1
|
Mir RH, Maqbool M, Mir PA, Hussain MS, Din Wani SU, Pottoo FH, Mohi-Ud-Din R. Green Synthesis of Silver Nanoparticles and their Potential Applications in Mitigating Cancer. Curr Pharm Des 2024; 30:2445-2467. [PMID: 38726783 DOI: 10.2174/0113816128291705240428060456] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/12/2024] [Indexed: 09/05/2024]
Abstract
In recent years, the field of nanotechnology has brought about significant advancements that have transformed the landscape of disease diagnosis, prevention, and treatment, particularly in the realm of medical science. Among the various approaches to nanoparticle synthesis, the green synthesis method has garnered increasing attention. Silver nanoparticles (AgNPs) have emerged as particularly noteworthy nanomaterials within the spectrum of metallic nanoparticles employed for biomedical applications. AgNPs possess several key attributes that make them highly valuable in the biomedical field. They are biocompatible, cost-effective, and environmentally friendly, rendering them suitable for various bioengineering and biomedical applications. Notably, AgNPs have found a prominent role in the domain of cancer diagnosis. Research investigations have provided evidence of AgNPs' anticancer activity, which involves mechanisms such as DNA damage, cell cycle arrest, induction of apoptosis, and the regulation of specific cytokine genes. The synthesis of AgNPs primarily involves the reduction of silver ions by reducing agents. Interestingly, natural products and living organisms have proven to be effective sources for the generation of precursor materials used in AgNP synthesis. This comprehensive review aims to summarize the key aspects of AgNPs, including their characterization, properties, and recent advancements in the field of biogenic AgNP synthesis. Furthermore, the review highlights the potential applications of these nanoparticles in combating cancer.
Collapse
Affiliation(s)
- Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, School of Applied Science and Technology, University of Kashmir, Srinagar 190006, Kashmir, India
| | - Mudasir Maqbool
- Pharmacy Practice Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Kashmir, India
| | - Prince Ahad Mir
- Department of Pharmaceutical Sciences, Khalsa College of Pharmacy, G.T. Road, Amritsar, Punjab 143001, India
| | - Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura 302017, Jaipur, Rajasthan, India
| | - Shahid Ud Din Wani
- Pharmaceutics Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Kashmir, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Roohi Mohi-Ud-Din
- Department of General Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, Jammu and Kashmir 190001, India
| |
Collapse
|
2
|
Kimura Y, Imanishi M, Li Y, Yura Y, Ohno T, Saga Y, Madigan MT, Wang-Otomo ZY. Identification of metal-sensitive structural changes in the Ca 2+-binding photocomplex from Thermochromatium tepidum by isotope-edited vibrational spectroscopy. J Chem Phys 2022; 156:105101. [DOI: 10.1063/5.0075600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Calcium ions play a dual role in expanding the spectral diversity and structural stability of photocomplexes from several Ca2+-requiring purple sulfur phototrophic bacteria. Here, metal-sensitive structural changes in the isotopically labeled light-harvesting 1 reaction center (LH1-RC) complexes from the thermophilic purple sulfur bacterium Thermochromatium ( Tch.) tepidum were investigated by perfusion-induced attenuated total reflection (ATR) Fourier transform infrared (FTIR) spectroscopy. The ATR-FTIR difference spectra induced by exchanges between native Ca2+ and exogenous Ba2+ exhibited interconvertible structural and/or conformational changes in the metal binding sites at the LH1 C-terminal region. Most of the characteristic Ba2+/Ca2+ difference bands were detected even when only Ca ions were removed from the LH1-RC complexes, strongly indicating the pivotal roles of Ca2+ in maintaining the LH1-RC structure of Tch. tepidum. Upon 15N-, 13C- or 2H-labeling, the LH1-RC complexes exhibited characteristic 15N/14N-, 13C/12C-, or 2H/1H-isotopic shifts for the Ba2+/Ca2+ difference bands. Some of the 15N/14N or 13C/12C bands were also sensitive to further 2H-labelings. Given the band frequencies and their isotopic shifts along with the structural information of the Tch. tepidum LH1-RC complexes, metal-sensitive FTIR bands were tentatively identified to the vibrational modes of the polypeptide main chains and side chains comprising the metal binding sites. Furthermore, important new IR marker bands highly sensitive to the LH1 BChl a conformation in the Ca2+-bound states were revealed based on both ATR-FTIR and near-infrared Raman analyses. The present approach provides valuable insights concerning the dynamic equilibrium between the Ca2+- and Ba2+-bound states statically resolved by x-ray crystallography.
Collapse
Affiliation(s)
- Yukihiro Kimura
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Michie Imanishi
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Yong Li
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Yuki Yura
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Takashi Ohno
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Yoshitaka Saga
- Department of Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka 577-8502, Japan
| | - Michael T. Madigan
- School of Biological Sciences, Department of Microbiology, Southern Illinois University, Carbondale, Illinois 62901, USA
| | | |
Collapse
|
3
|
D'Alessandro DM, Usov PM. Spectroelectrochemistry: A Powerful Tool for Studying Fundamental Properties and Emerging Applications of Solid-State Materials Including Metal–Organic Frameworks. Aust J Chem 2021. [DOI: 10.1071/ch20301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Spectroelectrochemistry (SEC) encompasses a broad suite of electroanalytical techniques where electrochemistry is coupled with various spectroscopic methods. This powerful and versatile array of methods is characterised as in situ, where a fundamental property is measured in real time as the redox state is varied through an applied voltage. SEC has a long and rich history and has proved highly valuable for discerning mechanistic aspects of redox reactions that underpin the function of biological, chemical, and physical systems in the solid and solution states, as well as in thin films and even in single molecules. This perspective article highlights the state of the art in solid-state SEC (ultraviolet–visible–near-infrared, infrared, Raman, photoluminescence, electron paramagnetic resonance, and X-ray absorption spectroscopy) relevant to interrogating solid state materials, particularly those in the burgeoning field of metal–organic frameworks (MOFs). Emphasis is on developments in the field over the past 10 years and prospects for application of SEC techniques to probing fundamental aspects of MOFs and MOF-derived materials, along with their emerging applications in next-generation technologies for energy storage and transformation. Along with informing the already expert practitioner of SEC, this article provides some guidance for researchers interested in entering the field.
Collapse
|
4
|
Tariq S, Wani S, Rasool W, Shafi K, Bhat MA, Prabhakar A, Shalla AH, Rather MA. A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microb Pathog 2019; 134:103580. [DOI: 10.1016/j.micpath.2019.103580] [Citation(s) in RCA: 332] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/02/2019] [Accepted: 06/05/2019] [Indexed: 01/25/2023]
|
5
|
Saggu M, Fried SD, Boxer SG. Local and Global Electric Field Asymmetry in Photosynthetic Reaction Centers. J Phys Chem B 2019; 123:1527-1536. [PMID: 30668130 DOI: 10.1021/acs.jpcb.8b11458] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The origin of unidirectional electron transfer in photosynthetic reaction centers (RCs) has been widely discussed. Despite the high level of structural similarity between the two branches of pigments that participate in the initial electron transfer steps of photosynthesis, electron transfer only occurs along one branch. One possible explanation for this functional asymmetry is the differences in the electrostatic environment between the active and the inactive branches arising from the charges and dipoles of the organized protein structure. We present an analysis of electric fields in the RC of the purple bacterium Rhodobacter sphaeroides using the intrinsic carbonyl groups of the pigments as vibrational reporters whose vibrational frequency shifts can be converted into electric fields based on the vibrational Stark effect and also provide Stark effect data for plant pigments that can be used in future studies. The carbonyl stretches of the isolated pigments show pronounced Stark effects. We use these data, solvatochromism, molecular dynamics simulations, and data in the literature from IR and Raman spectra to evaluate differences in fields at symmetry-related positions, in particular at the 9-keto and 2-acetyl positions of the pigments involved in primary charge separation.
