1
|
When sperm meets egg-Fifty years of surprises. Methods Cell Biol 2019. [PMID: 30948014 DOI: 10.1016/bs.mcb.2019.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
This memoir/perspective provides some of the back-stories of my half-century fascination with the meeting of sperm and egg. I describe how testing a hypothesis about cell division switched my interests to fertilization and how teaching an undergraduate course resulted in a serendipitous discovery that later led to major insights about sperm-egg recognition. I complete this look at the past with a brief description of the work of a small community of young scientists that provided major insights about the arousal of the egg by the sperm. I end speculating on unappreciated/neglected approaches that might lead to a new way of thinking about the initiation of development at fertilization.
Collapse
|
2
|
Gaitán-Espitia JD, Hofmann GE. Gene expression profiling during the embryo-to-larva transition in the giant red sea urchin Mesocentrotus franciscanus. Ecol Evol 2017; 7:2798-2811. [PMID: 28428870 PMCID: PMC5395446 DOI: 10.1002/ece3.2850] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 01/20/2017] [Accepted: 02/01/2017] [Indexed: 01/24/2023] Open
Abstract
In echinoderms, major morphological transitions during early development are attributed to different genetic interactions and changes in global expression patterns that shape the regulatory program for the specification of embryonic territories. In order more thoroughly to understand these biological and molecular processes, we examined the transcriptome structure and expression profiles during the embryo‐to‐larva transition of a keystone species, the giant red sea urchin Mesocentrotus franciscanus. Using a de novo assembly approach, we obtained 176,885 transcripts from which 60,439 (34%) had significant alignments to known proteins. From these transcripts, ~80% were functionally annotated allowing the identification of ~2,600 functional, structural, and regulatory genes involved in developmental process. Analysis of expression profiles between gastrula and pluteus stages of M. franciscanus revealed 791 differentially expressed genes with 251 GO overrepresented terms. For gastrula, up‐regulated GO terms were mainly linked to cell differentiation and signal transduction involved in cell cycle checkpoints. In the pluteus stage, major GO terms were associated with phosphoprotein phosphatase activity, muscle contraction, and olfactory behavior, among others. Our evolutionary comparative analysis revealed that several of these genes and functional pathways are highly conserved among echinoids, holothuroids, and ophiuroids.
Collapse
Affiliation(s)
| | - Gretchen E Hofmann
- Department of Ecology, Evolution and Marine Biology University of California Santa Barbara CA USA
| |
Collapse
|
3
|
Cell electroporation with a three-dimensional microelectrode array on a printed circuit board. Bioelectrochemistry 2015; 102:35-41. [DOI: 10.1016/j.bioelechem.2014.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 08/13/2014] [Accepted: 10/14/2014] [Indexed: 01/04/2023]
|
4
|
Ho HY, Cheng ML, Chiu DTY. Glucose-6-phosphate dehydrogenase--beyond the realm of red cell biology. Free Radic Res 2014; 48:1028-48. [PMID: 24720642 DOI: 10.3109/10715762.2014.913788] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) is critical to the maintenance of NADPH pool and redox homeostasis. Conventionally, G6PD deficiency has been associated with hemolytic disorders. Most biochemical variants were identified and characterized at molecular level. Recently, a number of studies have shone light on the roles of G6PD in aspects of physiology other than erythrocytic pathophysiology. G6PD deficiency alters the redox homeostasis, and affects dysfunctional cell growth and signaling, anomalous embryonic development, and altered susceptibility to infection. The present article gives a brief review of basic science and clinical findings about G6PD, and covers the latest development in the field. Moreover, how G6PD status alters the susceptibility of the affected individuals to certain degenerative diseases is also discussed.
