homologs, which use D-Glu as the acyl receptor, represent a new group of the general control non-repressible 5 (GCN5)-related N-acetyltransferases (GNAT) superfamily. DgcA and DgcN occur widely in marine bacteria (particularly Rhodobacterales) and halophilic archaea (Halobacteria) and are abundant in marine and hypersaline metagenome datasets. Thus, this study reveals a novel D-Glu catabolic pathway in ecologically important marine bacteria and halophilic archaea and helps better understand the catabolism and recycling of D-Glu in these ecosystems.
Collapse
Affiliation(s)
- Yang Yu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Peng Wang
- College of Marine Life Sciences & Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hai-Yan Cao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Zhao-Jie Teng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yanping Zhu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Min Wang
- College of Marine Life Sciences & Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Andrew McMinn
- College of Marine Life Sciences & Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Yin Chen
- College of Marine Life Sciences & Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Hua Xiang
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Microbial Resources, the Institute of Microbiology CAS, Beijing, China
| | - Yu-Zhong Zhang
- College of Marine Life Sciences & Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Yu-Qiang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
| |
Collapse
|
11
|
Pu W, Chen J, Liu P, Shen J, Cai N, Liu B, Lei Y, Wang L, Ni X, Zhang J, Liu J, Zhou Y, Zhou W, Ma H, Wang Y, Zheng P, Sun J. Directed evolution of linker helix as an efficient strategy for engineering LysR-type transcriptional regulators as whole-cell biosensors. Biosens Bioelectron 2023; 222:115004. [PMID: 36516630 DOI: 10.1016/j.bios.2022.115004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/17/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022]
Abstract
Whole-cell biosensors based on transcriptional regulators are powerful tools for rapid measurement, high-throughput screening, dynamic metabolic regulation, etc. To optimize the biosensing performance of transcriptional regulator, its effector-binding domain is commonly engineered. However, this strategy is encumbered by the limitation of diversifying such a large domain and the risk of affecting effector specificity. Molecular dynamics simulation of effector binding of LysG (an LysR-type transcriptional regulator, LTTR) suggests the crucial role of the short linker helix (LH) connecting effector- and DNA-binding domains in protein conformational change. Directed evolution of LH efficiently produced LysG variants with extended operational range and unaltered effector specificity. The whole-cell biosensor based on the best LysGE58V variant outperformed the wild-type LysG in enzyme high-throughput screening and dynamic regulation of l-lysine biosynthetic pathway. LH mutations are suggested to affect DNA binding and facilitate transcriptional activation upon effector binding. LH engineering was also successfully applied to optimize another LTTR BenM for biosensing. Since LTTRs represent the largest family of prokaryotic transcriptional regulators with highly conserved structures, LH engineering is an efficient and universal strategy for development and optimization of whole-cell biosensors.
Collapse
Affiliation(s)
- Wei Pu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jiuzhou Chen
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Pi Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; BioDesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jie Shen
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Ningyun Cai
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Baoyan Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; BioDesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Yu Lei
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Lixian Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Xiaomeng Ni
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jie Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jiao Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Yingyu Zhou
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Wenjuan Zhou
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Hongwu Ma
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China; BioDesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Yu Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Haihe Laboratory of Synthetic Biology, Tianjin, 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.
| | - Ping Zheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.
| | - Jibin Sun
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| |
Collapse
|
12
|
Choi E, Huh A, Hwang J. Novel rRNA transcriptional activity of NhaR revealed by its growth recovery for the bipA-deleted Escherichia coli at low temperature. Front Mol Biosci 2023; 10:1175889. [PMID: 37152896 PMCID: PMC10157491 DOI: 10.3389/fmolb.2023.1175889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/12/2023] [Indexed: 05/09/2023] Open
Abstract
The BipA protein is a universally conserved GTPase in bacterial species and is structurally similar to translational GTPases. Despite its wide distribution, BipA is dispensable for growth under optimal growth conditions but is required under stress conditions. In particular, bipA-deleted cells (ESC19) have been shown to display a variety of phenotypic changes in ribosome assembly, capsule production, lipopolysaccharide (LPS) synthesis, biofilm formation, and motility at low temperature, suggesting its global regulatory roles in cold adaptation. Here, through genomic library screening, we found a suppressor clone containing nhaR, which encodes a Na+-responsive LysR-type transcriptional regulator and whose gene product partially restored the growth of strain ESC19 at 20°C. The suppressed cells showed slightly reduced capsule production and improved biofilm-forming ability at 20°C, whereas the defects in the LPS core and swimming motility were not restored but aggravated by overexpression of nhaR. Notably, the overexpression partially alleviated the defects in 50S ribosomal subunit assembly and rRNA processing of ESC19 cells by enhancing the overall transcription of rRNA. Electrophoretic mobility shift assay revealed the association of NhaR with the promoter of seven rrn operons, suggesting that NhaR directly regulates rRNA transcription in ESC19 at 20°C. The suppressive effects of NhaR on ribosomes, capsules, and LPS were dependent on its DNA-binding activity, implying that NhaR might be a transcriptional factor involved in regulating these genes at 20°C. Furthermore, we found that BipA may be involved in adaptation to salt stress, designating BipA as a global stress-responsive regulator, as the deletion of bipA led to growth defects at 37°C and high Na+ concentrations without ribosomal defects.
Collapse
Affiliation(s)
- Eunsil Choi
- Department of Microbiology, Pusan National University, Busan, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan, Republic of Korea
| | - Ahhyun Huh
- Department of Microbiology, Pusan National University, Busan, Republic of Korea
| | - Jihwan Hwang
- Department of Microbiology, Pusan National University, Busan, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan, Republic of Korea
- *Correspondence: Jihwan Hwang,
| |
Collapse
|
13
|
Bender FR, Nagamatsu ST, Delamuta JRM, Ribeiro RA, Nogueira MA, Hungria M. Genetic variation in symbiotic islands of natural variant strains of soybean Bradyrhizobium japonicum and Bradyrhizobium diazoefficiens differing in competitiveness and in the efficiency of nitrogen fixation. Microb Genom 2022; 8:000795. [PMID: 35438622 PMCID: PMC9453064 DOI: 10.1099/mgen.0.000795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/07/2022] [Indexed: 11/18/2022] Open
Abstract
Soybean is the most important legume cropped worldwide and can highly benefit from the biological nitrogen fixation (BNF) process. Brazil is recognized for its leadership in the use of inoculants and two strains, Bradyrhizobium japonicum CPAC 15 (=SEMIA 5079) and Bradyrhizobium diazoefficiens CPAC 7 (=SEMIA 5080) compose the majority of the 70 million doses of soybean inoculants commercialized yearly in the country. We studied a collection of natural variants of these two strains, differing in properties of competitiveness and efficiency of BNF. We sequenced the genomes of the parental strain SEMIA 566 of B. japonicum, of three natural variants of this strain (S 204, S 340 and S 370), and compared with another variant of this group, strain CPAC 15. We also sequenced the genome of the parental strain SEMIA 586 of B. diazoefficiens, of three natural variants of this strain (CPAC 390, CPAC 392 and CPAC 394) and compared with the genome of another natural variant, strain CPAC 7. As the main genes responsible for nodulation (nod, noe, nol) and BNF (nif, fix) in soybean Bradyrhizobium are located in symbiotic islands, our objective was to identify genetic variations located in this region, including single nucleotide polymorphisms (SNPs) and insertions and deletions (indels), that could be potentially related to their different symbiotic phenotypes. We detected 44 genetic variations in the B. japonicum strains and three in B. diazoefficiens. As the B. japonicum strains have gone through a longer period of adaptation to the soil, the higher number of genetic variations could be explained by survival strategies under the harsh environmental conditions of the Brazilian Cerrado biome. Genetic variations were detected in genes enconding proteins such as a dephospho-CoA kinase, related to the CoA biosynthesis; a glucosamine-fructose-6-phosphate aminotransferase, key regulator of the hexosamine biosynthetic pathway; a LysR family transcriptional regulator related to nodulation genes; and NifE and NifS proteins, directly related to the BNF process. We suggest potential genetic variations related to differences in the symbiotic phenotypes.
Collapse
Affiliation(s)
- Flavia Raquel Bender
- Department of Biotechnology, Universidade Estadual de Londrina, C.P. 10011, 86057-970 Londrina, Paraná, Brazil
- Soil Biotechnology Laboratory, Embrapa Soja, C.P. 4006, 86085-981, Londrina-PR, Brazil
| | - Sheila Tiemi Nagamatsu
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Jakeline Renata Marçon Delamuta
- Soil Biotechnology Laboratory, Embrapa Soja, C.P. 4006, 86085-981, Londrina-PR, Brazil
- CNPq, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71605-001, Brasília, Federal District, Brazil
| | - Renan Augusto Ribeiro
- CNPq, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71605-001, Brasília, Federal District, Brazil
| | - Marco Antonio Nogueira
- Soil Biotechnology Laboratory, Embrapa Soja, C.P. 4006, 86085-981, Londrina-PR, Brazil
- CNPq, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71605-001, Brasília, Federal District, Brazil
| | - Mariangela Hungria
- Department of Biotechnology, Universidade Estadual de Londrina, C.P. 10011, 86057-970 Londrina, Paraná, Brazil
- Soil Biotechnology Laboratory, Embrapa Soja, C.P. 4006, 86085-981, Londrina-PR, Brazil
- CNPq, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71605-001, Brasília, Federal District, Brazil
| |
Collapse
|
14
|
Kong C, de Jong A, de Haan BJ, Kok J, de Vos P. Human milk oligosaccharides and non-digestible carbohydrates reduce pathogen adhesion to intestinal epithelial cells by decoy effects or by attenuating bacterial virulence. Food Res Int 2022; 151:110867. [PMID: 34980402 DOI: 10.1016/j.foodres.2021.110867] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/14/2021] [Accepted: 12/02/2021] [Indexed: 12/18/2022]
Abstract
This work investigated the effects of different chemical structures of human milk oligosaccharides (hMOs) and non-digestible carbohydrates (NDCs) on pathogen adhesion by serving as decoy receptors. Pre-exposure of pathogens to inulins and low degree of methylation (DM) pectin prevented binding to gut epithelial Caco2-cells, but effects were dependent on the molecules' chemistry, pathogen strain and growth phase. Pre-exposure to 3-fucosyllactose increased E. coli WA321 adhesion (28%, p < 0.05), and DM69 pectin increased E. coli ET8 (15 fold, p < 0.05) and E. coli WA321 (50%, p < 0.05) adhesion. Transcriptomics analysis revealed that DM69 pectin upregulated flagella and cell membrane associated genes. However, the top 10 downregulated genes were associated with lowering of bacteria virulence. DM69 pectin increased pathogen adhesion but bacterial virulence was attenuated illustrating different mechanisms may lower pathogen adhesion. Our study illustrates that both hMOs and NDCs can reduce adhesion or attenuate virulence of pathogens but that these effects are chemistry dependent.