Collapse
Affiliation(s)
- Miguel Saggu
- Department of Chemistry , Stanford University , Stanford , California 94305-5080 , United States
| | - Stephen D Fried
- Department of Chemistry , Stanford University , Stanford , California 94305-5080 , United States
| | - Steven G Boxer
- Department of Chemistry , Stanford University , Stanford , California 94305-5080 , United States
| |
Collapse
|
6
|
Su P, Prabhakaran V, Johnson GE, Laskin J. In Situ Infrared Spectroelectrochemistry for Understanding Structural Transformations of Precisely Defined Ions at Electrochemical Interfaces. Anal Chem 2018; 90:10935-10942. [DOI: 10.1021/acs.analchem.8b02440] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Pei Su
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | | | - Grant E. Johnson
- Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Julia Laskin
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
7
|
Gholami S, Nenov A, Rivalta I, Bocola M, Bordbar AK, Schwaneberg U, Davari MD, Garavelli M. Theoretical Model of the Protochlorophyllide Oxidoreductase from a Hierarchy of Protocols. J Phys Chem B 2018; 122:7668-7681. [PMID: 29996651 DOI: 10.1021/acs.jpcb.8b04231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The enzyme protochlorophyllide oxidoreductase (LPOR) catalyzes the light-driven reduction of protochlorophyllide (Pchlide), a crucial step in chlorophyll biosynthesis. Molecular understanding of the photocatalytic mechanism of LPOR is essential for harnessing light energy to mediate enzymatic reactions. The absence of X-ray crystal structure has promoted the development of LPOR homology models that lack a catalytically competent active site and could not explain the variously reported spectroscopic evidence, including time-resolved optical spectroscopy data. We have refined previous structural models to account for the catalytic active site and the characteristic experimental spectral features of Pchlide binding, including the 26 cm-1 red shift of the C13(1) carbonyl stretch vibration in the mid-infrared (IR) and the 12 nm red shift of the Q x electronic band. A hierarchy of theoretical methods, including homology modeling, molecular dynamics simulations, hybrid quantum mechanics [(TD-)DFT]/molecular mechanics [AMBER] calculations, and computational vibrational and electronic spectroscopies, have been combined in an iterative protocol to reproduce experimental evidence and to predict ultrafast transient IR spectroscopic fingerprints associated with the catalytic process. The successful application to the LPOR enzyme indicates that the presented hierarchical protocol provides a general workflow to protein structure refinement.
Collapse
Affiliation(s)
- Samira Gholami
- Department of Chemistry , University of Isfahan , Isfahan 81746-73441 , Iran.,Dipartimento di Chimica Industriale , Università degli Studi di Bologna , Viale del Risorgimento 4 , I-40136 Bologna , Italy
| | - Artur Nenov
- Dipartimento di Chimica Industriale , Università degli Studi di Bologna , Viale del Risorgimento 4 , I-40136 Bologna , Italy
| | - Ivan Rivalta
- Université de Lyon , École Normale Supérieure de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, F-69342 , Lyon , France
| | - Marco Bocola
- Institute of Biotechnology , RWTH Aachen University , Worringer Weg 3 , 52074 Aachen , Germany
| | - A Khalegh Bordbar
- Department of Chemistry , University of Isfahan , Isfahan 81746-73441 , Iran
| | - Ulrich Schwaneberg
- Institute of Biotechnology , RWTH Aachen University , Worringer Weg 3 , 52074 Aachen , Germany.,DWI-Leibniz Institute for Interactive Materials , Forckenbeckstraße 50 , 52056 Aachen , Germany
| | - Mehdi D Davari
- Institute of Biotechnology , RWTH Aachen University , Worringer Weg 3 , 52074 Aachen , Germany
| | - Marco Garavelli
- Dipartimento di Chimica Industriale , Università degli Studi di Bologna , Viale del Risorgimento 4 , I-40136 Bologna , Italy
| |
Collapse
|
8
|
Zhang XF, Liu ZG, Shen W, Gurunathan S. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. Int J Mol Sci 2016; 17:E1534. [PMID: 27649147 PMCID: PMC5037809 DOI: 10.3390/ijms17091534] [Citation(s) in RCA: 1307] [Impact Index Per Article: 145.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/19/2016] [Accepted: 09/01/2016] [Indexed: 02/07/2023] Open
Abstract
Recent advances in nanoscience and nanotechnology radically changed the way we diagnose, treat, and prevent various diseases in all aspects of human life. Silver nanoparticles (AgNPs) are one of the most vital and fascinating nanomaterials among several metallic nanoparticles that are involved in biomedical applications. AgNPs play an important role in nanoscience and nanotechnology, particularly in nanomedicine. Although several noble metals have been used for various purposes, AgNPs have been focused on potential applications in cancer diagnosis and therapy. In this review, we discuss the synthesis of AgNPs using physical, chemical, and biological methods. We also discuss the properties of AgNPs and methods for their characterization. More importantly, we extensively discuss the multifunctional bio-applications of AgNPs; for example, as antibacterial, antifungal, antiviral, anti-inflammatory, anti-angiogenic, and anti-cancer agents, and the mechanism of the anti-cancer activity of AgNPs. In addition, we discuss therapeutic approaches and challenges for cancer therapy using AgNPs. Finally, we conclude by discussing the future perspective of AgNPs.
Collapse
Affiliation(s)
- Xi-Feng Zhang
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Zhi-Guo Liu
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Wei Shen
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| | - Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Korea.
| |
Collapse
|
9
|
Azai C, Sano Y, Kato Y, Noguchi T, Oh-oka H. Mutation-induced perturbation of the special pair P840 in the homodimeric reaction center in green sulfur bacteria. Sci Rep 2016; 6:19878. [PMID: 26804137 PMCID: PMC4726426 DOI: 10.1038/srep19878] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/18/2015] [Indexed: 11/11/2022] Open
Abstract
Homodimeric photosynthetic reaction centers (RCs) in green sulfur bacteria and heliobacteria are functional homologs of Photosystem (PS) I in oxygenic phototrophs. They show unique features in their electron transfer reactions; however, detailed structural information has not been available so far. We mutated PscA-Leu688 and PscA-Val689 to cysteine residues in the green sulfur bacterium Chlorobaculum tepidum; these residues were predicted to interact with the special pair P840, based on sequence comparison with PS I. Spectroelectrochemical measurements showed that the L688C and V689C mutations altered a near-infrared difference spectrum upon P840 oxidation, as well as the redox potential of P840. Light-induced Fourier transform infrared difference measurements showed that the L688C mutation induced a differential signal of the S-H stretching vibration in the P840+/P840 spectrum, as reported in P800+/P800 difference spectrum in a heliobacterial RC. Spectral changes in the 131-keto C=O region, caused by both mutations, revealed corresponding changes in the electronic structure of P840 and in the hydrogen-bonding interaction at the 131-keto C=O group. These results suggest that there is a common spatial configuration around the special pair sites among type 1 RCs. The data also provided evidence that P840 has a symmetric electronic structure, as expected from a homodimeric RC.
Collapse
Affiliation(s)
- Chihiro Azai
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Yuko Sano
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Yuki Kato
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Takumi Noguchi
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Hirozo Oh-oka
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
10
|
Li H, Thanneeru S, Jin L, Guild CJ, He J. Multiblock thermoplastic elastomers via one-pot thiol–ene reaction. Polym Chem 2016. [DOI: 10.1039/c6py00822d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report a facile approach to designing multiblock thermoplastic elastomers using a one-pot sequential thiol–ene reaction.
Collapse
Affiliation(s)
- Hongqiang Li
- College of Materials Science and Engineering
- South China University of Technology
- Guangzhou
- 510640 China
- Department of Chemistry
| | | | - Lei Jin
- Department of Chemistry
- University of Connecticut
- Storrs
- USA
| | | | - Jie He
- Department of Chemistry
- University of Connecticut
- Storrs
- USA
- Institute of Materials Science
| |
Collapse
|
11
|
Redox potential of the terminal quinone electron acceptor QB in photosystem II reveals the mechanism of electron transfer regulation. Proc Natl Acad Sci U S A 2015; 113:620-5. [PMID: 26715751 DOI: 10.1073/pnas.1520211113] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Photosystem II (PSII) extracts electrons from water at a Mn4CaO5 cluster using light energy and then transfers them to two plastoquinones, the primary quinone electron acceptor QA and the secondary quinone electron acceptor QB. This forward electron transfer is an essential process in light energy conversion. Meanwhile, backward electron transfer is also significant in photoprotection of PSII proteins. Modulation of the redox potential (Em) gap of QA and QB mainly regulates the forward and backward electron transfers in PSII. However, the full scheme of electron transfer regulation remains unresolved due to the unknown Em value of QB. Here, for the first time (to our knowledge), the Em value of QB reduction was measured directly using spectroelectrochemistry in combination with light-induced Fourier transform infrared difference spectroscopy. The Em(QB (-)/QB) was determined to be approximately +90 mV and was virtually unaffected by depletion of the Mn4CaO5 cluster. This insensitivity of Em(QB (-)/QB), in combination with the known large upshift of Em(QA (-)/QA), explains the mechanism of PSII photoprotection with an impaired Mn4CaO5 cluster, in which a large decrease in the Em gap between QA and QB promotes rapid charge recombination via QA (-).