Collapse
Affiliation(s)
- H-Y Ho
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University , Kwei-san, Tao-yuan , Taiwan
| | | | | |
Collapse
|
5
|
Stanton RC. Glucose-6-phosphate dehydrogenase, NADPH, and cell survival. IUBMB Life 2012; 64:362-9. [PMID: 22431005 DOI: 10.1002/iub.1017] [Citation(s) in RCA: 494] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 02/07/2012] [Indexed: 02/06/2023]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) is the rate-limiting enzyme of the pentose phosphate pathway. Many scientists think that the roles and regulation of G6PD in physiology and pathophysiology have been well established as the enzyme was first identified 80 years ago. And that G6PD has been extensively studied especially with respect to G6PD deficiency and its association with hemolysis, and with respect to the role G6PD plays in lipid metabolism. But there has been a growing understanding of the central importance of G6PD to cellular physiology as it is a major source of NADPH that is required by many essential cellular systems including the antioxidant pathways, nitric oxide synthase, NADPH oxidase, cytochrome p450 system, and others. Indeed G6PD is essential for cell survival. It has also become evident that G6PD is highly regulated by many signals that affect transcription, post-translation, intracellular location, and interactions with other protein. Pathophysiologic roles for G6PD have also been identified in such disease processes as diabetes, aldosterone-induced endothelial dysfunction, cancer, and others. It is now clear that G6PD is under complex regulatory control and of central importance to many cellular processes. In this review the biochemistry, regulatory signals, physiologic roles, and pathophysiologic roles for G6PD that have been elucidated over the past 20 years are discussed.
Collapse
Affiliation(s)
- Robert C Stanton
- Renal Section, Joslin Diabetes Center, and Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
6
|
Yee DJ, Balsanek V, Bauman DR, Penning TM, Sames D. Fluorogenic metabolic probes for direct activity readout of redox enzymes: Selective measurement of human AKR1C2 in living cells. Proc Natl Acad Sci U S A 2006; 103:13304-9. [PMID: 16938874 PMCID: PMC1569159 DOI: 10.1073/pnas.0604672103] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The current arsenal of tools and methods for the continuous monitoring and imaging of redox metabolic pathways in the context of intact cells is limited. Fluorogenic substrates allow for direct measurement of enzyme activity in situ; however, in contrast to proteases and exo-glycosidases, there are no simple guidelines for the design of selective probes for redox metabolic enzymes. Here, we introduce redox probe 1 and demonstrate its high selectivity in living cells for human hydroxysteroid dehydrogenases (HSDs) of the aldo-keto reductase (AKR) superfamily. AKR1C isoforms perform multiple functions among which the metabolism of potent steroid hormones is well documented. Moreover, expression of these enzymes is responsive to cellular stress and pathogenesis, including cancer. Our probe design is based on redox-sensitive optical switches, which couple a ketone-alcohol redox event to a profound change in fluorescence. The high selectivity of phenyl ketone 1 for AKR1C2 over the many endogenous reductases present in mammalian cells was established by a quantitative comparison of the metabolic rates between null control cells (COS-1) and AKR1C2-transfected cells. Phenyl ketone 1 is a cell-permeable fluorogenic probe that permits a direct, real-time, and operationally simple readout of AKR1C2 enzyme activity in intact mammalian cells. Furthermore, it was demonstrated that probe 1 enables the quantitative examination of physiological substrate 5alpha-dihydrotestosterone ("dark substrate") in situ by means of a two-substrate competitive assay. Similarly, inhibitor potency of physiological (ursodeoxycholate) and synthetic inhibitors (flufenamic acid, ibuprofen, and naproxen) was also readily evaluated.