Collapse
Affiliation(s)
- Chunli Kong
- School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, 100048 Beijing, China; Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands.
| | - Anne de Jong
- Groningen Biomolecular Sciences and Biotechnology Institute, Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Bart J de Haan
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - Jan Kok
- Groningen Biomolecular Sciences and Biotechnology Institute, Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| |
Collapse
|
15
|
Lin S, Sun B, Shi X, Xu Y, Gu Y, Gu X, Ma X, Wan T, Xu J, Su J, Lou Y, Zheng M. Comparative Genomic and Pan-Genomic Characterization of Staphylococcus epidermidis From Different Sources Unveils the Molecular Basis and Potential Biomarkers of Pathogenic Strains. Front Microbiol 2021; 12:770191. [PMID: 34867904 PMCID: PMC8634615 DOI: 10.3389/fmicb.2021.770191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Coagulase-negative Staphylococcus (CoNS) is the most common pathogen causing traumatic endophthalmitis. Among which, Staphylococcus epidermidis is the most common species that colonizes human skin, eye surfaces, and nasal cavity. It is also the main cause of nosocomial infection, specially foreign body-related bloodstream infections (FBR-BSIs). Although some studies have reported the genome characteristics of S. epidermidis, the genome of ocular trauma-sourced S. epidermidis strain and a comprehensive understanding of its pathogenicity are still lacking. Our study sequenced, analyzed, and reported the whole genomes of 11 ocular trauma-sourced samples of S. epidermidis that caused traumatic endophthalmitis. By integrating publicly available genomes, we obtained a total of 187 S. epidermidis samples from healthy and diseased eyes, skin, respiratory tract, and blood. Combined with pan-genome, phylogenetic, and comparative genomic analyses, our study showed that S. epidermidis, regardless of niche source, exhibits two founder lineages with different pathogenicity. Moreover, we identified several potential biomarkers associated with the virulence of S. epidermidis, including essD, uhpt, sdrF, sdrG, fbe, and icaABCDR. EssD and uhpt have high homology with esaD and hpt in Staphylococcus aureus, showing that the genomes of S. epidermidis and S. aureus may have communicated during evolution. SdrF, sdrG, fbe, and icaABCDR are related to biofilm formation. Compared to S. epidermidis from blood sources, ocular-sourced strains causing intraocular infection had no direct relationship with biofilm formation. In conclusion, this study provided additional data resources for studies on S. epidermidis and improved our understanding of the evolution and pathogenicity among strains of different sources.
Collapse
Affiliation(s)
- Shudan Lin
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Bianjin Sun
- School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Xinrui Shi
- School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Yi Xu
- School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Yunfeng Gu
- School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Xiaobin Gu
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xueli Ma
- School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Tian Wan
- School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Jie Xu
- School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Jianzhong Su
- School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Yongliang Lou
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Meiqin Zheng
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
16
|
Structural dynamics in the evolution of a bilobed protein scaffold. Proc Natl Acad Sci U S A 2021; 118:2026165118. [PMID: 34845009 PMCID: PMC8694067 DOI: 10.1073/pnas.2026165118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 11/18/2022] Open
Abstract
Proteins conduct numerous complex biological functions by use of tailored structural dynamics. The molecular details of how these emerged from ancestral peptides remains mysterious. How does nature utilize the same repertoire of folds to diversify function? To shed light on this, we analyzed bilobed proteins with a common structural core, which is spread throughout the tree of life and is involved in diverse biological functions such as transcription, enzymatic catalysis, membrane transport, and signaling. We show here that the structural dynamics of the structural core differentiate predominantly via terminal additions during a long-period evolution. This diversifies substrate specificity and, ultimately, biological function. Novel biophysical tools allow the structural dynamics of proteins and the regulation of such dynamics by binding partners to be explored in unprecedented detail. Although this has provided critical insights into protein function, the means by which structural dynamics direct protein evolution remain poorly understood. Here, we investigated how proteins with a bilobed structure, composed of two related domains from the periplasmic-binding protein–like II domain family, have undergone divergent evolution, leading to adaptation of their structural dynamics. We performed a structural analysis on ∼600 bilobed proteins with a common primordial structural core, which we complemented with biophysical studies to explore the structural dynamics of selected examples by single-molecule Förster resonance energy transfer and Hydrogen–Deuterium exchange mass spectrometry. We show that evolutionary modifications of the structural core, largely at its termini, enable distinct structural dynamics, allowing the diversification of these proteins into transcription factors, enzymes, and extracytoplasmic transport-related proteins. Structural embellishments of the core created interdomain interactions that stabilized structural states, reshaping the active site geometry, and ultimately altered substrate specificity. Our findings reveal an as-yet-unrecognized mechanism for the emergence of functional promiscuity during long periods of evolution and are applicable to a large number of domain architectures.
Collapse
|
17
|
Ai W, Zhou Y, Wang B, Zhan Q, Hu L, Xu Y, Guo Y, Wang L, Yu F, Li X. Corrigendum: First Report of Coexistence of bla SFO-1 and bla NDM-1 β-Lactamase Genes as Well as Colistin Resistance Gene mcr-9 in a Transferrable Plasmid of a Clinical Isolate of Enterobacter hormaechei. Front Microbiol 2021; 12:741628. [PMID: 34650541 PMCID: PMC8507845 DOI: 10.3389/fmicb.2021.741628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/03/2021] [Indexed: 11/13/2022] Open
Abstract
[This corrects the article DOI: 10.3389/fmicb.2021.676113.].
Collapse
Affiliation(s)
- Wenxiu Ai
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ying Zhou
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bingjie Wang
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qing Zhan
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Longhua Hu
- Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yanlei Xu
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yinjuan Guo
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liangxing Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fangyou Yu
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaolong Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
18
|
The LysR-Type Transcriptional Regulator BsrA (PA2121) Controls Vital Metabolic Pathways in Pseudomonas aeruginosa. mSystems 2021; 6:e0001521. [PMID: 34254827 PMCID: PMC8407307 DOI: 10.1128/msystems.00015-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Pseudomonas aeruginosa, a facultative human pathogen causing nosocomial infections, has complex regulatory systems involving many transcriptional regulators. LTTR (LysR-Type Transcriptional Regulator) family proteins are involved in the regulation of various processes, including stress responses, motility, virulence, and amino acid metabolism. The aim of this study was to characterize the LysR-type protein BsrA (PA2121), previously described as a negative regulator of biofilm formation in P. aeruginosa. Genome wide identification of BsrA binding sites using chromatin immunoprecipitation and sequencing analysis revealed 765 BsrA-bound regions in the P. aeruginosa PAO1161 genome, including 367 sites in intergenic regions. The motif T-N11-A was identified within sequences bound by BsrA. Transcriptomic analysis showed altered expression of 157 genes in response to BsrA excess; of these, 35 had a BsrA binding site within their promoter regions, suggesting a direct influence of BsrA on the transcription of these genes. BsrA-repressed loci included genes encoding proteins engaged in key metabolic pathways such as the tricarboxylic acid cycle. The panel of loci possibly directly activated by BsrA included genes involved in pilus/fimbria assembly, as well as secretion and transport systems. In addition, DNA pull-down and regulatory analyses showed the involvement of PA2551, PA3398, and PA5189 in regulation of bsrA expression, indicating that this gene is part of an intricate regulatory network. Taken together, these findings reveal the existence of a BsrA regulon, which performs important functions in P. aeruginosa. IMPORTANCE This study shows that BsrA, a LysR-type transcriptional regulator from Pseudomonas aeruginosa, previously identified as a repressor of biofilm synthesis, is part of an intricate global regulatory network. BsrA acts directly and/or indirectly as the repressor and/or activator of genes from vital metabolic pathways (e.g., pyruvate, acetate, and tricarboxylic acid cycle) and is involved in control of transport functions and the formation of surface appendages. Expression of the bsrA gene is increased in the presence of antibiotics, which suggests its induction in response to stress, possibly reflecting the need to redirect metabolism under stressful conditions. This is particularly relevant for the treatment of infections caused by P. aeruginosa. In summary, the findings of this study demonstrate that the BsrA regulator performs important roles in carbon metabolism, biofilm formation, and antibiotic resistance in P. aeruginosa.