Collapse
|
12
|
Moktaduzzaman M, Galafassi S, Vigentini I, Foschino R, Corte L, Cardinali G, Piškur J, Compagno C. Strain-dependent tolerance to acetic acid in Dekkera bruxellensis. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1115-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
13
|
Di Donato M, Ragnoni E, Lapini A, Kardaś TM, Ratajska-Gadomska B, Foggi P, Righini R. Identification of the Excited-State C═C and C═O Modes of trans-β-Apo-8'-carotenal with Transient 2D-IR-EXSY and Femtosecond Stimulated Raman Spectroscopy. J Phys Chem Lett 2015; 6:1592-1598. [PMID: 26263319 DOI: 10.1021/acs.jpclett.5b00528] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Assigning the vibrational modes of molecules in the electronic excited state is often a difficult task. Here we show that combining two nonlinear spectroscopic techniques, transient 2D exchange infrared spectroscopy (T2D-IR-EXSY) and femtosecond stimulated Raman spectroscopy (FSRS), the contribution of the C═C and C═O modes in the excited-state vibrational spectra of trans-β-apo-8'-carotenal can be unambiguously identified. The experimental results reported in this work confirm a previously proposed assignment based on quantum-chemical calculations and further strengthen the role of an excited state with charge-transfer character in the relaxation pathway of carbonyl carotenoids. On a more general ground, our results highlight the potentiality of nonlinear spectroscopic methods based on the combined use of visible and infrared pulses to correlate structural and electronic changes in photoexcited molecules.
Collapse
Affiliation(s)
- Mariangela Di Donato
- †LENS (European Laboratory for Non Linear Spectroscopy), via N. Carrara 1, 50019 Sesto Fiorentino, Italy
- ‡INO (Istituto Nazionale di Ottica), Largo Fermi 6, 50125 Firenze, Italy
- §Dipartimento di Chimica "Ugo Schiff", Università di Firenze, via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
| | - Elena Ragnoni
- †LENS (European Laboratory for Non Linear Spectroscopy), via N. Carrara 1, 50019 Sesto Fiorentino, Italy
- ‡INO (Istituto Nazionale di Ottica), Largo Fermi 6, 50125 Firenze, Italy
| | - Andrea Lapini
- †LENS (European Laboratory for Non Linear Spectroscopy), via N. Carrara 1, 50019 Sesto Fiorentino, Italy
- ‡INO (Istituto Nazionale di Ottica), Largo Fermi 6, 50125 Firenze, Italy
- §Dipartimento di Chimica "Ugo Schiff", Università di Firenze, via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
| | - Tomasz M Kardaś
- ∥Department of Chemistry, University of Warsaw, Zwirki Wigury 101, 02-089 Warsaw, Poland
| | | | - Paolo Foggi
- †LENS (European Laboratory for Non Linear Spectroscopy), via N. Carrara 1, 50019 Sesto Fiorentino, Italy
- ‡INO (Istituto Nazionale di Ottica), Largo Fermi 6, 50125 Firenze, Italy
- ⊥Dipartimento di Chimica, Università di Perugia, via Elce di Sotto 8, 06100 Perugia, Italy
| | - Roberto Righini
- †LENS (European Laboratory for Non Linear Spectroscopy), via N. Carrara 1, 50019 Sesto Fiorentino, Italy
- ‡INO (Istituto Nazionale di Ottica), Largo Fermi 6, 50125 Firenze, Italy
- §Dipartimento di Chimica "Ugo Schiff", Università di Firenze, via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
14
|
Ultrafast infrared spectroscopy in photosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:2-11. [PMID: 24973600 DOI: 10.1016/j.bbabio.2014.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 11/22/2022]
Abstract
In recent years visible pump/mid-infrared (IR) probe spectroscopy has established itself as a key technology to unravel structure-function relationships underlying the photo-dynamics of complex molecular systems. In this contribution we review the most important applications of mid-infrared absorption difference spectroscopy with sub-picosecond time-resolution to photosynthetic complexes. Considering several examples, such as energy transfer in photosynthetic antennas and electron transfer in reaction centers and even more intact structures, we show that the acquisition of ultrafast time resolved mid-IR spectra has led to new insights into the photo-dynamics of the considered systems and allows establishing a direct link between dynamics and structure, further strengthened by the possibility of investigating the protein response signal to the energy or electron transfer processes. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems.
Collapse
|
15
|
Zabelin AA, Shkuropatova VA, Shuvalov VA, Shkuropatov AY. FTIR spectroscopy of the reaction center of Chloroflexus aurantiacus: Photooxidation of the primary electron donor. BIOCHEMISTRY (MOSCOW) 2012; 77:157-64. [DOI: 10.1134/s000629791202006x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Stahl AD, Crouch LI, Jones MR, van Stokkum I, van Grondelle R, Groot ML. Role of PufX in Photochemical Charge Separation in the RC-LH1 Complex from Rhodobacter sphaeroides: An Ultrafast Mid-IR Pump–Probe Investigation. J Phys Chem B 2011; 116:434-44. [DOI: 10.1021/jp206697k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Andreas D. Stahl
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Lucy I. Crouch
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Michael R. Jones
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Ivo van Stokkum
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Rienk van Grondelle
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Marie Louise Groot
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Colindres-Rojas M, Wolf MMN, Gross R, Seidel S, Dietzek B, Schmitt M, Popp J, Hermann G, Diller R. Excited-state dynamics of protochlorophyllide revealed by subpicosecond infrared spectroscopy. Biophys J 2011; 100:260-7. [PMID: 21190679 DOI: 10.1016/j.bpj.2010.11.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Revised: 11/19/2010] [Accepted: 11/29/2010] [Indexed: 11/24/2022] Open
Abstract
To gain a better understanding of the light-induced reduction of protochlorophyllide (PChlide) to chlorophyllide as a key regulatory step in chlorophyll synthesis, we performed transient infrared absorption measurements on PChlide in d4-methanol. Excitation in the Q-band at 630 nm initiates dynamics characterized by three time constants: τ₁ = 3.6 ± 0.2, τ₂ = 38 ± 2, and τ₃ = 215 ± 8 ps. As indicated by the C13'=O carbonyl stretching mode in the electronic ground state at 1686 cm⁻¹, showing partial ground-state recovery, and in the excited electronic state at 1625 cm⁻¹, showing excited-state decay, τ₂ describes the formation of a state with a strong change in electronic structure, and τ₃ represents the partial recovery of the PChlide electronic ground state. Furthermore, τ₁ corresponds with vibrational energy relaxation. The observed kinetics strongly suggest a branched reaction scheme with a branching ratio of 0.5 for the path leading to the PChlide ground state on the 200 ps timescale and the path leading to a long-lived state (>>700 ps). The results clearly support a branched reaction scheme, as proposed previously, featuring the formation of an intramolecular charge transfer state with ∼25 ps, its decay into the PChlide ground state with 200 ps, and a parallel reaction path to the long-lived PChlide triplet state.
Collapse
|
18
|
Sytina OA, Alexandre MT, Heyes DJ, Hunter CN, Robert B, van Grondelle R, Groot ML. Enzyme activation and catalysis: characterisation of the vibrational modes of substrate and product in protochlorophyllide oxidoreductase. Phys Chem Chem Phys 2011; 13:2307-13. [PMID: 21103538 DOI: 10.1039/c0cp01686a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The light-dependent reduction of protochlorophyllide, a key step in the synthesis of chlorophyll, is catalyzed by the enzyme protochlorophyllide oxidoreductase (POR) and requires two photons (O. A. Sytina et al., Nature, 2008, 456, 1001-1008). The first photon activates the enzyme-substrate complex, a subsequent second photon initiates the photochemistry by triggering the formation of a catalytic intermediate. These two events are characterized by different spectral changes in the infra-red spectral region. Here, we investigate the vibrational frequencies of the POR-bound and unbound substrate, and product, and thus provide a detailed assignment of the spectral changes in the 1800-1250 cm(-1) region associated with the catalytic conversion of PChlide:NADPH:TyrOH into Chlide:NADP(+):TyrO(-). Fluorescence line narrowed spectra of the POR-bound Pchlide reveal a C=O keto group downshifted by more than 20 cm(-1) to a relatively low vibrational frequency of 1653 cm(-1), as compared to the unbound Pchlide, indicating that binding of the chromophore to the protein occurs via strong hydrogen bond(s). The frequencies of the C=C vibrational modes are consistent with a six-coordinated state of the POR-bound Pchlide, suggesting that there are two coordination interactions between the central Mg atom of the chromophore and protein residues, and/or a water molecule. The frequencies of the C=C vibrational modes of Chlide are consistent with a five-coordinated state, indicating a single interaction between the central Mg atom of the chromophore and a water molecule. Rapid-scan FTIR measurements on the Pchlide:POR:NADPH complex at 4 cm(-1) spectral resolution reveal a new band in the 1670 cm(-1) region. The FTIR spectra of the enzyme activation phase indicate involvement of a nucleotide-binding structural motif, and an increased exposure of the protein to solvent after activation.