Collapse
Affiliation(s)
- Dominic J. Yee
- *Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027; and
| | - Vojtech Balsanek
- *Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027; and
| | - David R. Bauman
- Department of Pharmacology, University of Pennsylvania School of Medicine, 130C John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA 19104
| | - Trevor M. Penning
- Department of Pharmacology, University of Pennsylvania School of Medicine, 130C John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA 19104
| | - Dalibor Sames
- *Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
7
|
Fonovich de Schroeder TM. The effect of Zn2+ on glucose 6-phosphate dehydrogenase activity from Bufo arenarum toad ovary and alfalfa plants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2005; 60:123-131. [PMID: 15546627 DOI: 10.1016/j.ecoenv.2004.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2003] [Revised: 06/24/2004] [Accepted: 07/02/2004] [Indexed: 05/24/2023]
Abstract
The effect of Zn2+ on glucose 6-phosphate dehydrogenase (G6PD) activity was monitored in samples from Bufo arenarum toad ovary and alfalfa plants, in the search for a possible new bioindicator able to detect levels of exposure through contaminated soils, and also to elucidate possible similarities between the enzyme from animal and plant tissues. The in vivo effect was evaluated after exposure of the toads to the metal in Ringer solution during 30 days and after 10 days of treatment in 6 weeks old plants, cultured under laboratory conditions. In vitro effects were measured in different extracts from control samples and partially purified enzyme from ovarian tissue as well as in different extracts from control alfalfa plants, by addition of the metal to the reaction mixture containing the enzyme. G6PD from toad ovary was noncompetitively inhibited by zinc both in vivo and in vitro, under all the experimental conditions studied. A kinetic analysis of the enzyme activity showed that the Michaelis-Menten constant (Km) was not modified, while maximal velocity (Vmax) decreased as the consequence of treatment. It was not possible to obtain a dose-response curve for the effects of Zn2+ on G6PD from alfalfa whole plants, measured in vivo or in vitro. Only leaf extracts evidenced a possible relationship between treatment with the metal and G6PD activity alteration. The results agree with a possible role for G6PD as a biomarker of effect and exposure to Zn2+ in B. arenarum ovarian tissue but not in alfalfa plants.
Collapse
Affiliation(s)
- Teresa M Fonovich de Schroeder
- Escuela de Ciencia y Tecnología, Universidad Nacional de General San Martín, Alem 3901, 1653 Villa Ballester, Buenos Aires, Argentina.
| |
Collapse
|
8
|
|
9
|
Van Noorden CJ, Bahns S, Köhler A. Adaptational changes in kinetic parameters of G6PDH but not of PGDH during contamination-induced carcinogenesis in livers of North Sea flatfish. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1342:141-8. [PMID: 9392523 DOI: 10.1016/s0167-4838(97)00061-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Kinetic parameters of glucose-6-phosphate dehydrogenase (G6PDH) and phosphogluconate dehydrogenase (PGDH) were determined in situ in livers of marine flatfish flounder that were caught in unpolluted areas in the open sea and in the highly polluted river Elbe (Germany). Analysis was performed quantitatively in liver sections using valid enzyme histochemical methods and image analysis. G6PDH but not PGDH was strongly affected by contaminant exposure and subsequent carcinogenesis. G6PDH showed a gradual decrease in Vmax and Km for glucose-6-phosphate in extralesional normal-looking liver tissue. Hepatocellular carcinomas also showed a low Km, whereas the Vmax was upregulated. These findings are interpreted as follows: prolonged challenges of the livers by pollutants inhibit or inactivate G6PDH and this is compensated for by reduction in Km. In carcinomas, G6PDH levels are upregulated but the low Km values are kept to increase the NADPH production capacity required in cancer cells showing that posttranslational regulation processes are important to control cellular metabolism under various environmental conditions.
Collapse
Affiliation(s)
- C J Van Noorden
- Academic Medical Center, University of Amsterdam, Department of Cell Biology and Histology, The Netherlands.
| | | | | |
Collapse
|
10
|
REES BERNARDB, SWEZEY ROBERTR, KIBAK HENRIK, EPEL DAVID. Regulation of the pentose phosphate pathway at fertilization in sea urchin eggs. INVERTEBR REPROD DEV 1996. [DOI: 10.1080/07924259.1996.9672538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Jonker A, Geerts WJ, Charles R, Lamers WH, Van Noorden CJ. The dynamics of local kinetic parameters of glutamate dehydrogenase in rat liver. Histochem Cell Biol 1996; 106:437-43. [PMID: 8911973 DOI: 10.1007/bf02473304] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Kinetic parameters of glutamate dehydrogenase (GDH, EC 1.4.1.2) for glutamate were determined in periportal and pericentral zones of adult male and female rat liver lobules under normal fed conditions and after starvation for 24 h. GDH activity was measured as formazan production over time against a range of glutamate concentrations in serial cryostat sections using image analysis. Captured gray value images were transformed to absorbance images and local initial velocities (Vini) were calculated. A hyperbolic function was used to describe the relationship between substrate concentration and local Vini. Under fed conditions, Vmax values were similar in male and female rats (8 +/- 2 and 16 +/- 2 mumol min-1 cm-3 liver tissue in periportal and pericentral zones, respectively). Starvation increased Vmax, especially in pericentral zones of females (to 27 +/- 1 mumol min-1 cm-3 liver tissue). Under fed conditions, the affinity of GDH for glutamate was similar in male and female rats (2.5 +/- 0.5 mM and 3.5 +/- 0.8 mM in periportal and pericentral zones, respectively). Starvation had no effect on K(m) values in male rats, but in female rats affinity for glutamate decreased significantly in both zones (K(m) values of 4.0 +/- 0.1 mM and 8.6 +/- 0.8 mM, respectively). These local changes in the kinetic parameters of GDH indicate that conversion of glutamate to alpha-oxoglutarate cannot be predicted on the basis of GDH concentrations or zero-order activity in the different zones of liver lobules alone.