Collapse
|
19
|
Ai W, Zhou Y, Wang B, Zhan Q, Hu L, Xu Y, Guo Y, Wang L, Yu F, Li X. First Report of Coexistence of bla SFO-1 and bla NDM-1 β-Lactamase Genes as Well as Colistin Resistance Gene mcr-9 in a Transferrable Plasmid of a Clinical Isolate of Enterobacter hormaechei. Front Microbiol 2021; 12:676113. [PMID: 34220761 PMCID: PMC8252965 DOI: 10.3389/fmicb.2021.676113] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/27/2021] [Indexed: 11/30/2022] Open
Abstract
Many antimicrobial resistance genes usually located on transferable plasmids are responsible for multiple antimicrobial resistance among multidrug-resistant (MDR) Gram-negative bacteria. The aim of this study is to characterize a carbapenemase-producing Enterobacter hormaechei 1575 isolate from the blood sample in a tertiary hospital in Wuhan, Hubei Province, China. Antimicrobial susceptibility test showed that 1575 was an MDR isolate. The whole genome sequencing (WGS) and comparative genomics were used to deeply analyze the molecular information of the 1575 and to explore the location and structure of antibiotic resistance genes. The three key resistance genes (blaSFO–1, blaNDM–1, and mcr-9) were verified by PCR, and the amplicons were subsequently sequenced. Moreover, the conjugation assay was also performed to determine the transferability of those resistance genes. Plasmid files were determined by the S1 nuclease pulsed-field gel electrophoresis (S1-PFGE). WGS revealed that p1575-1 plasmid was a conjugative plasmid that possessed the rare coexistence of blaSFO–1, blaNDM–1, and mcr-9 genes and complete conjugative systems. And p1575-1 belonged to the plasmid incompatibility group IncHI2 and multilocus sequence typing ST102. Meanwhile, the pMLST type of p1575-1 was IncHI2-ST1. Conjugation assay proved that the MDR p1575-1 plasmid could be transferred to other recipients. S1-PFGE confirmed the location of plasmid with molecular weight of 342,447 bp. All these three resistant genes were flanked by various mobile elements, indicating that the blaSFO–1, blaNDM–1, and mcr-9 could be transferred not only by the p1575-1 plasmid but also by these mobile elements. Taken together, we report for the first time the coexistence of blaSFO–1, blaNDM–1, and mcr-9 on a transferable plasmid in a MDR clinical isolate E. hormaechei, which indicates the possibility of horizontal transfer of antibiotic resistance genes.
Collapse
Affiliation(s)
- Wenxiu Ai
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ying Zhou
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bingjie Wang
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qing Zhan
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Longhua Hu
- Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yanlei Xu
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yinjuan Guo
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liangxing Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fangyou Yu
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaolong Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
20
|
Wang W, Wu H, Xiao Q, Zhou H, Li M, Xu Q, Wang Q, Yu F, He J. Crystal structure details of Vibrio fischeri DarR and mutant DarR-M202I from LTTR family reveals their activation mechanism. Int J Biol Macromol 2021; 183:2354-2363. [PMID: 34081954 DOI: 10.1016/j.ijbiomac.2021.05.186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/05/2021] [Accepted: 05/26/2021] [Indexed: 02/02/2023]
Abstract
DarR, a novel member of the LTTR family derived from Vibrio fischeri, activates transcription in response to d-Asp and regulates the overexpression of the racD genes encoding a putative aspartate racemase, RacD. Here, the crystal structure of full-length DarR and its mutant DarR-M202I were obtained by X-ray crystallography. According to the electron density map analysis of full-length DarR, the effector binding site of DarR is occupied by 2-Morpholinoethanesulfonic acid monohydrate (MES), which could interact with amino acids in the effector binding site and stabilize the effector binding site. Furthermore, we elaborated the structure of DarR-M202I, where methionine is replaced by isoleucine resulting in overexpression of the downstream operon. By comparing DarR-MES and DarR-M202I, we found similar behavior of DarR-MES in terms of the stability of the RD active pocket and the deflection angle of the DBD. The Isothermal titration calorimetry and Gel-filtration chromatography experiments showed that only when the target DNA sequence of a particular quasi-palindromic sequence exceeds 19 bp, DarR can effectively bind to racD promoter. This study will help enhance our understanding of the mechanism in the transcriptional regulation of LTTR family transcription factors.
Collapse
Affiliation(s)
- Weiwei Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hai Wu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingjie Xiao
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Huan Zhou
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Minjun Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Qin Xu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Qisheng Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Feng Yu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Jianhua He
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
21
|
A LysR Family Transcriptional Regulator Modulates Burkholderia cenocepacia Biofilm Formation and Protease Production. Appl Environ Microbiol 2021; 87:e0020221. [PMID: 33811025 PMCID: PMC8174753 DOI: 10.1128/aem.00202-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Quorum-sensing (QS) signals are widely employed by bacteria to regulate biological functions in response to cell densities. Previous studies showed that Burkholderia cenocepacia mostly utilizes two types of QS systems, including the N-acylhomoserine lactone (AHL) and cis-2-dodecenoic acid (BDSF) systems, to regulate biological functions. We demonstrated here that a LysR family transcriptional regulator, Bcal3178, controls the QS-regulated phenotypes, including biofilm formation and protease production, in B. cenocepacia H111. Expression of Bcal3178 at the transcriptional level was obviously downregulated in both the AHL-deficient and BDSF-deficient mutant strains compared to the wild-type H111 strain. It was further identified that Bcal3178 regulated target gene expression by directly binding to the promoter DNA regions. We also revealed that Bcal3178 was directly controlled by the AHL system regulator CepR. These results show that Bcal3178 is a new downstream component of the QS signaling network that modulates a subset of genes and functions coregulated by the AHL and BDSF QS systems in B. cenocepacia. IMPORTANCEBurkholderia cenocepacia is an important opportunistic pathogen in humans that utilizes the BDSF and AHL quorum-sensing (QS) systems to regulate biological functions and virulence. We demonstrated here that a new downstream regulator, Bcal3178 of the QS signaling network, controls biofilm formation and protease production. Bcal3178 is a LysR family transcriptional regulator modulated by both the BDSF and AHL QS systems. Furthermore, Bcal3178 controls many target genes, which are regulated by the QS systems in B. cenocepacia. Collectively, our findings depict a novel molecular mechanism with which QS systems regulate some target gene expression and biological functions by modulating the expression level of a LysR family transcriptional regulator in B. cenocepacia.
Collapse
|
22
|
Wolański M, Krawiec M, Schwarz PN, Stegmann E, Wohlleben W, Buchmann A, Gross H, Eitel M, Koch P, Botas A, Méndez C, Núñez LE, Morís F, Cortés J, Zakrzewska‐Czerwińska J. A novel LysR-type regulator negatively affects biosynthesis of the immunosuppressant brasilicardin. Eng Life Sci 2021; 21:4-18. [PMID: 33531886 PMCID: PMC7837296 DOI: 10.1002/elsc.202000038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/29/2020] [Accepted: 10/08/2020] [Indexed: 11/16/2022] Open
Abstract
Brasilicardin A (BraA) is a promising immunosuppressive compound produced naturally by the pathogenic bacterium Nocardia terpenica IFM 0406. Heterologous host expression of brasilicardin gene cluster showed to be efficient to bypass the safety issues, low production levels and lack of genetic tools related with the use of native producer. Further improvement of production yields requires better understanding of gene expression regulation within the BraA biosynthetic gene cluster (Bra-BGC); however, the only so far known regulator of this gene cluster is Bra12. In this study, we discovered the protein LysRNt, a novel member of the LysR-type transcriptional regulator family, as a regulator of the Bra-BGC. Using in vitro approaches, we identified the gene promoters which are controlled by LysRNt within the Bra-BGC. Corresponding genes encode enzymes involved in BraA biosynthesis as well as the key Bra-BGC regulator Bra12. Importantly, we provide in vivo evidence that LysRNt negatively affects production of brasilicardin congeners in the heterologous host Amycolatopsis japonicum. Finally, we demonstrate that some of the pathway related metabolites, and their chemical analogs, can interact with LysRNt which in turn affects its DNA-binding activity.
Collapse
Affiliation(s)
| | - Michał Krawiec
- Faculty of BiotechnologyUniversity of WrocławWrocławPoland
| | - Paul N. Schwarz
- Department of Microbiology and BiotechnologyInterfaculty Institute of Microbiology and Infection MedicineUniversity of TübingenTübingenGermany
| | - Evi Stegmann
- Department of Microbiology and BiotechnologyInterfaculty Institute of Microbiology and Infection MedicineUniversity of TübingenTübingenGermany
- German Centre for Infection Research (DZIF)Partner Site TübingenTübingenGermany
| | - Wolfgang Wohlleben
- Department of Microbiology and BiotechnologyInterfaculty Institute of Microbiology and Infection MedicineUniversity of TübingenTübingenGermany
- German Centre for Infection Research (DZIF)Partner Site TübingenTübingenGermany
| | - Anina Buchmann
- German Centre for Infection Research (DZIF)Partner Site TübingenTübingenGermany
- Department of Pharmaceutical BiologyInstitute of Pharmaceutical SciencesUniversity of TübingenTübingenGermany
- Present address:
Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| | - Harald Gross
- German Centre for Infection Research (DZIF)Partner Site TübingenTübingenGermany
- Department of Pharmaceutical BiologyInstitute of Pharmaceutical SciencesUniversity of TübingenTübingenGermany
| | - Michael Eitel
- Department of Pharmaceutical ChemistryInstitute of Pharmaceutical SciencesUniversity of TübingenTübingenGermany
| | - Pierre Koch
- Department of Pharmaceutical ChemistryInstitute of Pharmaceutical SciencesUniversity of TübingenTübingenGermany
| | - Alma Botas
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de AsturiasUniversidad de OviedoOviedoSpain
| | - Carmen Méndez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de AsturiasUniversidad de OviedoOviedoSpain
| | | | | | | | | |
Collapse
|
23
|
The LysR-Type Transcriptional Regulator CrgA Negatively Regulates the Flagellar Master Regulator flhDC in Ralstonia solanacearum GMI1000. J Bacteriol 2020; 203:JB.00419-20. [PMID: 33046561 DOI: 10.1128/jb.00419-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/03/2020] [Indexed: 01/07/2023] Open
Abstract
The invasion and colonization of host plants by the destructive pathogen Ralstonia solanacearum rely on its cell motility, which is controlled by multiple factors. Here, we report that the LysR-type transcriptional regulator CrgA (RS_RS16695) represses cell motility in R. solanacearum GMI1000. CrgA possesses common features of a LysR-type transcriptional regulator and contains an N-terminal helix-turn-helix motif as well as a C-terminal LysR substrate-binding domain. Deletion of crgA results in an enhanced swim ring and increased transcription of flhDC In addition, the ΔcrgA mutant possesses more polar flagella than wild-type GMI1000 and exhibits higher expression of the flagellin gene fliC Despite these alterations, the ΔcrgA mutant did not have a detectable growth defect in culture. Yeast one-hybrid and electrophoretic mobility shift assays revealed that CrgA interacts directly with the flhDC promoter. Expressing the β-glucuronidase (GUS) reporter under the control of the crgA promoter showed that crgA transcription is dependent on cell density. Soil-soaking inoculation with the crgA mutant caused wilt symptoms on tomato (Solanum lycopersicum L. cv. Hong yangli) plants earlier than inoculation with the wild-type GMI1000 but resulted in lower disease severity. We conclude that the R. solanacearum regulator CrgA represses flhDC expression and consequently affects the expression of fliC to modulate cell motility, thereby conditioning disease development in host plants.IMPORTANCE Ralstonia solanacearum is a widely distributed soilborne plant pathogen that causes bacterial wilt disease on diverse plant species. Motility is a critical virulence attribute of R. solanacearum because it allows this pathogen to efficiently invade and colonize host plants. In R. solanacearum, motility-defective strains are markedly affected in pathogenicity, which is coregulated with multiple virulence factors. In this study, we identified a new LysR-type transcriptional regulator (LTTR), CrgA, that negatively regulates motility. The mutation of the corresponding gene leads to the precocious appearance of wilt symptoms on tomato plants when the pathogen is introduced using soil-soaking inoculation. This study indicates that the regulation of R. solanacearum motility is more complex than previously thought and enhances our understanding of flagellum regulation in R. solanacearum.