Collapse
Affiliation(s)
- Olga A Sytina
- Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
19
|
Di Donato M, Stahl AD, van Stokkum IHM, van Grondelle R, Groot ML. Cofactors Involved in Light-Driven Charge Separation in Photosystem I Identified by Subpicosecond Infrared Spectroscopy. Biochemistry 2010; 50:480-90. [DOI: 10.1021/bi101565w] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mariangela Di Donato
- Faculty of Sciences, Department of Physics and Astronomy, VU University Amsterdam, Amsterdam, The Netherlands
| | - Andreas D. Stahl
- Faculty of Sciences, Department of Physics and Astronomy, VU University Amsterdam, Amsterdam, The Netherlands
| | - Ivo H. M. van Stokkum
- Faculty of Sciences, Department of Physics and Astronomy, VU University Amsterdam, Amsterdam, The Netherlands
| | - Rienk van Grondelle
- Faculty of Sciences, Department of Physics and Astronomy, VU University Amsterdam, Amsterdam, The Netherlands
| | - Marie-Louise Groot
- Faculty of Sciences, Department of Physics and Astronomy, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Noguchi T. Fourier transform infrared spectroscopy of special pair bacteriochlorophylls in homodimeric reaction centers of heliobacteria and green sulfur bacteria. PHOTOSYNTHESIS RESEARCH 2010; 104:321-331. [PMID: 20094792 DOI: 10.1007/s11120-009-9509-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 11/25/2009] [Indexed: 05/28/2023]
Abstract
Heliobacteria and green sulfur bacteria have type I homodimeric reaction centers analogous to photosystem I. One remaining question regarding these homodimeric reaction centers is whether the structures and electron transfer reactions are truly symmetric or not. This question is relevant to the origin of the heterodimeric reaction centers, such as photosystem I and type II reaction centers. In this mini-review, Fourier transform infrared studies on the special pair bacteriochlorophylls, P798 in heliobacteria and P840 in green sulfur bacteria, are summarized. The data are reinterpreted in the light of the X-ray crystallographic structure of photosystem I and the sequence alignments of type I reaction center proteins, and discussed in terms of hydrogen bonding interactions and the symmetry of charge distribution over the dimer.
Collapse
Affiliation(s)
- Takumi Noguchi
- Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
21
|
Sytina OA, van Stokkum IHM, Heyes DJ, Hunter CN, van Grondelle R, Groot ML. Protochlorophyllide excited-state dynamics in organic solvents studied by time-resolved visible and mid-infrared spectroscopy. J Phys Chem B 2010; 114:4335-44. [PMID: 20205376 DOI: 10.1021/jp9089326] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Protochlorophyllide (PChlide) is a precursor in the biosynthesis of chlorophyll. Complexed with NADPH to the enzyme protochlorophyllide oxidoreductase (POR), it is reduced to chlorophyllide, a process that occurs via a set of spectroscopically distinct intermediate states and is initiated from the excited state of PChlide. To obtain a better understanding of these catalytic events, we characterized the excited state dynamics of PChlide in the solvents tetrahydrofuran (THF), methanol, and Tris/Triton buffer using ultrafast transient absorption in the visible and mid-infrared spectral regions and time-resolved fluorescence emission experiments. For comparison, we present time-resolved transient absorption measurements of chlorophyll a in THF. From the combined analysis of these experiments, we derive that during the 2-3 ns excited state lifetime an extensive multiphasic quenching of the emission occurs due to solvation of the excited state, which is in agreement with the previously proposed internal charge transfer (ICT) character of the S1 state ( Zhao , G. J. ; Han , K. L. Biophys. J. 2008 , 94 , 38 ). The solvation process in methanol occurs in conjunction with a strengthening of a hydrogen bond to the Pchlide keto carbonyl group. We demonstrate that the internal conversion from the S2 to S1 excited states is remarkably slow and stretches out on to the 700 fs time scale, causing a rise of blue-shifted signals in the transient absorption and a gain of emission in the time-resolved fluorescence. A triplet state is populated on the nanosecond time scale with a maximal yield of approximately 23%. The consequences of these observations for the catalytic pathway and the role of the triplet and ICT state in activation of the enzyme are discussed.
Collapse
Affiliation(s)
- Olga A Sytina
- Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
22
|
Pawlowicz NP, van Stokkum IHM, Breton J, van Grondelle R, Jones MR. An investigation of slow charge separation in a Tyrosine M210 to Tryptophan mutant of the Rhodobacter sphaeroides reaction center by femtosecond mid-infrared spectroscopy. Phys Chem Chem Phys 2010; 12:2693-705. [DOI: 10.1039/b905934b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Pawlowicz NP, van Stokkum IHM, Breton J, van Grondelle R, Jones MR. Identification of the intermediate charge-separated state P+betaL- in a leucine M214 to histidine mutant of the Rhodobacter sphaeroides reaction center using femtosecond midinfrared spectroscopy. Biophys J 2009; 96:4956-65. [PMID: 19527655 DOI: 10.1016/j.bpj.2009.03.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 03/25/2009] [Accepted: 03/27/2009] [Indexed: 11/27/2022] Open
Abstract
Energy and electron transfer in a Leu M214 to His (LM214H) mutant of the Rhodobacter sphaeroides reaction center (RC) were investigated by applying time-resolved visible pump/midinfrared probe spectroscopy at room temperature. This mutant replacement of the Leu at position M214 resulted in the incorporation of a bacteriochlorophyll (BChl) in place of the native bacteriopheophytin in the L-branch of cofactors (denoted betaL). Purified LM214H RCs were excited at 600 nm (unselective excitation), at 800 nm (direct excitation of the monomeric BChl cofactors B(L) and B(M)), and at 860 nm (direct excitation of the primary donor (P) BChl pair (P(L)/P(M))). Absorption changes associated with carbonyl (C=O) stretch vibrational modes (9-keto, 10a-ester, and 2a-acetyl) of the cofactors and of the protein were recorded in the region between 1600 cm(-1) and 1770 cm(-1), and the data were subjected to both a sequential analysis and a simultaneous target analysis. After photoexcitation of the LM214H RC, P* decayed on a timescale of approximately 6.3 ps to P+BL-. The decay of P+BL- occurred with a lifetime of approximately 2 ps, approximately 3 times slower than that observed in wild-type and R-26 RCs (approximately 0.7 ps). Further electron transfer to the betaL BChl resulted in formation of the P+betaL- state, and its infrared absorbance difference spectrum is reported for the first time, to our knowledge. The fs midinfrared spectra of P+BL- and P+betaL- showed clear differences related to the different environments of the two BChls in the mutant RC.
Collapse
Affiliation(s)
- Natalia P Pawlowicz
- Faculty of Sciences, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
24
|
Berthomieu C, Hienerwadel R. Fourier transform infrared (FTIR) spectroscopy. PHOTOSYNTHESIS RESEARCH 2009; 101:157-170. [PMID: 19513810 DOI: 10.1007/s11120-009-9439-x] [Citation(s) in RCA: 198] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 05/15/2009] [Indexed: 05/26/2023]
Abstract
Fourier transform infrared (FTIR) spectroscopy probes the vibrational properties of amino acids and cofactors, which are sensitive to minute structural changes. The lack of specificity of this technique, on the one hand, permits us to probe directly the vibrational properties of almost all the cofactors, amino acid side chains, and of water molecules. On the other hand, we can use reaction-induced FTIR difference spectroscopy to select vibrations corresponding to single chemical groups involved in a specific reaction. Various strategies are used to identify the IR signatures of each residue of interest in the resulting reaction-induced FTIR difference spectra. (Specific) Isotope labeling, site-directed mutagenesis, hydrogen/deuterium exchange are often used to identify the chemical groups. Studies on model compounds and the increasing use of theoretical chemistry for normal modes calculations allow us to interpret the IR frequencies in terms of specific structural characteristics of the chemical group or molecule of interest. This review presents basics of FTIR spectroscopy technique and provides specific important structural and functional information obtained from the analysis of the data from the photosystems, using this method.