Collapse
Affiliation(s)
- A Jonker
- Academic Medical Centre, University of Amsterdam, Department of Anatomy and Embryology, The Netherlands
| | | | | | | | | |
Collapse
|
12
|
Griffini P, Smorenburg SM, Vogels IM, Tigchelaar W, Van Noorden CJ. Kupffer cells and pit cells are not effective in the defense against experimentally induced colon carcinoma metastasis in rat liver. Clin Exp Metastasis 1996; 14:367-80. [PMID: 8878411 DOI: 10.1007/bf00123396] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The present study was performed to investigate processes involved in circumvention of the immune system by advanced stages of tumor growth in the liver. The efficacy of Kupffer cells and pit cells against cancer cells was tested in vivo in an experimental model of colon carcinoma metastasis in rat liver. Liver tumors were induced by administration of CC531 colon cancer cells into the vena portae. After 3 weeks, livers were obtained and partly fixed for electron microscopic procedures or frozen in liquid nitrogen for enzyme and immunohistochemistry at the light microscope level. The activation status of Kupffer cells was studied by expression of Ia-antigen (MHC class II) and by measurement of glucose-6-phosphate dehydrogenase (G6PDH) activity in the cells in situ as a measure of production of reactive oxygen species. Large numbers of Kupffer cells were found in liver parenchyma surrounding colon carcinomas when compared with levels in control livers, but these cells were not activated. Large numbers of activated monocytes and macrophages, cytotoxic T cells but only a few pit cells were found to be recruited to the boundary between liver parenchyma and tumors or their stroma. In those areas where cancer cells invaded liver parenchyma, only newly recruited macrophages and some Kupffer cells were present but few cytotoxic T cells or pit cells were found. The low activation status of Kupffer cells both in terms of production of reactive oxygen species and Ia-antigen expression and the absence of significant numbers of pit cells at tumor sites suggest that Kupffer cells and pit cells do not play a significant role in advanced stages of tumor growth. High levels of prostaglandin E2 were detected in the parenchyma of livers containing tumors and transforming growth factor beta was detected in the stroma of the tumors, therefore suggest that cytotoxicity of newly recruited monocytes, macrophages and cytotoxic T cells may be limited in these stages because of local production of these immunosuppressive factors.
Collapse
Affiliation(s)
- P Griffini
- Department of Animal Biology and CNR Center for Histochemistry, University of Pavia, Italy
| | | | | | | | | |
Collapse
|
13
|
Van Noorden CJ, Jonges GN. Heterogeneity of kinetic parameters of enzymes in situ in rat liver lobules. Histochem Cell Biol 1995; 103:93-101. [PMID: 7634157 DOI: 10.1007/bf01454005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In the present review, metabolic compartmentation in liver lobules is discussed as being dynamic and more complex than thus far assumed on the basis of numbers of mRNA or protein molecules or the capacity (zero-order activity) of enzymes. Isoenzyme distribution patterns and local kinetic parameters of enzymes may vary over the different zones of liver lobules. As a consequence, metabolic fluxes in vivo at physiological substrate concentrations may be completely different from those that are assumed on the basis of the number of molecules or the capacity of enzymes present in zones of liver lobules. For a more correct estimation of the levels of metabolic processes in the different compartments of liver tissue, local kinetic parameters and substrate concentrations have to be determined to calculate local metabolic fluxes. Direct measurements of metabolic fluxes in vivo with the use of noninvasive techniques is a promising alternative and the techniques will become increasingly important in future metabolic research.
