1
|
Liao Q, Brandão HB, Ren Z, Wang X. Replisomes restrict SMC-mediated DNA-loop extrusion in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.23.639750. [PMID: 40027636 PMCID: PMC11870623 DOI: 10.1101/2025.02.23.639750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Structural maintenance of chromosomes (SMC) complexes organize genomes by extruding DNA loops, while replisomes duplicate entire chromosomes. These essential molecular machines must collide frequently in every cell cycle, yet how such collisions are resolved in vivo remains poorly understood. Taking advantage of the ability to load SMC complexes at defined sites in the Bacillus subtilis genome, we engineered head-on and head-to-tail collisions between SMC complexes and the replisome. Replisome progression was monitored by marker frequency analysis, and SMC translocation was monitored by time-resolved ChIP-seq and Hi-C. We found that SMC complexes do not impede replisome progression. By contrast, replisomes restrict SMC translocation regardless of collision orientations. Combining experimental data with simulations, we determined that SMC complexes are blocked by the replisome and then released from the chromosome. Occasionally, SMC complexes can bypass the replisome and continue translocating. Our findings establish that the replisome is a barrier to SMC-mediated DNA-loop extrusion in vivo , with implications for processes such as chromosome segregation, DNA repair, and gene regulation that require dynamic chromosome organization in all organisms.
Collapse
|
2
|
Fatima NI, Fazili KM, Bhat NH. Proteolysis dependent cell cycle regulation in Caulobacter crescentus. Cell Div 2022; 17:3. [PMID: 35365160 PMCID: PMC8973945 DOI: 10.1186/s13008-022-00078-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 02/22/2022] [Indexed: 11/10/2022] Open
Abstract
Caulobacter crescentus, a Gram-negative alpha-proteobacterium, has surfaced as a powerful model system for unraveling molecular networks that control the bacterial cell cycle. A straightforward synchronization protocol and existence of many well-defined developmental markers has allowed the identification of various molecular circuits that control the underlying differentiation processes executed at the level of transcription, translation, protein localization and dynamic proteolysis. The oligomeric AAA+ protease ClpXP is a well-characterized example of an enzyme that exerts post-translational control over a number of pathways. Also, the proteolytic pathways of its candidate proteins are reported to play significant roles in regulating cell cycle and protein quality control. A detailed evaluation of the impact of its proteolysis on various regulatory networks of the cell has uncovered various significant cellular roles of this protease in C. crescentus. A deeper insight into the effects of regulatory proteolysis with emphasis on cell cycle progression could shed light on how cells respond to environmental cues and implement developmental switches. Perturbation of this network of molecular machines is also associated with diseases such as bacterial infections. Thus, research holds immense implications in clinical translation and health, representing a promising area for clinical advances in the diagnosis, therapeutics and prognosis.
Collapse
Affiliation(s)
- Nida I Fatima
- Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Khalid Majid Fazili
- Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Nowsheen Hamid Bhat
- Department of Biotechnology, Central University of Kashmir, Ganderbal, Jammu and Kashmir, 191201, India.
| |
Collapse
|
3
|
Modeling the temporal dynamics of master regulators and CtrA proteolysis in Caulobacter crescentus cell cycle. PLoS Comput Biol 2022; 18:e1009847. [PMID: 35089921 PMCID: PMC8865702 DOI: 10.1371/journal.pcbi.1009847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/23/2022] [Accepted: 01/18/2022] [Indexed: 12/03/2022] Open
Abstract
The cell cycle of Caulobacter crescentus involves the polar morphogenesis and an asymmetric cell division driven by precise interactions and regulations of proteins, which makes Caulobacter an ideal model organism for investigating bacterial cell development and differentiation. The abundance of molecular data accumulated on Caulobacter motivates system biologists to analyze the complex regulatory network of cell cycle via quantitative modeling. In this paper, We propose a comprehensive model to accurately characterize the underlying mechanisms of cell cycle regulation based on the study of: a) chromosome replication and methylation; b) interactive pathways of five master regulatory proteins including DnaA, GcrA, CcrM, CtrA, and SciP, as well as novel consideration of their corresponding mRNAs; c) cell cycle-dependent proteolysis of CtrA through hierarchical protease complexes. The temporal dynamics of our simulation results are able to closely replicate an extensive set of experimental observations and capture the main phenotype of seven mutant strains of Caulobacter crescentus. Collectively, the proposed model can be used to predict phenotypes of other mutant cases, especially for nonviable strains which are hard to cultivate and observe. Moreover, the module of cyclic proteolysis is an efficient tool to study the metabolism of proteins with similar mechanisms. Timed cellular events in both eukaryotes and prokaryotes, such as chromosome replication, transcription, cell differentiation, cytokinesis, and cell division, are controlled by remarkably complex genetic regulations and protein-protein interactions. In this work, we investigate the cell cycle of Caulobacter crescentus, an alphaproteobacterium undergoing asymmetric cell divisions, to understand mechanisms underlying temporal regulations of complex cellular events. The asymmetric lifestyle makes Caulobacter crescentus easily synchronized and tracked, which is the foundation of molecular data accumulation. Here, we utilize the mathematical modeling together with experimental information to systematically integrate the complex gene-protein and protein-protein interactions in cell cycle progression. Using the mathematical model, we capture core features of cell cycle-dependent methylation, transcription, and proteolysis. In mutant cases, we found the complex and redundant regulatory network ensure the robustness of Caulobacter crescentus system because the change of most molecules does not cause immediate mortality, although they influence the time points of cell differentiation and division. The overall model and individual modules such as simulating transcriptional regulations and protease complexes can be further extended to the study of cell development in other bacterial species.