Collapse
Affiliation(s)
- Catherine Berthomieu
- Commissariat à l' Energie Atomique, Laboratoire des Interactions Protéine Métal, DSV/Institut de Biologie Environnementale et Biotechnologie, CNRS-CEA-Université Aix-Marseille II, Saint Paul-lez-Durance Cedex, France.
| | | |
Collapse
|
25
|
Mehta N, Srikant V, Datta SN. Quantum chemical identification of blue and red forms of protonated pheophytin-a dianion. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.theochem.2008.11.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Krammer EM, Sebban P, Ullmann GM. Profile Hidden Markov Models for Analyzing Similarities and Dissimilarities in the Bacterial Reaction Center and Photosystem II. Biochemistry 2009; 48:1230-43. [DOI: 10.1021/bi802033k] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eva-Maria Krammer
- Structural Biology/Bioinformatics, University of Bayreuth, Universitätsstrasse 30, BGI, 95447 Bayreuth, Germany, and Laboratoire de Chimie Physique, UMR 8000, University P. XI/CNRS, Bât. 350, Faculté d’Orsay, 91405 Orsay Cedex, France
| | - Pierre Sebban
- Structural Biology/Bioinformatics, University of Bayreuth, Universitätsstrasse 30, BGI, 95447 Bayreuth, Germany, and Laboratoire de Chimie Physique, UMR 8000, University P. XI/CNRS, Bât. 350, Faculté d’Orsay, 91405 Orsay Cedex, France
| | - G. Matthias Ullmann
- Structural Biology/Bioinformatics, University of Bayreuth, Universitätsstrasse 30, BGI, 95447 Bayreuth, Germany, and Laboratoire de Chimie Physique, UMR 8000, University P. XI/CNRS, Bât. 350, Faculté d’Orsay, 91405 Orsay Cedex, France
| |
Collapse
|
27
|
Sytina OA, Heyes DJ, Hunter CN, Alexandre MT, van Stokkum IHM, van Grondelle R, Groot ML. Conformational changes in an ultrafast light-driven enzyme determine catalytic activity. Nature 2009; 456:1001-4. [PMID: 19092933 DOI: 10.1038/nature07354] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 08/15/2008] [Indexed: 11/09/2022]
Abstract
The role of conformational changes in explaining the huge catalytic power of enzymes is currently one of the most challenging questions in biology. Although it is now widely regarded that enzymes modulate reaction rates by means of short- and long-range protein motions, it is almost impossible to distinguish between conformational changes and catalysis. We have solved this problem using the chlorophyll biosynthetic enzyme NADPH:protochlorophyllide (Pchlide) oxidoreductase, which catalyses a unique light-driven reaction involving hydride and proton transfers. Here we report that prior excitation of the enzyme-substrate complex with a laser pulse induces a more favourable conformation of the active site, enabling the coupled hydride and proton transfer reactions to occur. This effect, which is triggered during the Pchlide excited-state lifetime and persists on a long timescale, switches the enzyme into an active state characterized by a high rate and quantum yield of formation of a catalytic intermediate. The corresponding spectral changes in the mid-infrared following the absorption of one photon reveal significant conformational changes in the enzyme, illustrating the importance of flexibility and dynamics in the structure of enzymes for their function.
Collapse
Affiliation(s)
- Olga A Sytina
- Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
28
|
Nabedryk E, Breton J. Coupling of electron transfer to proton uptake at the QB site of the bacterial reaction center: A perspective from FTIR difference spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:1229-48. [DOI: 10.1016/j.bbabio.2008.06.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 06/26/2008] [Accepted: 06/27/2008] [Indexed: 01/09/2023]
|
29
|
Pawlowicz NP, van Grondelle R, van Stokkum IHM, Breton J, Jones MR, Groot ML. Identification of the first steps in charge separation in bacterial photosynthetic reaction centers of Rhodobacter sphaeroides by ultrafast mid-infrared spectroscopy: electron transfer and protein dynamics. Biophys J 2008; 95:1268-84. [PMID: 18424493 PMCID: PMC2479572 DOI: 10.1529/biophysj.108.130880] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 03/31/2008] [Indexed: 01/08/2023] Open
Abstract
Time-resolved visible pump/mid-infrared (mid-IR) probe spectroscopy in the region between 1600 and 1800 cm(-1) was used to investigate electron transfer, radical pair relaxation, and protein relaxation at room temperature in the Rhodobacter sphaeroides reaction center (RC). Wild-type RCs both with and without the quinone electron acceptor Q(A), were excited at 600 nm (nonselective excitation), 800 nm (direct excitation of the monomeric bacteriochlorophyll (BChl) cofactors), and 860 nm (direct excitation of the dimer of primary donor (P) BChls (P(L)/P(M))). The region between 1600 and 1800 cm(-1) encompasses absorption changes associated with carbonyl (C=O) stretch vibrational modes of the cofactors and protein. After photoexcitation of the RC the primary electron donor P excited singlet state (P*) decayed on a timescale of 3.7 ps to the state P(+)B(L)(-) (where B(L) is the accessory BChl electron acceptor). This is the first report of the mid-IR absorption spectrum of P(+)B(L)(-); the difference spectrum indicates that the 9-keto C=O stretch of B(L) is located around 1670-1680 cm(-1). After subsequent electron transfer to the bacteriopheophytin H(L) in approximately 1 ps, the state P(+)H(L)(-) was formed. A sequential analysis and simultaneous target analysis of the data showed a relaxation of the P(+)H(L)(-) radical pair on the approximately 20 ps timescale, accompanied by a change in the relative ratio of the P(L)(+) and P(M)(+) bands and by a minor change in the band amplitude at 1640 cm(-1) that may be tentatively ascribed to the response of an amide C=O to the radical pair formation. We conclude that the drop in free energy associated with the relaxation of P(+)H(L)(-) is due to an increased localization of the electron hole on the P(L) half of the dimer and a further consequence is a reduction in the electrical field causing the Stark shift of one or more amide C=O oscillators.
Collapse
Affiliation(s)
- Natalia P Pawlowicz
- Faculty of Sciences, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
30
|
Barth A. Infrared spectroscopy of proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:1073-101. [PMID: 17692815 DOI: 10.1016/j.bbabio.2007.06.004] [Citation(s) in RCA: 3022] [Impact Index Per Article: 167.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 06/18/2007] [Accepted: 06/19/2007] [Indexed: 12/12/2022]
Abstract
This review discusses the application of infrared spectroscopy to the study of proteins. The focus is on the mid-infrared spectral region and the study of protein reactions by reaction-induced infrared difference spectroscopy.
Collapse
Affiliation(s)
- Andreas Barth
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden.
| |
Collapse
|
31
|
Mehta N, Datta SN. Theoretical Determination of the Standard Reduction Potentials of Pheophytin-ainN,N-Dimethyl Formamide and Membrane. J Phys Chem B 2007; 111:7210-7. [PMID: 17536851 DOI: 10.1021/jp067383t] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Quantum mechanical/molecular mechanics (QM/MM) calculations were performed on the neutral, anionic, and dianionic forms of Pheophytin-a (Pheo-a) in N,N-dimethyl formamide (DMF) in order to calculate the absolute free energy of reduction of Pheo-a in solution. The geometry of the solvated species was optimized by restricted open-shell density functional treatment (ROB3LYP) using the 6-31G(d) basis set for the molecular species while the primary solvent shell consisting of 45 DMF molecules was treated by the MM method using the universal force field (UFF). Electronic energies of the neutral, anionic, and dianionic species were obtained by carrying out single point density functional theory (DFT) calculations using the 6-311+G(2d,2p) basis set on the respective ONIOM optimized geometries. The CHARMM27 force field was used to account for the dynamical nature of the primary solvation shell of 45 DMF molecules. In the calculations using solvent shells, the required atomic charges for each solvent molecule were obtained from ROB3LYP/6-31G(d) calculation on a single isolated DMF molecule. Randomly sampled configurations generated by the Monte Carlo (MC) technique were used to determine the contribution of the primary shell to the free energy of solvation of the three species. The dynamical nature of the primary shell significantly corrects the free energy of solvation. Frequency calculations at the ROB3LYP/6-31G(d) level were carried out on the optimized geometries of truncated 47-atom models of the neutral and ionic species in vacuum so as to determine the differences in thermal energy and molecular entropy. The Born energy of ion-dielectric interaction, the Onsager energy of dipole-dielectric interaction, and the Debye-Hückel energy of ion-ionic cloud interaction for the pheophytin-solvent aggregate were added as perturbative corrections. The Born interaction also makes a large contribution to the absolute free energy of reduction. An implicit solvation model (DPCM) was also employed for the calculation of standard reduction potentials in DMF. Both the models were successful in reproducing the standard reduction potentials. An explicit solvent treatment(QM/MM/MC + Born + Onsager + Debye corrections) yielded the one electron reduction potential of Pheo-a as -0.92 +/- 0.27 V and the two electron reduction potential as -1.34 +/- 0.25 V at 298.15 K, while the implicit solvent treatment yielded the corresponding values as -1.03 +/- 0.17 and -1.30 +/- 0.17 V, respectively. The calculated values more or less agree with the experimental midpoint potentials of -0.90 and -1.25 V, respectively. Moreover, a numerical finite difference Poisson-Boltzmann solver (FDPB) along with the DPCM methodology was employed to obtain the reduction potential of pheophytin in the thylakoid membrane. The calculated reduction potential value of -0.58 V is in excellent agreement with the reported value -0.61 V.