Collapse
Affiliation(s)
- C J Van Noorden
- Academic Medical Centre, University of Amsterdam, Laboratory of Cell Biology and Histology, The Netherlands
| | | |
Collapse
|
14
|
Van Noorden CJ, Jonges GN. Analysis of enzyme reactions in situ. THE HISTOCHEMICAL JOURNAL 1995; 27:101-18. [PMID: 7775194 DOI: 10.1007/bf00243905] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Estimations of metabolic rates in cells and tissues and their regulation on the basis of kinetic properties of enzymes in diluted solutions may not be applicable to intact living cells or tissues. Enzymes often behave differently in living cells because of the high cellular protein content that can lead to homologous and heterologous associations of protein molecules. These associations often change the kinetics of enzymes as part of post-translational regulation mechanisms. An overview is given of these interactions between enzyme molecules or between enzyme molecules and structural elements in the cell, such as the cytoskeleton. Biochemical and histochemical methods are discussed that have been developed for in vivo and in situ analyses of enzyme reactions, particularly for the study of effects of molecular interactions. Quantitative (histochemical) analysis of local enzyme reactions or fluxes of metabolites has become increasingly important. At present, it is possible to calculate local concentrations of substrates in cells or tissue compartments and to express local kinetic parameters in units that are directly comparable with those obtained by biochemical assays of enzymes in suspensions. In situ analysis of the activities of a number of enzymes have revealed variations in their kinetic properties (Km and Vmax) in different tissue compartments. This stresses the importance of in vivo or in situ analyses of cellular metabolism. Finally, histochemical determinations of enzyme activity in parallel with immunohistochemistry for the detection of the total number of enzyme molecules and in situ hybridization of its messenger RNA allow the analysis of regulation mechanisms at all levels between transcription of the gene and post-translational activity modulation.
Collapse
Affiliation(s)
- C J Van Noorden
- Academic Medical Centre, University of Amsterdam, Laboratory of Cell Biology and Histology, The Netherlands
| | | |
Collapse
|
15
|
Gabriel B, Teissié J. Generation of reactive-oxygen species induced by electropermeabilization of Chinese hamster ovary cells and their consequence on cell viability. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 223:25-33. [PMID: 8033899 DOI: 10.1111/j.1432-1033.1994.tb18962.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cells can be permeabilized transiently when pulsed by a brief intense external electric field. The molecular and cellular bases of cell electropermeabilization are still unclear. This process can be described by a local transient membrane organisation in which high permeability exists. In this study, using the chemiluminescent probe lucigenin, we showed that electropulsation of Chinese hamster ovary cells induced generation of reactive oxygen species at the electropermeabilized cell level. This generation was directly associated with the part of the membrane surface which is electrically restructured, as shown by its dependence on electric parameters. The electroinduced cell process was activated by Ca2+ and Mg2+ ions, and by exogenous adenosine 5'-triphosphate. A metal-ion-catalyzed Haber-Weiss reaction was thought to occur in the process, as shown by the action of effector molecules of Haber-Weiss reaction such as the chelating agent EDTA, and the hydroxyl radical scavenger dimethylsulfoxide. The modulation of the oxygen species electroinduction and the use of antioxidant products (dimethylsulfoxide, sodium L-ascorbate) showed that cell survival after electric treatment was directly correlated to the oxidative jump intensity. This observation had to be associated with the cell-damaging action of oxygen-reactive species.