Collapse
|
4
|
Lasker K, von Diezmann L, Zhou X, Ahrens DG, Mann TH, Moerner WE, Shapiro L. Selective sequestration of signalling proteins in a membraneless organelle reinforces the spatial regulation of asymmetry in Caulobacter crescentus. Nat Microbiol 2020; 5:418-429. [PMID: 31959967 PMCID: PMC7549192 DOI: 10.1038/s41564-019-0647-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/25/2019] [Indexed: 12/16/2022]
Abstract
Selective recruitment and concentration of signalling proteins within membraneless compartments is a ubiquitous mechanism for subcellular organization1-3. The dynamic flow of molecules into and out of these compartments occurs on faster timescales than for membrane-enclosed organelles, presenting a possible mechanism to control spatial patterning within cells. Here, we combine single-molecule tracking and super-resolution microscopy, light-induced subcellular localization, reaction-diffusion modelling and a spatially resolved promoter activation assay to study signal exchange in and out of the 200 nm cytoplasmic pole-organizing protein popZ (PopZ) microdomain at the cell pole of the asymmetrically dividing bacterium Caulobacter crescentus4-8. Two phospho-signalling proteins, the transmembrane histidine kinase CckA and the cytoplasmic phosphotransferase ChpT, provide the only phosphate source for the cell fate-determining transcription factor CtrA9-18. We find that all three proteins exhibit restricted rates of entry into and escape from the microdomain as well as enhanced phospho-signalling within, leading to a submicron gradient of activated CtrA-P19 that is stable and sublinear. Entry into the microdomain is selective for cytosolic proteins and requires a binding pathway to PopZ. Our work demonstrates how nanoscale protein assemblies can modulate signal propagation with fine spatial resolution, and that in Caulobacter, this modulation serves to reinforce asymmetry and differential cell fate of the two daughter cells.
Collapse
Affiliation(s)
- Keren Lasker
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lexy von Diezmann
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT, USA
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Xiaofeng Zhou
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel G Ahrens
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas H Mann
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - W E Moerner
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Lucy Shapiro
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
5
|
Two-step chromosome segregation in the stalked budding bacterium Hyphomonas neptunium. Nat Commun 2019; 10:3290. [PMID: 31337764 PMCID: PMC6650430 DOI: 10.1038/s41467-019-11242-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/28/2019] [Indexed: 12/11/2022] Open
Abstract
Chromosome segregation typically occurs after replication has finished in eukaryotes but during replication in bacteria. Here, we show that the alphaproteobacterium Hyphomonas neptunium, which proliferates by bud formation at the tip of a stalk-like cellular extension, segregates its chromosomes in a unique two-step process. First, the two sister origin regions are targeted to opposite poles of the mother cell, driven by the ParABS partitioning system. Subsequently, once the bulk of chromosomal DNA has been replicated and the bud exceeds a certain threshold size, the cell initiates a second segregation step during which it transfers the stalk-proximal origin region through the stalk into the nascent bud compartment. Thus, while chromosome replication and segregation usually proceed concurrently in bacteria, the two processes are largely uncoupled in H. neptunium, reminiscent of eukaryotic mitosis. These results indicate that stalked budding bacteria have evolved specific mechanisms to adjust chromosome segregation to their unusual life cycle.
Collapse
|
6
|
Novel Chromosome Organization Pattern in Actinomycetales-Overlapping Replication Cycles Combined with Diploidy. mBio 2017; 8:mBio.00511-17. [PMID: 28588128 PMCID: PMC5461407 DOI: 10.1128/mbio.00511-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Bacteria regulate chromosome replication and segregation tightly with cell division to ensure faithful segregation of DNA to daughter generations. The underlying mechanisms have been addressed in several model species. It became apparent that bacteria have evolved quite different strategies to regulate DNA segregation and chromosomal organization. We have investigated here how the actinobacterium Corynebacterium glutamicum organizes chromosome segregation and DNA replication. Unexpectedly, we found that C. glutamicum cells are at least diploid under all of the conditions tested and that these organisms have overlapping C periods during replication, with both origins initiating replication simultaneously. On the basis of experimental data, we propose growth rate-dependent cell cycle models for C. glutamicum. Bacterial cell cycles are known for few model organisms and can vary significantly between species. Here, we studied the cell cycle of Corynebacterium glutamicum, an emerging cell biological model organism for mycolic acid-containing bacteria, including mycobacteria. Our data suggest that C. glutamicum carries two pole-attached chromosomes that replicate with overlapping C periods, thus initiating a new round of DNA replication before the previous one is terminated. The newly replicated origins segregate to midcell positions, where cell division occurs between the two new origins. Even after long starvation or under extremely slow-growth conditions, C. glutamicum cells are at least diploid, likely as an adaptation to environmental stress that may cause DNA damage. The cell cycle of C. glutamicum combines features of slow-growing organisms, such as polar origin localization, and fast-growing organisms, such as overlapping C periods.