Collapse
Affiliation(s)
- Nital Mehta
- Department of Chemistry, Indian Institute of Technology-Bombay, Powai, Mumbai, India
| | | |
Collapse
|
32
|
Di Donato M, van Grondelle R, van Stokkum IHM, Groot ML. Excitation Energy Transfer in the Photosystem II Core Antenna Complex CP43 Studied by Femtosecond Visible/Visible and Visible/Mid-Infrared Pump Probe Spectroscopy. J Phys Chem B 2007; 111:7345-52. [PMID: 17550278 DOI: 10.1021/jp068315+] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Excitation energy transfer in the Photosystem II core antenna complex CP43 has been investigated by vis/vis and vis/mid-IR pump-probe spectroscopy with the aim of understanding the relation between the dynamics of energy transfer and the structural arrangement of individual chlorophyll molecules within the protein. Energy transfer was found to occur on time scales of 250 fs, 2-4 ps, and 10-12 ps. The vis/mid-IR difference spectra show that the excitation is initially distributed over chlorophylls located in environments with different polarity, since two 9-keto C=O stretching bleachings, at 1691 and 1677 cm-1, are observable at early delay times. Positive signals in the initial difference spectra around 1750 and 1720 cm-1 indicate the presence of a charge transfer state between strongly interacting chlorophylls. We conclude, both from the spectral behavior in the visible when the annihilation processes are increased and from the vis/mid-IR data, that there are two pigments (one absorbing around 670 nm and one at 683 nm) which are not connected to the other pigments on a time scale faster than 10-20 ps. Since, in the IR, on a 10 ps time scale the population of the 1691 cm-1 mode almost disappears, while the 1677 cm-1 mode is still significantly populated, we can conclude that at least some of the red absorbing pigments are located in a polar environment, possibly forming H-bonds with the surrounding protein.
Collapse
Affiliation(s)
- Mariangela Di Donato
- Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
33
|
Alexandre MTA, Lührs DC, van Stokkum IHM, Hiller R, Groot ML, Kennis JTM, van Grondelle R. Triplet state dynamics in peridinin-chlorophyll-a-protein: a new pathway of photoprotection in LHCs? Biophys J 2007; 93:2118-28. [PMID: 17483182 PMCID: PMC1959554 DOI: 10.1529/biophysj.107.106674] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This work investigates the interaction of carotenoid and chlorophyll triplet states in the peridinin-chlorophyll-a-protein (PCP) of Amphidinium carterae using step-scan Fourier transform infrared spectroscopy. We identify two carotenoid triplet state lifetimes of approximately 13 and approximately 42 mus in the spectral region between 1800 and 1100 cm(-1) after excitation of the 'blue' and 'red' peridinin (Per) conformers and the Q(y) of chlorophyll-a (Chl-a). The fast and slow decaying triplets exhibit different spectral signatures in the carbonyl region. The fast component generated at all excitation wavelengths is from a major conformer with a lactone stretching mode bleach at 1745 cm(-1). One (1720 cm(-1)) and two (1720 cm(-1) and 1741 cm(-1)) different Per conformers are observed for the slow component upon 670- and 530-480-nm excitation, respectively. The above result implies that (3)Per triplets are formed via two different pathways, corroborating and complementing visible triplet-singlet (T-S) spectra (Kleima et al., Biochemistry (2000), 39, 5184). Surprisingly, all difference spectra show that Per and Chl-a modes are simultaneously present during the (3)Per decay, implying significant involvement of (3)Chl-a in the (3)Per state. We suggest that this Per-Chl-a interaction via a delocalized triplet state lowers the (3)Per energy and thus provides a general, photoprotection mechanism for light-harvesting antenna complexes.
Collapse
Affiliation(s)
- Maxime T A Alexandre
- Department of Biophysics and Physics of Complex Systems, Division of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
34
|
Bernad S, Mäntele W. An innovative spectroelectrochemical reflection cell for rapid protein electrochemistry and ultraviolet/visible/infrared spectroscopy. Anal Biochem 2006; 351:214-8. [PMID: 16530718 DOI: 10.1016/j.ab.2005.12.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 12/16/2005] [Accepted: 12/16/2005] [Indexed: 11/24/2022]
Abstract
A novel electrochemical reflection cell combining electrochemical techniques and spectroscopy which uses a solid gold working electrode as an optical mirror is described. This cell can be used at path lengths as low as a few micrometers and thus is suitable for ultraviolet/visible (UV/Vis) and infrared spectroscopy even for aqueous solutions and suspensions. The cell was designed for small sample volumes of only a few microliters, thus reducing the effort for sample preparation. Due to the short path length of some micrometers, the entire volume is within the Nernst diffusion layer, hence resulting in fast equilibration. Evaluation of the technique is described with direct electrochemistry of horse heart cytochrome c at the gold electrode modified with 4,4'-dithiodipyridine. Cyclic voltammograms indicate rapid and reversible electrochemistry with the correct midpoint potential (52 mV vs Ag/AgCl/3 M KCl). Chronoamperometry and coulometry confirm rapid and complete oxidation and reduction; the cell volume can be entirely fully reduced within less than 10-20 s. Spectroscopy in the UV/Vis region, with potentials at the working electrode stepped between -390 and 390 mV, show perfect titration of the cytochrome c heme bands. A Nernst fit of the alpha band absorption, with redox potential Em and number of electrons n left as parameters, yields a midpoint potential of 49 mV and n=0.9. The potential of this cell in the investigation of biological electron transfer reactions and in the study of bioenergetic systems is discussed.
Collapse
Affiliation(s)
- Sophie Bernad
- Institut für Biophysik, Johann Wolfgang Goethe-Universität Frankfurt am Main, Max-von Laue-Strasse 1, D-60438 Frankfurt am Main, Germany.
| | | |
Collapse
|
35
|
Berthomieu C, Nabedryk E, Mäntele W, Breton J. Characterization by FTIR spectroscopy of the photoreduction of the primary quinone acceptor QA in photosystem II. FEBS Lett 2004; 269:363-7. [PMID: 15452972 DOI: 10.1016/0014-5793(90)81194-s] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Molecular changes associated with the photoreduction of the primary quinone acceptor Qa of photosystem II have been characterized by Fourier transform infrared spectroscopy. This reaction was light-induced at room temperature on photosystem II membranes in the presence of hydroxylamine and diuron. A positive signal at 1478 cm-1 is assigned to the C---O stretching mode of the semiquinone anion, and can be correlated to the negative C=O mode(s) of the neutral QA at 1645 cm-1 and/or 16 cm-1. Analogies with bacterial reaction center are found in the amide I absorption range at 1672 cm-1, 1653 cm-1 and 1630 cm-1. The stabilization of QA- does not result from a large protein conformation change, but involves perturbations of several amino acid vibrations. At 1658 cm-1, a negative feature sensitive to 1H-2H exchange is tentatively assigned to a NH2 histidine mode, while tryptophan D2252 could contribute to the signal at 1560/1550 cm-1.
Collapse
Affiliation(s)
- C Berthomieu
- Service de Biophysique, CEN Saclay, 91191 Gif-sur-Yvette cedex, France
| | | | | | | |
Collapse
|
36
|
Sivakumar V, Wang R, Hastings G. Photo-oxidation of P740, the primary electron donor in photosystem I from Acaryochloris marina. Biophys J 2004; 85:3162-72. [PMID: 14581216 PMCID: PMC1303592 DOI: 10.1016/s0006-3495(03)74734-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Fourier transform infrared spectroscopy (FTIR) difference spectroscopy in combination with deuterium exchange experiments has been used to study the photo-oxidation of P740, the primary electron donor in photosystem I from Acaryochloris marina. Comparison of (P740(+)-P740) and (P700(+)-P700) FTIR difference spectra show that P700 and P740 share many structural similarities. However, there are several distinct differences also: 1), The (P740(+)-P740) FTIR difference spectrum is significantly altered upon proton exchange, considerably more so than the (P700(+)-P700) FTIR difference spectrum. The P740 binding pocket is therefore more accessible than the P700 binding pocket. 2), Broad, "dimer" absorption bands are observed for both P700(+) and P740(+). These bands differ significantly in substructure, however, suggesting differences in the electronic organization of P700(+) and P740(+). 3), Bands are observed at 2727(-) and 2715(-) cm(-1) in the (P740(+)-P740) FTIR difference spectrum, but are absent in the (P700(+)-P700) FTIR difference spectrum. These bands are due to formyl CH modes of chlorophyll d. Therefore, P740 consists of two chlorophyll d molecules. Deuterium-induced modification of the (P740(+)-P740) FTIR difference spectrum indicates that only the highest frequency 13(3) ester carbonyl mode of P740 downshifts, indicating that this ester mode is weakly H-bonded. In contrast, the highest frequency ester carbonyl mode of P700 is free from H-bonding. Deuterium-induced changes in (P740(+)-P740) FTIR difference spectrum could also indicate that one of the chlorophyll d 3(1) carbonyls of P740 is hydrogen bonded.