Collapse
Affiliation(s)
- B Gabriel
- Laboratoire de Pharmacologie et de Toxicologie Fondamentales du CNRS, Département III Glycoconjugués et Biomembranes, Toulouse, France
| | | |
Collapse
|
16
|
Prausnitz MR, Milano CD, Gimm JA, Langer R, Weaver JC. Quantitative study of molecular transport due to electroporation: uptake of bovine serum albumin by erythrocyte ghosts. Biophys J 1994; 66:1522-30. [PMID: 8061201 PMCID: PMC1275872 DOI: 10.1016/s0006-3495(94)80943-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Electroporation is believed to involve the creation of aqueous pathways in lipid bilayer membranes by transient elevation of the transmembrane voltage to approximately 1 V. Here, results are presented for a quantitative study of the number of bovine serum albumin (BSA) molecules transported into erythrocyte ghosts caused by electroportion. 1) Uptake of BSA was found to plateau at high field strength. However, this was not necessarily an absolute maximum in transport. Instead, it represented the maximum effect of increasing field strength for a particular pulse protocol. 2) Maximum uptake under any conditions used in this study corresponded to approximately one-fourth of apparent equilibrium with the external solution. 3) Multiple and longer pulses each increased uptake of BSA, where the total time integral of field strength correlated with uptake, independent of inter-pulse spacing. 4) Pre-pulse adsorption of BSA to ghost membranes appears to have increased transport. 5) Most transport of BSA probably occurred by electrically driven transport during pulses; post-pulse uptake occurred, but to a much lesser extent. Finally, approaches to increasing transport are discussed.
Collapse
Affiliation(s)
- M R Prausnitz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge 02139
| | | | | | | | | |
Collapse
|
17
|
Tian W, Pignatare J, Stanton R. Signal transduction proteins that associate with the platelet-derived growth factor (PDGF) receptor mediate the PDGF-induced release of glucose-6-phosphate dehydrogenase from permeabilized cells. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36695-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
18
|
Farquharson C, Milne J, Loveridge N. Mitogenic action of insulin-like growth factor-I on human osteosarcoma MG-63 cells and rat osteoblasts maintained in situ: the role of glucose-6-phosphate dehydrogenase. BONE AND MINERAL 1993; 22:105-15. [PMID: 8251763 DOI: 10.1016/s0169-6009(08)80222-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The mechanisms involved in the mitogenic actions of insulin-like growth factor-I (IGF-I) on skeletal cells are at present unclear. We have investigated the role of glucose-6-phosphate dehydrogenase (G6PD) in this mechanism and provide strong evidence that stimulation of G6PD activity is required for the growth promoting activities of IGF-I. IGF-I (10 ng/ml) significantly elevated G6PD activity in MG-63 human osteosarcoma cells within 30 min which preceded the IGF-I induced DNA synthesis in these cells. Inhibition of G6PD activity by epiandrosterone decreased DNA synthesis in IGF-I stimulated MG-63 cells but this was partly overcome by the addition of a combination of the four deoxyribonucleosides. IGF-I did not cause a general increase in cell metabolism as succinate dehydrogenase and iso-citrate dehydrogenase activity were not altered. Although IGF-I caused a significant increase in lactate dehydrogenase activity this was not inhibited by epiandrosterone. The culture of metatarsals of 4-week-old rats with IGF-I (10 ng/ml) also stimulated G6PD activity in osteoblasts lining the metaphyseal trabeculae.
Collapse
Affiliation(s)
- C Farquharson
- Bone Growth and Metabolism Unit, Rowett Research Institute, Bucksburn, Aberdeen, Scotland
| | | | | |
Collapse
|
19
|
Ozols J. Isolation and the complete amino acid sequence of lumenal endoplasmic reticulum glucose-6-phosphate dehydrogenase. Proc Natl Acad Sci U S A 1993; 90:5302-6. [PMID: 8506377 PMCID: PMC46704 DOI: 10.1073/pnas.90.11.5302] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
I have isolated glucose-6-phosphate dehydrogenase from rabbit liver microsomes and determined its complete amino acid sequence. Sequence determination was achieved by automated Edman degradation of peptides generated by chemical and enzymatic cleavages. The microsomal enzyme consists of 763 residues and is quite dissimilar from the previously characterized cytosolic enzymes. The N terminus of the microsomal enzyme is blocked by a pyroglutamyl residue. Carbohydrate is attached at Asn-138 and Asn-263, implying that the bulk of the protein is oriented on the lumenal side of the endoplasmic membrane. The amino acid sequence of the microsomal protein shows limited homology to the extensively sequenced cytosolic glucose-6-phosphate dehydrogenases. Clusters of up to six identical residues can be identified in four regions: peptide segments at residues 10-21, 154-163, and 173-261. In addition, another array of identical residues, requiring a 100-residue deletion in the sequence of the microsomal enzyme, spans residues 436-462 and corresponds to residues 348-373 of the cytosolic protein. Two segments with a Gly-Xaa-Gly-Xaa-Xaa-Gly motif, related to a coenzyme binding fold, were identified at Gly-399 and Gly-491. In the cytosolic enzymes, a variation of this sequence motif occurs at Gly-37 and Gly-241. The 300-residue C-terminal segment of the microsomal enzyme is unique and has no counterpart in the cytosolic or the bacterial enzymes. An unexpected finding with regard to the microsomal enzyme is that it lacks an identifiable membrane-spanning region or the lumenal-protein C-terminal consensus sequences Lys-Asp-Glu or His-Ile/Thr-Glu-Leu. Thus, the mode of transport and retention of this protein in the lumen of endoplasmic reticulum remains to be determined.