Collapse
|
24
|
Characterization of a LuxR repressor for 3,17β-HSD in Comamonas testosteroni ATCC11996. Chem Biol Interact 2020; 336:109271. [PMID: 33002461 DOI: 10.1016/j.cbi.2020.109271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 08/19/2019] [Accepted: 09/25/2020] [Indexed: 11/22/2022]
Abstract
3,17β-Hydroxysteroid dehydrogenase in Comamonas testosteroni (C. testosteroni) is a key enzyme involved in the degradation of steroid compounds. Recently, we found that LuxR is a negative regulator in the expression of the 3,17β-HSD gene. In the present work, we cultured wild-type and LuxR knock-out mutants of C. testosteroni with inducers such as testosterone, estradiol, progesterone or estrone. HPLC analysis showed that the degradation activities towards testosterone, estradiol, progesterone, and estrone by C.T.-LuxR-KO1 were increased by 7.1%, 9.7%, 11.9% and 3.1%, respectively compared to the wild-type strain. Protein conformation of LuxR was predicted by Phyre 2 Server software, where the N-terminal 86(Ile), 116(Ile), 118(Met) and 149(Phe) residues form a testosterone binding hydrophobic pore, while the C-terminus forms the DNA binding site (HTH). Further, luxr point mutant plasmids were prepared by PCR and co-transformed with pUC3.2-4 into E. coli HB101. ELISA was used to determine 3,17β-HSD expression after testosterone induction. Compared to wild-type luxr, 3,17β-HSD expression in mutants of I86T, I116T, M118T and F149S were decreased. The result indicates that testosterone lost its capability to bind to LuxR after the four amino acid residues had been exchanged. No significant changes of 3,17β-HSD expression were found in K354I and Y356 N mutants compared to wild-type luxr, which indicates that these two amino acid residues in LuxR might relate to DNA binding. Native LuxR protein was prepared from inclusion bodies using sodium lauroylsarcosinate. Molecular interaction experiments showed that LuxR protein binds to a nucleotide sequence which locates 87 bp upstream of the βhsd promoter. Our results revealed that steroid induction of 3,17β-HSD in C. testosteroni in fact appears to be a de-repression, where testosterone prevents the LuxR regulator protein binding to the 3,17β-HSD promoter domain.
Collapse
|
25
|
Budnick JA, Sheehan LM, Ginder MJ, Failor KC, Perkowski JM, Pinto JF, Kohl KA, Kang L, Michalak P, Luo L, Heindl JE, Caswell CC. A central role for the transcriptional regulator VtlR in small RNA-mediated gene regulation in Agrobacterium tumefaciens. Sci Rep 2020; 10:14968. [PMID: 32917931 PMCID: PMC7486931 DOI: 10.1038/s41598-020-72117-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/17/2020] [Indexed: 12/28/2022] Open
Abstract
LysR-type transcriptional regulators (LTTRs) are the most common type of transcriptional regulators in prokaryotes and function by altering gene expression in response to environmental stimuli. In the class Alphaproteobacteria, a conserved LTTR named VtlR is critical to the establishment of host-microbe interactions. In the mammalian pathogen Brucella abortus, VtlR is required for full virulence in a mouse model of infection, and VtlR activates the expression of abcR2, which encodes a small regulatory RNA (sRNA). In the plant symbiont Sinorhizobium meliloti, the ortholog of VtlR, named LsrB, is involved in the symbiosis of the bacterium with alfalfa. Agrobacterium tumefaciens is a close relative of both B. abortus and S. meliloti, and this bacterium is the causative agent of crown gall disease in plants. In the present study, we demonstrate that VtlR is involved in the ability of A. tumefaciens to grow appropriately in artificial medium, and an A. tumefaciens vtlR deletion strain is defective in motility, biofilm formation, and tumorigenesis of potato discs. RNA-sequencing analyses revealed that more than 250 genes are dysregulated in the ∆vtlR strain, and importantly, VtlR directly controls the expression of three sRNAs in A. tumefaciens. Taken together, these data support a model in which VtlR indirectly regulates hundreds of genes via manipulation of sRNA pathways in A. tumefaciens, and moreover, while the VtlR/LsrB protein is present and structurally conserved in many members of the Alphaproteobacteria, the VtlR/LsrB regulatory circuitry has diverged in order to accommodate the unique environmental niche of each organism.
Collapse
Affiliation(s)
- James A Budnick
- Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24060, USA
| | - Lauren M Sheehan
- Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24060, USA
| | - Miranda J Ginder
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, 19104, USA
| | - Kevin C Failor
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, 19104, USA
| | - Julia M Perkowski
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, 19104, USA
| | - John F Pinto
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, 19104, USA
| | - Kirsten A Kohl
- Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24060, USA
| | - Lin Kang
- Edward via College of Osteopathic Medicine, Blacksburg, VA, 24060, USA
| | - Pawel Michalak
- Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24060, USA
- Edward via College of Osteopathic Medicine, Blacksburg, VA, 24060, USA
- Institute of Evolution, Haifa University, 3498838, Haifa, Israel
| | - Li Luo
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Plant Science Center, Shanghai University, Shanghai, 200444, China
| | - Jason E Heindl
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, 19104, USA.
| | - Clayton C Caswell
- Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24060, USA.
| |
Collapse
|
26
|
Rhizobium leguminosarum bv. trifolii NodD2 Enhances Competitive Nodule Colonization in the Clover-Rhizobium Symbiosis. Appl Environ Microbiol 2020; 86:AEM.01268-20. [PMID: 32651206 DOI: 10.1128/aem.01268-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/02/2020] [Indexed: 01/01/2023] Open
Abstract
Establishment of the symbiotic relationship that develops between rhizobia and their legume hosts is contingent upon an interkingdom signal exchange. In response to host legume flavonoids, NodD proteins from compatible rhizobia activate expression of nodulation genes that produce lipochitin oligosaccharide signaling molecules known as Nod factors. Root nodule formation commences upon legume recognition of compatible Nod factor. Rhizobium leguminosarum was previously considered to contain one copy of nodD; here, we show that some strains of the Trifolium (clover) microsymbiont R. leguminosarum bv. trifolii contain a second copy designated nodD2. nodD2 genes were present in 8 out of 13 strains of R. leguminosarum bv. trifolii, but were absent from the genomes of 16 R. leguminosarum bv. viciae strains. Analysis of single and double nodD1 and nodD2 mutants in R. leguminosarum bv. trifolii strain TA1 revealed that NodD2 was functional and enhanced nodule colonization competitiveness. However, NodD1 showed significantly greater capacity to induce nod gene expression and infection thread formation. Clover species are either annual or perennial and this phenological distinction is rarely crossed by individual R. leguminosarum bv. trifolii microsymbionts for effective symbiosis. Of 13 strains with genome sequences available, 7 of the 8 effective microsymbionts of perennial hosts contained nodD2, whereas the 3 microsymbionts of annual hosts did not. We hypothesize that NodD2 inducer recognition differs from NodD1, and NodD2 functions to enhance competition and effective symbiosis, which may discriminate in favor of perennial hosts.IMPORTANCE Establishment of the rhizobium-legume symbiosis requires a highly specific and complex signal exchange between both participants. Rhizobia perceive legume flavonoid compounds through LysR-type NodD regulators. Often, rhizobia encode multiple copies of nodD, which is one determinant of host specificity. In some species of rhizobia, the presence of multiple copies of NodD extends their symbiotic host-range. Here, we identified and characterized a second copy of nodD present in some strains of the clover microsymbiont Rhizobium leguminosarum bv. trifolii. The second nodD gene contributed to the competitive ability of the strain on white clover, an important forage legume. A screen for strains containing nodD2 could be utilized as one criterion to select strains with enhanced competitive ability for use as inoculants for pasture production.
Collapse
|
27
|
Genomics and transcriptomics analysis reveals the mechanism of isobutanol tolerance of a laboratory evolved Lactococcus lactis strain. Sci Rep 2020; 10:10850. [PMID: 32616741 PMCID: PMC7331579 DOI: 10.1038/s41598-020-67635-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 06/05/2020] [Indexed: 01/09/2023] Open
Abstract
Isobutanol, in spite of its significant superiority over ethanol as a biofuel, remains commercially non-viable due to the non-availability of a suitable chassis which can handle the solvent toxicity associated with its production. To meet this challenge, we chose Lactococcus lactis which is known for its ability to handle environmental stress and carried out Adaptive laboratory evolution (ALE) in a continuous stirred tank reactor (CSTR) to evolve an isobutanol tolerant strain. The strain was grown for more than 60 days (> 250 generations) while gradually increasing the selection pressure, i.e. isobutanol concentration, in the feed. This led to the evolution of a strain that had an exceptionally high tolerance of up to 40 g/l of isobutanol even though a scanning electron microscope (SEM) study as well as analysis of membrane potential revealed only minor changes in cellular morphology. Whole genome sequencing which was done to confirm the strain integrity also showed comparatively few mutations in the evolved strain. However, the criticality of these mutations was reflected in major changes that occurred in the transcriptome, where gene expression levels from a wide range of categories that involved membrane transport, amino acid metabolism, sugar uptake and cell wall synthesis were significantly altered. Analysing the synergistic effect of these changes that lead to the complex phenotype of isobutanol tolerance can help in the construction of better host platforms for isobutanol production.