Collapse
Affiliation(s)
- Velautham Sivakumar
- Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | |
Collapse
|
37
|
Treynor TP, Andrews SS, Boxer SG. Intervalence Band Stark Effect of the Special Pair Radical Cation in Bacterial Photosynthetic Reaction Centers. J Phys Chem B 2003. [DOI: 10.1021/jp035039f] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Thomas P. Treynor
- Department of Chemistry, Stanford University, Stanford, California 94305-5080
| | - Steven S. Andrews
- Department of Chemistry, Stanford University, Stanford, California 94305-5080
| | - Steven G. Boxer
- Department of Chemistry, Stanford University, Stanford, California 94305-5080
| |
Collapse
|
38
|
Mezzetti A, Seo D, Leibl W, Sakurai H, Breton J. Time-resolved step-scan FTIR investigation on the primary donor of the reaction center from the green sulfur bacterium Chlorobium tepidum. PHOTOSYNTHESIS RESEARCH 2003; 75:161-9. [PMID: 16245086 DOI: 10.1023/a:1022867317267] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The vibrational properties of the primary donor P(840) in the reaction center (RC) of the green sulfur bacterium Chlorobium tepidum and its interactions with the surrounding protein environment have been investigated by Fourier transform infrared (FTIR) difference spectroscopy at cryogenic temperatures. By using the step-scan technique with a time resolution of 5 mus on RCs that had been depleted of the iron-sulfur electron acceptors, the formation and decay of the triplet state (3)P(840) have been followed in infrared for the first time. The (3)P(840)/P(840) FTIR difference spectrum is compared to the P(840) (+)/P(840) FTIR difference spectrum measured under identical conditions on untreated RCs and recorded with the same step-scan set-up. The latter P(840) (+)/P(840) difference spectrum is essentially the same as those measured under steady-state conditions using the more conventional continuous illumination method. Comparison of the (3)P(840)/P(840) and P(840) (+)/P(840) spectra provides unambiguous assignment of the vibration of the 9-keto C=O group(s) of P(840) at 1684 cm(-1) as the only common negative band in the two spectra. This frequency corresponds to carbonyl group(s) free from hydrogen bonding interactions. The obtained results are discussed in the framework of the structure and photochemistry of the primary donor P(840).
Collapse
Affiliation(s)
- Alberto Mezzetti
- Service de Bioénergétique, CEA-Saclay, Bât. 532, 91191, Gif-sur-Yvette cedex, France,
| | | | | | | | | |
Collapse
|
39
|
Johnson ET, Müh F, Nabedryk E, Williams JC, Allen JP, Lubitz W, Breton J, Parson WW. Electronic and Vibronic Coupling of the Special Pair of Bacteriochlorophylls in Photosynthetic Reaction Centers from Wild-Type and Mutant Strains of Rhodobacter Sphaeroides. J Phys Chem B 2002. [DOI: 10.1021/jp021024q] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- E. T. Johnson
- Department of Biochemistry, Box 357350, University of Washington, Seattle, Washington 98195-7350, Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany, Service de Bioénergétique, CEA Saclay, Bât 532, F-91191 Gif Sur Yvette Cedex France, Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, and Max-Planck-Institut für Strahlenchemie, Stiftstr. 34−36, D-45470 Mülheim/Ruhr, Germany
| | - F. Müh
- Department of Biochemistry, Box 357350, University of Washington, Seattle, Washington 98195-7350, Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany, Service de Bioénergétique, CEA Saclay, Bât 532, F-91191 Gif Sur Yvette Cedex France, Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, and Max-Planck-Institut für Strahlenchemie, Stiftstr. 34−36, D-45470 Mülheim/Ruhr, Germany
| | - E. Nabedryk
- Department of Biochemistry, Box 357350, University of Washington, Seattle, Washington 98195-7350, Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany, Service de Bioénergétique, CEA Saclay, Bât 532, F-91191 Gif Sur Yvette Cedex France, Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, and Max-Planck-Institut für Strahlenchemie, Stiftstr. 34−36, D-45470 Mülheim/Ruhr, Germany
| | - J. C. Williams
- Department of Biochemistry, Box 357350, University of Washington, Seattle, Washington 98195-7350, Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany, Service de Bioénergétique, CEA Saclay, Bât 532, F-91191 Gif Sur Yvette Cedex France, Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, and Max-Planck-Institut für Strahlenchemie, Stiftstr. 34−36, D-45470 Mülheim/Ruhr, Germany
| | - J. P. Allen
- Department of Biochemistry, Box 357350, University of Washington, Seattle, Washington 98195-7350, Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany, Service de Bioénergétique, CEA Saclay, Bât 532, F-91191 Gif Sur Yvette Cedex France, Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, and Max-Planck-Institut für Strahlenchemie, Stiftstr. 34−36, D-45470 Mülheim/Ruhr, Germany
| | - W. Lubitz
- Department of Biochemistry, Box 357350, University of Washington, Seattle, Washington 98195-7350, Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany, Service de Bioénergétique, CEA Saclay, Bât 532, F-91191 Gif Sur Yvette Cedex France, Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, and Max-Planck-Institut für Strahlenchemie, Stiftstr. 34−36, D-45470 Mülheim/Ruhr, Germany
| | - J. Breton
- Department of Biochemistry, Box 357350, University of Washington, Seattle, Washington 98195-7350, Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany, Service de Bioénergétique, CEA Saclay, Bât 532, F-91191 Gif Sur Yvette Cedex France, Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, and Max-Planck-Institut für Strahlenchemie, Stiftstr. 34−36, D-45470 Mülheim/Ruhr, Germany
| | - W. W. Parson
- Department of Biochemistry, Box 357350, University of Washington, Seattle, Washington 98195-7350, Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany, Service de Bioénergétique, CEA Saclay, Bât 532, F-91191 Gif Sur Yvette Cedex France, Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, and Max-Planck-Institut für Strahlenchemie, Stiftstr. 34−36, D-45470 Mülheim/Ruhr, Germany
| |
Collapse
|
40
|
Iwaki M, Andrianambinintsoa S, Rich P, Breton J. Attenuated total reflection Fourier transform infrared spectroscopy of redox transitions in photosynthetic reaction centers: comparison of perfusion- and light-induced difference spectra. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2002; 58:1523-1533. [PMID: 12083676 DOI: 10.1016/s1386-1425(02)00040-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Chemically induced Fourier transform infrared difference spectra associated with redox transitions of several primary electron donors and acceptors in photosynthetic reaction centers (RCs) have been compared with the light-induced FTIR difference spectra involving the same cofactors. The RCs are deposited on an attenuated total reflection (ATR) prism and form a film that is enclosed in a flow cell. Redox transitions in the film of RCs can be repetitively induced either by perfusion of buffers poised at different redox potentials or by illumination. The perfusion-induced ATR-FTIR difference spectra for the oxidation of the primary electron donor P in the RCs of the purple bacteria Rb. sphaeroides and Rp. viridis and P700 in the photosystem 1 of Synechocystis 6803, as well as the Q(A)/Q(A) transition of the quinone acceptor (Q(A)) in Rb. sphaeroides RCs are reported for the first time. They are compared with the light-induced ATR-FTIR difference spectra P+Q(A)/PQ(A) for the RCs of Rb. sphaeroides and P700+/P700 for photosystem 1. It is shown that the perfusion-induced and light-induced ATR-FTIR difference spectra recorded on the same RC film display identical signal to noise ratios when they are measured under comparable conditions. The ATR-FTIR difference spectra are very similar to the equivalent FTIR difference spectra previously recorded upon photochemical or electrochemical excitation of these RCs in the more conventional transmission mode. The ATR-FTIR technique requires a smaller amount of sample compared with transmission FTIR and allows precise control of the aqueous environment of the RC films.