Collapse
Affiliation(s)
- J Ozols
- Department of Biochemistry, University of Connecticut Health Center, Farmington 06030-3305
| |
Collapse
|
20
|
Stanton R, Seifter J, Boxer D, Zimmerman E, Cantley L. Rapid release of bound glucose-6-phosphate dehydrogenase by growth factors. Correlation with increased enzymatic activity. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)98918-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
21
|
Whalley T, Crossley I, Whitaker M. Phosphoprotein inhibition of calcium-stimulated exocytosis in sea urchin eggs. J Cell Biol 1991; 113:769-78. [PMID: 2026649 PMCID: PMC2288987 DOI: 10.1083/jcb.113.4.769] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have investigated the role of protein phosphorylation in the control of exocytosis in sea urchin eggs by treating eggs with a thio-analogue of ATP. ATP gamma S (adenosine 5'-O-3-thiotriphosphate) is a compound which can be used as a phosphoryl donor by protein kinases, leading to irreversible protein thiophosphorylation (Gratecos, D., and E.H. Fischer. 1974. Biochem. Biophys. Res. Commun. 58:960-967). Microinjection of ATP gamma S inhibits cortical granule exocytosis, but has no effect on the sperm-egg signal transduction mechanisms which normally cause exocytosis by generating an increase in [Ca2+]i. ATP gamma S requires cytosolic factors for its inhibition of cortical granule exocytosis: it does not affect exocytosis when applied directly to the isolated exocytotic apparatus. Our data suggest that ATP gamma S irreversibly inhibits exocytosis via thiophosphorylation of proteins associated with the egg cortex. We have identified two thiophosphorylated proteins (33 and 27 kD) that are associated with the isolated exocytotic apparatus. They may mediate the inhibition of exocytosis by ATP gamma S. In addition, we show that okadaic acid, an inhibitor of phosphoprotein phosphatases, prevents cortical granule exocytosis at fertilization without affecting calcium mobilization. Like ATP gamma S, okadaic acid has no effect on exocytosis in vitro. Our results suggest that an inhibitory phosphoprotein can obstruct calcium-stimulated exocytosis in sea urchin eggs; on the other hand, they do not readily support the idea that a protein phosphatase is an essential component of the mechanism controlling exocytosis.
Collapse
Affiliation(s)
- T Whalley
- Department of Physiology, University College London, United Kingdom
| | | | | |
Collapse
|
22
|
Crossley I, Whalley T, Whitaker M. Guanosine 5'-thiotriphosphate may stimulate phosphoinositide messenger production in sea urchin eggs by a different route than the fertilizing sperm. CELL REGULATION 1991; 2:121-33. [PMID: 1650582 PMCID: PMC361729 DOI: 10.1091/mbc.2.2.121] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We show that microinjecting guanosine-5'-thiotriphosphate (GTP gamma S) into unfertilized sea urchin eggs generates an intracellular free calcium concentration [( Ca]i) transient apparently identical in magnitude and duration to the calcium transient that activates the egg at fertilization. The GTP gamma S-induced transient is blocked by prior microinjection of the inositol trisphosphate (InsP3) antagonist heparin. GTP gamma S injection also causes stimulation of the egg's Na+/H+ antiporter via protein kinase C, even in the absence of a [Ca]i increase. These data suggest that GTP gamma S acts by stimulating the calcium-independent production of the phosphoinositide messengers InsP3 and diacylglycerol (DAG). However, the fertilization [Ca]i transient is not affected by heparin, nor can the sperm cause calcium-independent stimulation of protein kinase C. It seems that the bulk of InsP3 and DAG production at fertilization is triggered by the [Ca]i transient, not by the sperm itself. GDP beta S, a G-protein antagonist, does not affect the fertilization [Ca]i transient. Our findings do not support the idea that signal transduction at fertilization operates via a G-protein linked directly to a plasma membrane sperm receptor.