Collapse
|
28
|
Yang W, Wang WY, Zhao W, Cheng JG, Wang Y, Yao XP, Yang ZX, Yu D, Luo Y. Preliminary study on the role of novel LysR family gene kp05372 in Klebsiella pneumoniae of forest musk deer. J Zhejiang Univ Sci B 2020; 21:137-154. [PMID: 32115911 DOI: 10.1631/jzus.b1900440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
LysR-type transcriptional regulators are involved in the regulation of numerous cellular metabolic processes in Klebsiella pneumoniae, leading to severe infection. Earlier, we found a novel LysR family gene, named kp05372, in a strain of K. pneumoniae (designated GPKP) isolated from forest musk deer. To study the function of this gene in relation to the biological characteristics of GPKP, we used the suicide plasmid and conjugative transfer methods to construct deletion mutant strain GPKP-Δkp05372; moreover, we also constructed the GPKP-Δkp05372+ complemented strain. The role of this gene was determined by comparing the following characteristics of three strains: growth curves, biofilm formation, drug resistance, stress resistance, median lethal dose (LD50), organ colonization ability, and the histopathology of GPKP. Real-time polymerase chain reaction (RT-PCR) was used to test the expression level of seven genes upstream of kp05372. There was no significant difference in the growth rates when comparing the three bacterial strains, and no significant difference was recorded at different osmotic pressures, temperatures, salt contents, or hydrogen peroxide concentrations. The GPKP-Δkp05372 mutant formed a weak biofilm, and the other two strains formed medium biofilm. The drug resistance of the GPKP-Δkp05372 mutant toward cephalothin, cotrimoxazole, and polymyxin B was changed. The acid tolerance of the deletion strain was stronger than that of the other two strains. The LD50 values of the wild-type and complemented strains were 174-fold and 77-fold higher than that of the GPKP-Δkp05372 mutant, respectively. The colonization ability of the GPKP-Δkp05372 mutant in the heart, liver, spleen, kidney, and intestine was the weakest. The three strains caused different histopathological changes in the liver and lungs. In the GPKP-Δkp05372 mutant, the relative expression levels of kp05374 and kp05379 were increased to 1.32-fold and 1.42-fold, respectively, while the level of kp05378 was decreased by 42%. Overall, the deletion of kp05372 gene leads to changes in the following: drug resistance and acid tolerance; decreases in virulence, biofilm formation, and colonization ability of GPKP; and regulation of the upstream region of adjacent genes.
Collapse
Affiliation(s)
- Wei Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China
| | - Wu-You Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China
| | - Wei Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China
| | - Jian-Guo Cheng
- Sichuan Institute of Musk Deer Breeding, Dujiangyan 611830, China
| | - Yin Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China
| | - Xue-Ping Yao
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China
| | - Ze-Xiao Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China
| | - Dong Yu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China
| | - Yan Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China
| |
Collapse
|
29
|
Fragel SM, Montada A, Heermann R, Baumann U, Schacherl M, Schnetz K. Characterization of the pleiotropic LysR-type transcription regulator LeuO of Escherichia coli. Nucleic Acids Res 2019; 47:7363-7379. [PMID: 31184713 PMCID: PMC6698644 DOI: 10.1093/nar/gkz506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/22/2019] [Accepted: 05/30/2019] [Indexed: 12/15/2022] Open
Abstract
LeuO is a pleiotropic LysR-type transcriptional regulator (LTTR) and co-regulator of the abundant nucleoid-associated repressor protein H-NS in Gammaproteobacteria. As other LTTRs, LeuO is a tetramer that is formed by dimerization of the N-terminal DNA-binding domain (DBD) and C-terminal effector-binding domain (EBD). To characterize the Escherichia coli LeuO protein, we screened for LeuO mutants that activate the cas (CRISPR-associated/Cascade) promoter more effectively than wild-type LeuO. This yielded nine mutants carrying amino acid substitutions in the dimerization interface of the regulatory EBD, as shown by solving the EBD’s crystal structure. Superimposing of the crystal structures of LeuO-EBD and LeuO-S120D-EBD suggests that the Ser120 to Asp substitution triggers a structural change that is related to effector-induced structural changes of LTTRs. Corresponding functional analyses demonstrated that LeuO-S120D has a higher DNA-binding affinity than wild-type LeuO. Further, a palindromic DNA-binding core-site and a consensus sequence were identified by DNase I footprinting with LeuO-S120D as well as with the dimeric DBD. The data suggest that LeuO-S120D mimics an effector-induced form of LeuO regulating a distinct set of target loci. In general, constitutive mutants and determining the DNA-binding specificity of the DBD-dimer are feasible approaches to characterize LTTRs of unknown function.
Collapse
Affiliation(s)
- Susann M Fragel
- Institute for Genetics, University of Cologne, Zülpicher Str. 47a, 50674 Cologne, Germany
| | - Anna Montada
- Institute of Biochemistry, University of Cologne, Zülpicher Str. 47, 50674 Cologne, Germany
| | - Ralf Heermann
- Department of Microbiology, Ludwig-Maximilians-Universität Munich, Großhaderner Str. 2-4, 82152 Martinsried, Germany.,Institute for Molecular Physiology, Microbiology, Johannes-Gutenberg-Universität Mainz, Johann-Joachim-Becher-Weg 13, 55128 Mainz, Germany
| | - Ulrich Baumann
- Institute of Biochemistry, University of Cologne, Zülpicher Str. 47, 50674 Cologne, Germany
| | - Magdalena Schacherl
- Institute of Biochemistry, University of Cologne, Zülpicher Str. 47, 50674 Cologne, Germany
| | - Karin Schnetz
- Institute for Genetics, University of Cologne, Zülpicher Str. 47a, 50674 Cologne, Germany
| |
Collapse
|
30
|
Bessonova TA, Lekontseva NV, Shvyreva US, Nikulin AD, Tutukina MN, Ozoline ON. Overproduction and purification of the Escherichia coli transcription factors "toxic" to a bacterial cell. Protein Expr Purif 2019; 161:70-77. [PMID: 31054315 DOI: 10.1016/j.pep.2019.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/25/2019] [Accepted: 05/01/2019] [Indexed: 11/28/2022]
Abstract
Transcription factors play a crucial role in control of life of a bacterial cell, working as switchers to a different life style or pathogenicity. To reconstruct the network of regulatory events taking place in changing growth conditions, we need to know regulons of as many transcription factors as possible, and motifs recognized by them. Experimentally this can be attained via ChIP-seq in vivo, SELEX and DNAse I footprinting in vitro. All these approaches require large amounts of purified proteins. However, overproduction of transcription factors leading to their extensive binding to the regulatory elements on the DNA make them toxic to a bacterial cell thus significantly complicating production of a soluble protein. Here, on the example of three regulators from Escherichia coli, UxuR, ExuR, and LeuO, we show that stable production of toxic transcription factors in a soluble fraction can be significantly enhanced by holding the expression of a recombinant protein back at the early stages of bacterial growth. This can be achieved by cloning genes together with their regulatory regions containing repressor sites, with subsequent growth in a very rich media where activity of excessive regulators is not crucial, followed by induction with a very low concentration of an inducer. Schemes of further purification of these proteins were developed, and functional activity was confirmed.
Collapse
Affiliation(s)
- Tatiana A Bessonova
- Institute of Cell Biophysics of RAS, Pushchino, Moscow region, 142290, Russia; Institute of Protein Research RAS, Pushchino, Moscow region, 142290, Russia; Lomonosov Moscow State University, Moscow, 119991, Russia.
| | | | - Uliana S Shvyreva
- Institute of Cell Biophysics of RAS, Pushchino, Moscow region, 142290, Russia; Institute of Protein Research RAS, Pushchino, Moscow region, 142290, Russia
| | - Alexey D Nikulin
- Institute of Protein Research RAS, Pushchino, Moscow region, 142290, Russia
| | - Maria N Tutukina
- Institute of Cell Biophysics of RAS, Pushchino, Moscow region, 142290, Russia; Kharkevich Institute for Information Transmission Problems RAS, Moscow, 127051, Russia
| | - Olga N Ozoline
- Institute of Cell Biophysics of RAS, Pushchino, Moscow region, 142290, Russia
| |
Collapse
|
31
|
Wang P, Zheng D, Peng W, Wang Y, Wang X, Xiong W, Liang R. Characterization of 17β-hydroxysteroid dehydrogenase and regulators involved in estrogen degradation in Pseudomonas putida SJTE-1. Appl Microbiol Biotechnol 2019; 103:2413-2425. [DOI: 10.1007/s00253-018-9543-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 11/16/2018] [Accepted: 11/25/2018] [Indexed: 11/24/2022]
|
32
|
Mahounga DM, Sun H, Jiang YL. Crystal structure of the effector-binding domain of Synechococcus elongatus CmpR in complex with ribulose 1,5-bisphosphate. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2018; 74:506-511. [PMID: 30084400 DOI: 10.1107/s2053230x18008841] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/16/2018] [Indexed: 11/10/2022]
Abstract
The CO2-concentrating mechanism (CCM) has evolved to improve the efficiency of photosynthesis in autotrophic cyanobacteria. CmpR, a LysR-type transcriptional regulator (LTTR) from Synechococcus elongatus PCC 7942, was found to regulate CCM-related genes under low-CO2 conditions. Here, the dimeric structure of the effector-binding domain of CmpR (CmpR-EBD) in complex with the co-activator ribulose 1,5-bisphosphate (RuBP) is reported at 2.15 Å resolution. One RuBP molecule binds to the inter-domain cleft between the two subunits of the CmpR-EBD dimer. Structural comparison combined with sequence analyses demonstrated that CmpR-EBD has an overall structure similar to those of LTTRs of known structure, but possesses a distinctly different effector-binding pattern.