Collapse
|
41
|
|
42
|
O'Malley PJ. Density functional predicted geometries and vibrational frequencies of the neutral and anion-radical form of pheophytin: relevance to electron transfer in photosynthetic reaction centres. Chem Phys Lett 2000. [DOI: 10.1016/s0009-2614(00)01146-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
Albouy D, Kuhn M, Williams J, Allen J, Lubitz W, Mattioli T. Fourier transform Raman investigation of the electronic structure and charge localization in a bacteriochlorophyll-bacteriopheophytin dimer of reaction centers from Rhodobacter sphaeroides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1997. [DOI: 10.1016/s0005-2728(97)00044-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
44
|
Czarnecki K, Diers JR, Chynwat V, Erickson JP, Frank HA, Bocian DF. Characterization of the Strongly Coupled, Low-Frequency Vibrational Modes of the Special Pair of Photosynthetic Reaction Centers via Isotopic Labeling of the Cofactors. J Am Chem Soc 1997. [DOI: 10.1021/ja963281c] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kazimierz Czarnecki
- Contribution from the Department of Chemistry, University of California, Riverside, California 92521, and Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269
| | - James R. Diers
- Contribution from the Department of Chemistry, University of California, Riverside, California 92521, and Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269
| | - Veeradej Chynwat
- Contribution from the Department of Chemistry, University of California, Riverside, California 92521, and Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269
| | - Joy P. Erickson
- Contribution from the Department of Chemistry, University of California, Riverside, California 92521, and Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269
| | - Harry A. Frank
- Contribution from the Department of Chemistry, University of California, Riverside, California 92521, and Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269
| | - David F. Bocian
- Contribution from the Department of Chemistry, University of California, Riverside, California 92521, and Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269
| |
Collapse
|
45
|
Nabedryk E, Leibl W, Breton J. FTIR spectroscopy of primary donor photooxidation in Photosystem I, Heliobacillus mobilis, and Chlorobium limicola. Comparison with purple bacteria. PHOTOSYNTHESIS RESEARCH 1996; 48:301-308. [PMID: 24271311 DOI: 10.1007/bf00041021] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/1995] [Accepted: 02/12/1996] [Indexed: 06/02/2023]
Abstract
The photooxidation of the primary electron donor in several Photosystem I-related organisms (Synechocystis sp. PCC 6803, Heliobacillus mobilis, and Chlorobium limicola f. sp. thiosulphatophilum) has been studied by light-induced FTIR difference spectroscopy at 100 K in the 4000 to 1200 cm(-1) spectral range. The data are compared to the well-characterized FTIR difference spectra of the photooxidation of the primary donor P in Rhodobacter sphaeroides (both wild type and the heterodimer mutant HL M202) in order to get information on the charge localization and the extent of coupling within the (bacterio)chlorophylls constituting the oxidized primary donors. In Rb. sphaeroides RC, four marker bands mostly related to the dimeric nature of the oxidized primary donor have been previously observed at ≈2600, 1550, 1480, and 1295 cm(-1). The high-frequency band has been shown to correspond to an electronic transition (Breton et al. (1992) Biochemistry 31: 7503-7510) while the three other marker bands have been described as phase-phonon bands (Reimers and Hush (1995) Chem Phys 197: 323-332). The absence of these bands in PS I as well as in the heterodimer HL M202 demonstrates that in P700(+) the charge is essentially localized on a single chlorophyll molecule. For both H. mobilis and C. limicola, the presence of a high-frequency band at ≈ 2050 and 2450 cm(-1), respectively, and of phase-phonon bands (at ≈ 1535 and 1300 cm(-1) in H. mobilis, at ≈ 1465 and 1280 cm(-1) in C. limicola) indicate that the positive charge in the photooxidized primary donor is shared between two coupled BChls. The structure of P840(+) in C. limicola, in terms of the resonance interactions between the two BChl a molecules constituting the oxidized primary donor, is close to that of P(+) in purple bacteria reaction centers while for H. mobilis the FTIR data are interpreted in terms of a weaker coupling of the two bacteriochlorophylls.
Collapse
Affiliation(s)
- E Nabedryk
- Section de Bioénergétique, Departement de Biologie Cellulaire et Moléculaire, CEA/Saclay, 91191, Gif-sur-Yvette Cedex, France
| | | | | |
Collapse
|
46
|
Misono Y, Limantara L, Koyama Y, Itoh K. Solvent Effects on the Resonance Raman and Electronic Absorption Spectra of Bacteriochlorophyll a Cation Radical. ACTA ACUST UNITED AC 1996. [DOI: 10.1021/jp952295m] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yasuhito Misono
- Department of Chemistry, School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169, Japan, and Faculty of Science, Kwansei Gakuin University, Uegahara, Nishinomiya 662, Japan
| | - Leenawaty Limantara
- Department of Chemistry, School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169, Japan, and Faculty of Science, Kwansei Gakuin University, Uegahara, Nishinomiya 662, Japan
| | - Yasushi Koyama
- Department of Chemistry, School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169, Japan, and Faculty of Science, Kwansei Gakuin University, Uegahara, Nishinomiya 662, Japan
| | - Koichi Itoh
- Department of Chemistry, School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169, Japan, and Faculty of Science, Kwansei Gakuin University, Uegahara, Nishinomiya 662, Japan
| |
Collapse
|
47
|
Feiler U, Albouy D, Robert B, Mattioli TA. Symmetric structural features and binding site of the primary electron donor in the reaction center of Chlorobium. Biochemistry 1995; 34:11099-105. [PMID: 7669767 DOI: 10.1021/bi00035a015] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The protein binding interactions of the constituent bacteriochlorophyll a molecules of the primary electron donor, P840, in isolated reaction centers from Chlorobium limicola f thiosulphatophilum and the electronic symmetry of the radical cation P840+. were determined using near-infrared Fourier transform (FT) Raman spectroscopy excited at 1064 nm. The FT Raman vibrational spectrum of P840 indicates that it is constituted of a single population of BChl a molecules which are spectrally indistinguishable. The BChl a molecules of P840 are pentacoordinated with only one axial ligand on the central Mg atom, and the pi-conjugated C2 acetyl and C9 keto carbonyls are free of hydrogen-bonding interactions. The FT Raman spectrum of P840+. exhibits a 1707 cm-1 band attributable to a BChl a C9 keto carbonyl group vibrational frequency that has upshifted 16 cm-1 upon oxidation of P840; this upshift is exactly one-half of that expected for the one-electron oxidation of monomeric BChl a in vitro. The 16 cm-1 upshift, thus, indicates that the resulting +1 charge is equally shared between two BChl a molecules. This situation is markedly different from that of the oxidized primary donor of the purple bacterial reaction center of Rhodobacter sphaeroides, (i) which exhibits a 1717 cm-1 band that has upshifted 26 cm-1, indicating an asymmetric distribution of the resulting +1 charge over the two constituent BChl a molecules, and (ii) whose H-bonding pattern with respect to the pi-conjugated carbonyl groups is asymmetric.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- U Feiler
- Section de Biophysique des Protéines et des Membranes, DBCM, CEA and URA 1290 CNRS, Centre d'Etudes de Saclay, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
48
|
MacDonald GM, Steenhuis JJ, Barry BA. A difference Fourier transform infrared spectroscopic study of chlorophyll oxidation in hydroxylamine-treated photosystem II. J Biol Chem 1995; 270:8420-8. [PMID: 7721736 DOI: 10.1074/jbc.270.15.8420] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In oxygenic photosynthesis, photosystem II is the chlorophyll-containing reaction center that carries out the light-induced transfer of electrons from water to plastoquinone. Fourier transform infrared spectroscopy can be used to obtain information about the structural changes that accompany electron transfer in photosystem II. The vibrational difference spectrum associated with the reduction of photosystem II acceptor quinones is of interest. Previously, a high concentration of the photosystem II donor, hydroxylamine, has been used to obtain a spectrum attributed to QA- -QA (Berthomieu, C., Nabedryk, E., Mantele, W. and Breton, J. FEBS Lett. (1990) 269, 363). Here, we use electron paramagnetic resonance, Fourier transform infrared spectroscopy, and 15N isotopic labeling to show that the difference infrared spectrum, obtained under these conditions, also exhibits a contribution from the oxidation of chlorophyll.
Collapse
Affiliation(s)
- G M MacDonald
- Department of Biochemistry, University of Minnesota, St. Paul 55108, USA
| | | | | |
Collapse
|
49
|
Hamm P, Zurek M, Mäntele W, Meyer M, Scheer H, Zinth W. Femtosecond infrared spectroscopy of reaction centers from Rhodobacter sphaeroides between 1000 and 1800 cm-1. Proc Natl Acad Sci U S A 1995; 92:1826-30. [PMID: 7892185 PMCID: PMC42375 DOI: 10.1073/pnas.92.6.1826] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Time-resolved pump-and-probe experiments of reaction centers of the purple bacterium Rhodobacter sphaeroides (R26) in the mid-IR region between 1000 and 1800 cm-1 are recorded with a time resolution of 300-400 fs. The difference spectra of the states P*, P+HA-, and P+QA- with respect to the ground state P predominantly reflect changes of the special pair. They show positive and negative bands due to changes of distinct vibrational modes superimposed on a broad background of enhanced absorption. A number of certain bands can be assigned to the special pair P, to the bacteriopheophytin HA, and to the quinone QA. The temporal evolution of the IR absorbance changes is well described by the time constants known from femtosecond spectroscopy of the electronic states. Differences occur only at very early times, which are indicative of fast vibrational relaxation with a time constant of a few hundred femtoseconds.
Collapse
Affiliation(s)
- P Hamm
- Institut für Medizinische Optik, Ludwig-Maximilians-Universität München, Germany
| | | | | | | | | | | |
Collapse
|
50
|
Lutz M. Red-band resonance raman spectroscopy of chlorophyll cofactors in photosynthetic proteins. ACTA ACUST UNITED AC 1995. [DOI: 10.1002/bspy.350010503] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|