Collapse
Affiliation(s)
- I Crossley
- Department of Physiology, University College London, United Kingdom
| | | | | |
Collapse
|
23
|
|
24
|
Epel D. The initiation of development at fertilization. CELL DIFFERENTIATION AND DEVELOPMENT : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF DEVELOPMENTAL BIOLOGISTS 1990; 29:1-12. [PMID: 2154300 DOI: 10.1016/0922-3371(90)90019-s] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
As seen, important advances have now been made in understanding the beginning of development at fertilization. Free calcium and pHi level changes result from a sperm-mediated breakdown of PPI with production of IP3. The resultant calcium increase, either alone or in concert with diacylglycerol, activates the Na(+)-H+ exchange and a consequent cytosolic pHi level increase. The calcium increase is responsible for the NADP change (via NAD kinase) and possibly the change in G6PD. These two changes could be involved solely in producing NADPH for fertilization membrane hardening or these changes could also have some role in the later initiation of DNA synthesis. The finding that other enzymes assayed in permeabilized cells also evince large changes in activity suggests that a global change may be occurring with important portents for cell activity. The role of calcium in furthering subsequent synthetic events, however, is unclear since no calcium target has yet been described that is necessary for the subsequent specific synthesis of proteins, as cyclins, or for the initiation of DNA synthesis. The pHi level increase, in concert with increased calcium, might be sufficient to start off protein synthesis and subsequent cyclin accumulation. However, the pHi level increase, independently of protein synthesis, can initiate new DNA synthesis. These independent events converge in the putative activation of MPF by cyclin, which then starts off the first mitotic cycle. Other independent events are associated with the sperm entry, cortical modifications, fertilization membrane elevation and the numerous changes leading to the fusion of the sperm and egg nucleus in the egg center. Fertilization represents one of the best studied examples of how a covert developmental program is made overt by an external messenger. The challenges for the near future are to explain how sperm-egg contact leads to PPI hydrolysis and how pHi level changes (and Cai level changes?) lead to the initiation of the cell cycle. The challenge for the distant future is describing how this program is set up during oogenesis.
Collapse
Affiliation(s)
- D Epel
- Hopkins Marine Station, Department of Biological Sciences, Stanford University, Pacific Grove, CA 93950
| |
Collapse
|
25
|
Swezey RR, Epel D. Stable, resealable pores formed in sea urchin eggs by electric discharge (electroporation) permit substrate loading for assay of enzymes in vivo. CELL REGULATION 1989; 1:65-74. [PMID: 2519619 PMCID: PMC361426 DOI: 10.1091/mbc.1.1.65] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We describe a simple electroporation procedure for loading suspensions of unfertilized sea urchin eggs with impermeant small molecules under conditions that allow close to 90% successful fertilization and development. Poration is carried out in a low-Ca2+ medium that mimicks the intracellular milieu. The induced pores remain open for several minutes in this medium, allowing loading of the cells; resealing is achieved by adding back millimolar calcium ions to the medium. While the pores are open, an influx of exogenous molecules and efflux of endogenous metabolites takes place, and the eggs can lose up to 40% of their ATP content and still survive. Introduced metabolites are utilized by the cells, e.g., introduced 3H-thymidine is incorporated into DNA. This procedure will be useful for loading impermeant substrates into eggs, permitting in vivo assessment of metabolism, and also for introducing other interesting impermeant molecules, such as inhibitors, fluorescent indicators, etc. Though the details may differ, the principle of electroporation in an intracellular-like medium may prove to be useful for loading other cell types with minimal loss of viability.
Collapse
Affiliation(s)
- R R Swezey
- Hopkins Marine Station, Stanford University, Pacific Grove, California 93950
| | | |
Collapse
|