Collapse
Affiliation(s)
- Didel M Mahounga
- School of Life Sciences and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Hui Sun
- School of Life Sciences and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Yong Liang Jiang
- School of Life Sciences and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| |
Collapse
|
33
|
Housseini B Issa K, Phan G, Broutin I. Functional Mechanism of the Efflux Pumps Transcription Regulators From Pseudomonas aeruginosa Based on 3D Structures. Front Mol Biosci 2018; 5:57. [PMID: 29971236 PMCID: PMC6018408 DOI: 10.3389/fmolb.2018.00057] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/31/2018] [Indexed: 01/19/2023] Open
Abstract
Bacterial antibiotic resistance is a worldwide health problem that deserves important research attention in order to develop new therapeutic strategies. Recently, the World Health Organization (WHO) classified Pseudomonas aeruginosa as one of the priority bacteria for which new antibiotics are urgently needed. In this opportunistic pathogen, antibiotics efflux is one of the most prevalent mechanisms where the drug is efficiently expulsed through the cell-wall. This resistance mechanism is highly correlated to the expression level of efflux pumps of the resistance-nodulation-cell division (RND) family, which is finely tuned by gene regulators. Thus, it is worthwhile considering the efflux pump regulators of P. aeruginosa as promising therapeutical targets alternative. Several families of regulators have been identified, including activators and repressors that control the genetic expression of the pumps in response to an extracellular signal, such as the presence of the antibiotic or other environmental modifications. In this review, based on different crystallographic structures solved from archetypal bacteria, we will first focus on the molecular mechanism of the regulator families involved in the RND efflux pump expression in P. aeruginosa, which are TetR, LysR, MarR, AraC, and the two-components system (TCS). Finally, the regulators of known structure from P. aeruginosa will be presented.
Collapse
Affiliation(s)
- Karim Housseini B Issa
- Laboratoire de Cristallographie et RMN Biologiques (UMR 8015), Centre National de la Recherche Scientifique, Faculté de Pharmacie, Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France
| | - Gilles Phan
- Laboratoire de Cristallographie et RMN Biologiques (UMR 8015), Centre National de la Recherche Scientifique, Faculté de Pharmacie, Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France
| | - Isabelle Broutin
- Laboratoire de Cristallographie et RMN Biologiques (UMR 8015), Centre National de la Recherche Scientifique, Faculté de Pharmacie, Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France
| |
Collapse
|
34
|
Koentjoro MP, Ogawa N. STRUCTURAL STUDIES OF TRANSCRIPTIONAL REGULATION BY LysR-TYPE TRANSCRIPTIONAL REGULATORS IN BACTERIA. ACTA ACUST UNITED AC 2018. [DOI: 10.7831/ras.6.105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Naoto Ogawa
- The United Graduate School of Agricultural Science, Gifu University
- Faculty of Agriculture, Shizuoka University
| |
Collapse
|
35
|
Coordinating carbon and nitrogen metabolic signaling through the cyanobacterial global repressor NdhR. Proc Natl Acad Sci U S A 2017; 115:403-408. [PMID: 29279392 DOI: 10.1073/pnas.1716062115] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The coordination of carbon and nitrogen metabolism is essential for bacteria to adapt to nutritional variations in the environment, but the underlying mechanism remains poorly understood. In autotrophic cyanobacteria, high CO2 levels favor the carboxylase activity of ribulose 1,5 bisphosphate carboxylase/oxygenase (RuBisCO) to produce 3-phosphoglycerate, whereas low CO2 levels promote the oxygenase activity of RuBisCO, leading to 2-phosphoglycolate (2-PG) production. Thus, the 2-PG level is reversely correlated with that of 2-oxoglutarate (2-OG), which accumulates under a high carbon/nitrogen ratio and acts as a nitrogen-starvation signal. The LysR-type transcriptional repressor NAD(P)H dehydrogenase regulator (NdhR) controls the expression of genes related to carbon metabolism. Based on genetic and biochemical studies, we report here that 2-PG is an inducer of NdhR, while 2-OG is a corepressor, as found previously. Furthermore, structural analyses indicate that binding of 2-OG at the interface between the two regulatory domains (RD) allows the NdhR tetramer to adopt a repressor conformation, whereas 2-PG binding to an intradomain cleft of each RD triggers drastic conformational changes leading to the dissociation of NdhR from its target DNA. We further confirmed the effect of 2-PG or 2-OG levels on the transcription of the NdhR regulon. Together with previous findings, we propose that NdhR can sense 2-OG from the Krebs cycle and 2-PG from photorespiration, two key metabolites that function together as indicators of intracellular carbon/nitrogen status, thus representing a fine sensor for the coordination of carbon and nitrogen metabolism in cyanobacteria.
Collapse
|
36
|
Passaglia LMP. Bradyrhizobium elkanii nod regulon: insights through genomic analysis. Genet Mol Biol 2017; 40:703-716. [PMID: 28767122 PMCID: PMC5596368 DOI: 10.1590/1678-4685-gmb-2016-0228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 02/16/2017] [Indexed: 12/26/2022] Open
Abstract
A successful symbiotic relationship between soybean [Glycinemax (L.) Merr.] and Bradyrhizobium species requires expression of the bacterial structural nod genes that encode for the synthesis of lipochitooligosaccharide nodulation signal molecules, known as Nod factors (NFs). Bradyrhizobium diazoefficiens USDA 110 possesses a wide nodulation gene repertoire that allows NF assembly and modification, with transcription of the nodYABCSUIJnolMNOnodZ operon depending upon specific activators, i.e., products of regulatory nod genes that are responsive to signaling molecules such as flavonoid compounds exuded by host plant roots. Central to this regulatory circuit of nod gene expression are NodD proteins, members of the LysR-type regulator family. In this study, publicly available Bradyrhizobium elkanii sequenced genomes were compared with the closely related B. diazoefficiens USDA 110 reference genome to determine the similarities between those genomes, especially with regards to the nod operon and nod regulon. Bioinformatics analyses revealed a correlation between functional mechanisms and key elements that play an essential role in the regulation of nod gene expression. These analyses also revealed new genomic features that had not been clearly explored before, some of which were unique for some B. elkanii genomes.
Collapse
Affiliation(s)
- Luciane M P Passaglia
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
37
|
Breddermann H, Schnetz K. Activation of leuO by LrhA in Escherichia coli. Mol Microbiol 2017; 104:664-676. [PMID: 28252809 DOI: 10.1111/mmi.13656] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2017] [Indexed: 11/26/2022]
Abstract
LeuO is a conserved LysR-type transcription factor of pleiotropic function in Enterobacteria. Regulation of the leuO gene has been best studied in Escherichia coli and Salmonella enterica. Its expression is silenced by the nucleoid-associated proteins H-NS and StpA, autoregulated by LeuO, and in E. coli activated by the transcription regulator BglJ-RcsB. However, signals which induce leuO expression remain unknown. Here we show that LrhA, a conserved LysR-type transcription regulator, activates leuO in E. coli. LrhA specifically binds the leuO regulatory region and activates expression of leuO from three promoters. Activation of leuO by LrhA is synergistic with activation by BglJ-RcsB, while co-regulation by LrhA, LeuO and H-NS/StpA suggests a complex regulatory interplay. In addition, hyperactive LrhA mutants including LrhA-12DN, 221TA, 61HR/221TA and 303DG were identified. Regulation of leuO by LrhA reveals a connection between the two pleiotropic regulators LeuO and LrhA in E. coli.
Collapse
Affiliation(s)
- Hannes Breddermann
- Institute for Genetics, University of Cologne, Zülpicher Str. 47a, Cologne, 50674, Germany
| | - Karin Schnetz
- Institute for Genetics, University of Cologne, Zülpicher Str. 47a, Cologne, 50674, Germany
| |
Collapse
|
38
|
Engel Y, Windhorst C, Lu X, Goodrich-Blair H, Bode HB. The Global Regulators Lrp, LeuO, and HexA Control Secondary Metabolism in Entomopathogenic Bacteria. Front Microbiol 2017; 8:209. [PMID: 28261170 PMCID: PMC5313471 DOI: 10.3389/fmicb.2017.00209] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/30/2017] [Indexed: 11/13/2022] Open
Abstract
Photorhabdus luminescens TTO1 and Xenorhabdus nematophila HGB081 are insect pathogenic bacteria and producers of various structurally diverse bioactive natural products. In these entomopathogenic bacteria we investigated the role of the global regulators Lrp, LeuO, and HexA in the production of natural products. Lrp is a general activator of natural product biosynthesis in X. nematophila and for most compounds in TTO1. Microarray analysis confirmed these results in X. nematophila and enabled the identification of additional biosynthesis gene clusters (BGC) regulated by Lrp. Moreover, when promoters of two X. nematophila BGC were analyzed, transcriptional activation by Lrp was observed. In contrast, LeuO in X. nematophila and P. luminescens has both repressing and activating features, depending on the natural product examined. Furthermore, heterologous overexpression of leuO from X. nematophila in the closely related Xenorhabdus szentirmaii resulted in overproduction of several natural products including novel compounds. The presented findings could be of importance for establishing a tool for overproduction of secondary metabolites and subsequent identification of novel compounds.
Collapse
Affiliation(s)
- Yvonne Engel
- Merck-Stiftungsprofessur Molekulare Biotechnologie, Molekulare Biowissenschaften, Goethe Universität Frankfurt Frankfurt am Main, Germany
| | - Carina Windhorst
- Merck-Stiftungsprofessur Molekulare Biotechnologie, Molekulare Biowissenschaften, Goethe Universität Frankfurt Frankfurt am Main, Germany
| | - Xiaojun Lu
- Department of Bacteriology, University of Wisconsin-Madison, Madison WI, USA
| | - Heidi Goodrich-Blair
- Department of Bacteriology, University of Wisconsin-Madison, MadisonWI, USA; Department of Microbiology, University of Tennessee, Knoxville, KnoxvilleTN, USA
| | - Helge B Bode
- Merck-Stiftungsprofessur Molekulare Biotechnologie, Molekulare Biowissenschaften, Goethe Universität FrankfurtFrankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität FrankfurtFrankfurt am Main, Germany
| |
Collapse
|
39
|
FkbN and Tcs7 are pathway-specific regulators of the FK506 biosynthetic gene cluster in Streptomyces tsukubaensis L19. J Ind Microbiol Biotechnol 2016; 43:1693-1703. [PMID: 27757551 DOI: 10.1007/s10295-016-1849-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/06/2016] [Indexed: 10/20/2022]
Abstract
FK506 (tacrolimus), which is produced by many Streptomyces strains, is clinically used as an immunosuppressive agent and for treatment of inflammatory skin diseases. Here, we identified that the FK506 biosynthetic gene cluster in an industrial FK506-producing strain Streptomyces tsukubaensis L19 is organized as eight transcription units. Two pathway-specific regulators, FkbN and Tcs7, involved in FK506 biosynthesis from S. tsukubaensis L19 were characterized in vivo and in vitro. FkbN activates the transcription of six transcription units in FK506 biosynthetic gene cluster, and Tcs7 activates the transcription of fkbN. In addition, the DNA-binding specificity of FkbN was determined. Finally, a high FK506-producing strain was constructed by overexpression of both fkbN and tcs7 in S. tsukubaensis L19, which improved FK506 production by 89 % compared to the parental strain.
Collapse
|
40
|
Chen Q, Tu H, Huang F, Wang Y, Dong W, Wang W, Li Z, Wang F, Cui Z. Impact of pnpR, a LysR-type regulator-encoding gene, on the cellular processes of Pseudomonas putida DLL-E4. FEMS Microbiol Lett 2016; 363:fnw110. [PMID: 27190157 DOI: 10.1093/femsle/fnw110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2016] [Indexed: 11/14/2022] Open
Abstract
LysR-type transcriptional regulators (LTTRs) regulate various cellular processes in bacteria. pnpR is an LTTR-encoding gene involved in the regulation of hydroquinone (HQ) degradation, and its effects on the cellular processes of Pseudomonas putida DLL-E4 were investigated at the physiological, biochemical and molecular levels. Reverse transcription polymerase chain reaction revealed that pnpR positively regulated its own expression and that of the pnpC1C2DECX1X2 operon; additionally, pnpR partially regulated the expression of pnpA when P. putida was grown on para-nitrophenol (PNP) or HQ. Strains DLL-E4 and DLL-ΔpnpR exhibited similar cellular morphologies and growth rates. Transcriptome analysis revealed that pnpR regulated the expression of genes in addition to those involved in PNP degradation. A total of 20 genes were upregulated and 19 genes were downregulated by at least 2-fold in strain DLL-ΔpnpR relative to strain DLL-E4. Bioinformatic analysis revealed putative PnpR-binding sites located in the upstream regions of genes involved in PNP degradation, carbon catabolite repression and other cellular processes. The utilization of L-aspartic acid, L-histidine, L-pyroglutamic acid, L-serine, γ-aminobutyric acid, D,L-lactic acid, D-saccharic acid, succinic acid and L-alaninamide was increased at least 1.3-fold in strain DLL-ΔpnpR as shown by BIOLOG assays, indicating that pnpR plays a potential negative regulation role in the utilization of carbon sources.
Collapse
Affiliation(s)
- Qiongzhen Chen
- Key Laboratory of Agricultural Environmental Microbiology, the Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Hui Tu
- Key Laboratory of Agricultural Environmental Microbiology, the Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Fei Huang
- Key Laboratory of Agricultural Environmental Microbiology, the Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Yicheng Wang
- Key Laboratory of Agricultural Environmental Microbiology, the Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Weiliang Dong
- Key Laboratory of Agricultural Environmental Microbiology, the Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, P.R. China College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 211800, P.R. China
| | - Wenhui Wang
- Key Laboratory of Agricultural Environmental Microbiology, the Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology, the Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Fei Wang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, P.R. China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, the Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| |
Collapse
|
41
|
Lerche M, Dian C, Round A, Lönneborg R, Brzezinski P, Leonard GA. The solution configurations of inactive and activated DntR have implications for the sliding dimer mechanism of LysR transcription factors. Sci Rep 2016; 6:19988. [PMID: 26817994 PMCID: PMC4730206 DOI: 10.1038/srep19988] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 12/21/2015] [Indexed: 11/09/2022] Open
Abstract
LysR Type Transcriptional Regulators (LTTRs) regulate basic metabolic pathways or virulence gene expression in prokaryotes. Evidence suggests that the activation of LTTRs involves a conformational change from an inactive compact apo- configuration that represses transcription to an active, expanded holo- form that promotes it. However, no LTTR has yet been observed to adopt both configurations. Here, we report the results of structural studies of various forms of the LTTR DntR. Crystal structures of apo-DntR and of a partially autoinducing mutant H169T-DntR suggest that active and inactive DntR maintain a compact homotetrameric configuration. However, Small Angle X-ray Scattering (SAXS) studies on solutions of apo-, H169T- and inducer-bound holo-DntR indicate a different behaviour, suggesting that while apo-DntR maintains a compact configuration in solution both H169T- and holo-DntR adopt an expanded conformation. Models of the SAXS-obtained solution conformations of apo- and holo-DntR homotetramers in complex with promoter-operator region DNA are consistent with previous observations of a shifting of LTTR DNA binding sites upon activation and a consequent relaxation in the bend of the promoter-operator region DNA. Our results thus provide clear evidence at the molecular level which strongly supports the 'sliding dimer' hypothesis concerning LTTR activation mechanisms.
Collapse
Affiliation(s)
- Michael Lerche
- Structural Bioloy Group, European Synchrotron Radiation Facility
(ESRF), CS 40220, 38043
Grenoble Cedex 9, France
| | - Cyril Dian
- Institut de Biologie Structurale Jean-Pierre Ebel,
71 avenue des Martyrs, CS 10090, 38044
Grenoble Cedex 9, France
| | - Adam Round
- European Molecular Biology Laboratory, Grenoble
Outstation, 38042
Grenoble Cedex 9, France
- Unit for Virus Host-Cell Interactions, University Grenoble
Alpes-EMBL-CNRS, 38042
Grenoble Cedex 9, France
| | - Rosa Lönneborg
- Department of Biochemistry and Biophysics, Arrhenius
Laboratories for Natural Sciences, Stockholm University, SE-106
91
Stockholm, Sweden
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, Arrhenius
Laboratories for Natural Sciences, Stockholm University, SE-106
91
Stockholm, Sweden
| | - Gordon A. Leonard
- Structural Bioloy Group, European Synchrotron Radiation Facility
(ESRF), CS 40220, 38043
Grenoble Cedex 9, France
| |
Collapse
|
42
|
Abstract
The synthesis of L-cysteine from inorganic sulfur is the predominant mechanism by which reduced sulfur is incorporated into organic compounds. L-cysteineis used for protein and glutathione synthesis and serves as the primary source of reduced sulfur in L-methionine, lipoic acid, thiamin, coenzyme A (CoA), molybdopterin, and other organic molecules. Sulfate and thiosulfate uptake in E. coli and serovar Typhimurium are achieved through a single periplasmic transport system that utilizes two different but similar periplasmic binding proteins. Kinetic studies indicate that selenate and selenite share a single transporter with sulfate, but molybdate also has a separate transport system. During aerobic growth, the reduction of sulfite to sulfide is catalyzed by NADPH-sulfite reductase (SiR), and serovar Typhimurium mutants lacking this enzyme accumulate sulfite from sulfate, implying that sulfite is a normal intermediate in assimilatory sulfate reduction. L-Cysteine biosynthesis in serovar Typhimurium and E. coli ceases almost entirely when cells are grown on L-cysteine or L-cystine, owing to a combination of end product inhibition of serine transacetylase by L-cysteine and a gene regulatory system known as the cysteine regulon, wherein genes for sulfate assimilation and alkanesulfonate utilization are expressed only when sulfur is limiting. In vitro studies with the cysJIH, cysK, and cysP promoters have confirmed that they are inefficient at forming transcription initiation complexes without CysB and N-acetyl-L-serine. Activation of the tauA and ssuE promoters requires Cbl. It has been proposed that the three serovar Typhimurium anaerobic reductases for sulfite, thiosulfate, and tetrathionate may function primarily in anaerobic respiration.
Collapse
|
43
|
Abstract
This review focuses on more recent studies concerning the systems biology of branched-chain amino acid biosynthesis, that is, the pathway-specific and global metabolic and genetic regulatory networks that enable the cell to adjust branched-chain amino acid synthesis rates to changing nutritional and environmental conditions. It begins with an overview of the enzymatic steps and metabolic regulatory mechanisms of the pathways and descriptions of the genetic regulatory mechanisms of the individual operons of the isoleucine-leucine-valine (ilv) regulon. This is followed by more-detailed discussions of recent evidence that global control mechanisms that coordinate the expression of the operons of this regulon with one another and the growth conditions of the cell are mediated by changes in DNA supercoiling that occur in response to changes in cellular energy charge levels that, in turn, are modulated by nutrient and environmental signals. Since the parallel pathways for isoleucine and valine biosynthesis are catalyzed by a single set of enzymes, and because the AHAS-catalyzed reaction is the first step specific for valine biosynthesis but the second step of isoleucine biosynthesis, valine inhibition of a single enzyme for this enzymatic step might compromise the cell for isoleucine or result in the accumulation of toxic intermediates. The operon-specific regulatory mechanisms of the operons of the ilv regulon are discussed in the review followed by a consideration and brief review of global regulatory proteins such as integration host factor (IHF), Lrp, and CAP (CRP) that affect the expression of these operons.
Collapse
|
44
|
dsdA Does Not Affect Colonization of the Murine Urinary Tract by Escherichia coli CFT073. PLoS One 2015; 10:e0138121. [PMID: 26366567 PMCID: PMC4569052 DOI: 10.1371/journal.pone.0138121] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/25/2015] [Indexed: 12/16/2022] Open
Abstract
The urinary tract environment provides many conditions that deter colonization by microorganisms. D-serine is thought to be one of these stressors and is present at high concentrations in urine. D-serine interferes with L-serine and pantothenate metabolism and is bacteriostatic to many species. Uropathogenic Escherichia coli commonly possess the dsdCXA genetic locus, which allows them to use D-serine as a sole carbon, nitrogen, and energy source. It was previously reported that in the model UPEC strain CFT073, a dsdA mutant outcompetes wild type in the murine model of urinary tract infection. This “hypercolonization” was used to propose a model whereby UPEC strains sense D-serine in the urinary tract and subsequently up-regulate genes necessary for pathogenesis. Here, we show that inactivation of dsdA does not lead to hypercolonization. We suggest that this previously observed effect is due to an unrecognized secondary mutation in rpoS and that some D-serine specific effects described in other studies may be affected by the rpoS status of the strains used. Inactivation of dsdA in the original clinical isolate of CFT073 gives CFT073 ΔdsdA a growth defect in human urine and renders it unable to grow on minimal medium containing D-serine as the sole carbon source. However, CFT073 ΔdsdA is able to colonize the urinary tracts of CBA/J mice indistinguishably from wild type. These findings indicate that D-serine catabolism, though it may play role(s) during urinary tract infection, does not affect the ability of uropathogenic E. coli to colonize the murine urinary tract.
Collapse
|
45
|
Improved PCR assay for the species-specific identification and quantitation of Legionella pneumophila in water. Appl Microbiol Biotechnol 2015; 99:9227-36. [PMID: 26142386 DOI: 10.1007/s00253-015-6759-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/02/2015] [Accepted: 06/05/2015] [Indexed: 10/23/2022]
Abstract
Legionellosis outbreak is a major global health care problem. However, current Legionella risk assessments may be compromised by uncertainties in Legionella detection methods, infectious dose, and strain infectivity. These limitations may place public health at significant risk, leading to significant monetary losses in health care. However, there are still unmet needs for its rapid identification and monitoring of legionellae in water systems. Therefore, in the present study, a primer set was designed based on a LysR-type transcriptional regulator (LTTR) family protein gene of Legionella pneumophila subsp. pneumophila str. Philadelphia 1 because it was found that this gene is structurally diverse among species through BLAST searches. The specificity of the primer set was evaluated using genomic DNA from 6 strains of L. pneumophila, 5 type strains of other related Legionella species, and other 29 reference pathogenic bacteria. The primer set used in the PCR assay amplified a 264-bp product for only targeted six strains of L. pneumophila. The assay was also able to detect at least 1.39 × 10(3) copies/μl of cloned amplified target DNA using purified DNA or 7.4 × 10(0) colony-forming unit per reaction when using calibrated cell suspension. In addition, the sensitivity and specificity of this assay were confirmed by successful detection of Legionella pneumophila in environmental water samples.
Collapse
|
46
|
Lin J, Peng T, Jiang L, Ni JZ, Liu Q, Chen L, Zhang Y. Comparative genomics reveals new candidate genes involved in selenium metabolism in prokaryotes. Genome Biol Evol 2015; 7:664-76. [PMID: 25638258 PMCID: PMC5322559 DOI: 10.1093/gbe/evv022] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Selenium (Se) is an important micronutrient that mainly occurs in proteins in the form of selenocysteine and in tRNAs in the form of selenouridine. In the past 20 years, several genes involved in Se utilization have been characterized in both prokaryotes and eukaryotes. However, Se homeostasis and the associated regulatory network are not fully understood. In this study, we conducted comparative genomics and phylogenetic analyses to examine the occurrence of all known Se utilization traits in prokaryotes. Our results revealed a highly mosaic pattern of species that use Se (in different forms) in spite that most organisms do not use this element. Further investigation of genomic context of known Se-related genes in different organisms suggested novel candidate genes that may participate in Se metabolism in bacteria and/or archaea. Among them, a membrane protein, YedE, which contains ten transmembrane domains and shows distant similarity to a sulfur transporter, is exclusively found in Se-utilizing organisms, suggesting that it may be involved in Se transport. A LysR-like transcription factor subfamily might be important for the regulation of Sec biosynthesis and/or other Se-related genes. In addition, a small protein family DUF3343 is widespread in Se-utilizing organisms, which probably serves as an important chaperone for Se trafficking within the cells. Finally, we proposed a simple model of Se homeostasis based on our findings. Our study reveals new candidate genes involved in Se metabolism in prokaryotes and should be useful for a further understanding of the complex metabolism and the roles of Se in biology.
Collapse
Affiliation(s)
- Jie Lin
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ting Peng
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Liang Jiang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences, Shenzhen University, Guangdong Province, China
| | - Jia-Zuan Ni
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences, Shenzhen University, Guangdong Province, China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences, Shenzhen University, Guangdong Province, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yan Zhang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
47
|
Guadarrama C, Villaseñor T, Calva E. The Subtleties and Contrasts of the LeuO Regulator in Salmonella Typhi: Implications in the Immune Response. Front Immunol 2014; 5:581. [PMID: 25566242 PMCID: PMC4264507 DOI: 10.3389/fimmu.2014.00581] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/30/2014] [Indexed: 01/15/2023] Open
Abstract
Salmonella are facultative intracellular pathogens. Salmonella infection occurs mainly by expression of two Salmonella pathogenicity Islands (SPI-1 and SPI-2). SPI-1 encodes transcriptional factors that participate in the expression of virulence factors encoded in the island. However, there are transcriptional factors encoded outside the island that also participate in the expression of SPI-1-encoded genes. Upon infection, bacteria are capable of avoiding the host immune response with several strategies that involve several virulence factors under the control of transcriptional regulators. Interestingly, LeuO a transcriptional global regulator which is encoded outside of any SPI, is proposed to be part of a complex regulatory network that involves expression of several genes that help bacteria to survive stress conditions and, also, induces the expression of porins that have been shown to be immunogens and can thus be considered as antigenic candidates for acellular vaccines. Hence, the understanding of the LeuO regulon implies a role of bacterial genetic regulation in determining the host immune response.
Collapse
Affiliation(s)
- Carmen Guadarrama
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México , Cuernavaca , Mexico
| | - Tomás Villaseñor
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México , Cuernavaca , Mexico
| | - Edmundo Calva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México , Cuernavaca , Mexico
| |
Collapse
|
48
|
Transcriptional activation of multiple operons involved in para-nitrophenol degradation by Pseudomonas sp. Strain WBC-3. Appl Environ Microbiol 2014; 81:220-30. [PMID: 25326309 DOI: 10.1128/aem.02720-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas sp. strain WBC-3 utilizes para-nitrophenol (PNP) as a sole carbon and energy source. The genes involved in PNP degradation are organized in the following three operons: pnpA, pnpB, and pnpCDEFG. How the expression of the genes is regulated is unknown. In this study, an LysR-type transcriptional regulator (LTTR) is identified to activate the expression of the genes in response to the specific inducer PNP. While the LTTR coding gene pnpR was found to be not physically linked to any of the three catabolic operons, it was shown to be essential for the growth of strain WBC-3 on PNP. Furthermore, PnpR positively regulated its own expression, which is different from the function of classical LTTRs. A regulatory binding site (RBS) with a 17-bp imperfect palindromic sequence (GTT-N11-AAC) was identified in all pnpA, pnpB, pnpC, and pnpR promoters. Through electrophoretic mobility shift assays and mutagenic analyses, this motif was proven to be necessary for PnpR binding. This consensus motif is centered at positions approximately -55 bp relative to the four transcriptional start sites (TSSs). RBS integrity was required for both high-affinity PnpR binding and transcriptional activation of pnpA, pnpB, and pnpR. However, this integrity was essential only for high-affinity PnpR binding to the promoter of pnpCDEFG and not for its activation. Intriguingly, unlike other LTTRs studied, no changes in lengths of the PnpR binding regions of the pnpA and pnpB promoters were observed after the addition of the inducer PNP in DNase I footprinting.
Collapse
|
49
|
Kumar A, Trefault N, Olaniran AO. Microbial degradation of 2,4-dichlorophenoxyacetic acid: Insight into the enzymes and catabolic genes involved, their regulation and biotechnological implications. Crit Rev Microbiol 2014; 42:194-208. [DOI: 10.3109/1040841x.2014.917068] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
50
|
Yang CD, Chen YH, Huang HY, Huang HD, Tseng CP. CRP represses the CRISPR/Cas system in Escherichia coli: evidence that endogenous CRISPR spacers impede phage P1 replication. Mol Microbiol 2014; 92:1072-91. [PMID: 24720807 DOI: 10.1111/mmi.12614] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2014] [Indexed: 12/26/2022]
Abstract
The CRISPR/Cas system is an important aspect in bacterial immunology. The anti-phage activity of the CRISPR system has been established using synthetic CRISPR spacers, but in vivo studies of endogenous CRISPR spacers are relatively scarce. Here, we showed that bacteriophage P1 titre in Escherichia coli decreased in the glucose-containing medium compared with that in the absence of glucose. This glucose effect of E. coli against phage P1 infection disappeared in cse3 deletion mutants. The effect on the susceptibility to phage P1 was associated with cAMP receptor protein (CRP)-mediated repression of cas genes transcription and crRNA maturation. Analysis of the regulatory element in the cse1 promoter region revealed a novel CRP binding site, which overlapped with a LeuO binding site. Furthermore, the limited sequence identity between endogenous spacers and the phage P1 genome was necessary and sufficient for CRISPR-mediated repression of phage P1 replication. Trans-expression of the third and seventh spacers in the CRISPR I region or third and sixth spacers in the CRISPR II region effectively reduced phage P1 titres in the CRISPR deletion mutants. These results demonstrate a novel regulatory mechanism for cas repression by CRP and provide evidence that endogenous spacers can repress phage P1 replication in E. coli.
Collapse
Affiliation(s)
- Chi-Dung Yang
- Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, 300, Taiwan
| | | | | | | | | |
Collapse
|