Collapse
|
7
|
Abstract
It has recently been demonstrated that bacterial chromosomes are highly organized, with specific positioning of the replication initiation region. Moreover, the positioning of the replication machinery (replisome) has been shown to be variable and dependent on species-specific cell cycle features. Here, we analyzed replisome positions in Mycobacterium smegmatis, a slow-growing bacterium that exhibits characteristic asymmetric polar cell extension. Time-lapse fluorescence microscopy analyses revealed that the replisome is slightly off-center in mycobacterial cells, a feature that is likely correlated with the asymmetric growth of Mycobacterium cell poles. Estimates of the timing of chromosome replication in relation to the cell cycle, as well as cell division and chromosome segregation events, revealed that chromosomal origin-of-replication (oriC) regions segregate soon after the start of replication. Moreover, our data demonstrate that organization of the chromosome by ParB determines the replisome choreography. Despite significant progress in elucidating the basic processes of bacterial chromosome replication and segregation, understanding of chromosome dynamics during the mycobacterial cell cycle remains incomplete. Here, we provide in vivo experimental evidence that replisomes in Mycobacterium smegmatis are highly dynamic, frequently splitting into two distinct replication forks. However, unlike in Escherichia coli, the forks do not segregate toward opposite cell poles but remain in relatively close proximity. In addition, we show that replication cycles do not overlap. Finally, our data suggest that ParB participates in the positioning of newly born replisomes in M. smegmatis cells. The present results broaden our understanding of chromosome segregation in slow-growing bacteria. In view of the complexity of the mycobacterial cell cycle, especially for pathogenic representatives of the genus, understanding the mechanisms and factors that affect chromosome dynamics will facilitate the identification of novel antimicrobial factors.
Collapse
|
8
|
Global methylation state at base-pair resolution of the Caulobacter genome throughout the cell cycle. Proc Natl Acad Sci U S A 2013; 110:E4658-67. [PMID: 24218615 DOI: 10.1073/pnas.1319315110] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Caulobacter DNA methyltransferase CcrM is one of five master cell-cycle regulators. CcrM is transiently present near the end of DNA replication when it rapidly methylates the adenine in hemimethylated GANTC sequences. The timing of transcription of two master regulator genes and two cell division genes is controlled by the methylation state of GANTC sites in their promoters. To explore the global extent of this regulatory mechanism, we determined the methylation state of the entire chromosome at every base pair at five time points in the cell cycle using single-molecule, real-time sequencing. The methylation state of 4,515 GANTC sites, preferentially positioned in intergenic regions, changed progressively from full to hemimethylation as the replication forks advanced. However, 27 GANTC sites remained unmethylated throughout the cell cycle, suggesting that these protected sites could participate in epigenetic regulatory functions. An analysis of the time of activation of every cell-cycle regulatory transcription start site, coupled to both the position of a GANTC site in their promoter regions and the time in the cell cycle when the GANTC site transitions from full to hemimethylation, allowed the identification of 59 genes as candidates for epigenetic regulation. In addition, we identified two previously unidentified N(6)-methyladenine motifs and showed that they maintained a constant methylation state throughout the cell cycle. The cognate methyltransferase was identified for one of these motifs as well as for one of two 5-methylcytosine motifs.
Collapse
|
9
|
Harms A, Treuner-Lange A, Schumacher D, Søgaard-Andersen L. Tracking of chromosome and replisome dynamics in Myxococcus xanthus reveals a novel chromosome arrangement. PLoS Genet 2013; 9:e1003802. [PMID: 24068967 PMCID: PMC3778016 DOI: 10.1371/journal.pgen.1003802] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/31/2013] [Indexed: 11/24/2022] Open
Abstract
Cells closely coordinate cell division with chromosome replication and segregation; however, the mechanisms responsible for this coordination still remain largely unknown. Here, we analyzed the spatial arrangement and temporal dynamics of the 9.1 Mb circular chromosome in the rod-shaped cells of Myxococcus xanthus. For chromosome segregation, M. xanthus uses a parABS system, which is essential, and lack of ParB results in chromosome segregation defects as well as cell divisions over nucleoids and the formation of anucleate cells. From the determination of the dynamic subcellular location of six genetic loci, we conclude that in newborn cells ori, as monitored following the ParB/parS complex, and ter regions are localized in the subpolar regions of the old and new cell pole, respectively and each separated from the nearest pole by approximately 1 µm. The bulk of the chromosome is arranged between the two subpolar regions, thus leaving the two large subpolar regions devoid of DNA. Upon replication, one ori region remains in the original subpolar region while the second copy segregates unidirectionally to the opposite subpolar region followed by the rest of the chromosome. In parallel, the ter region of the mother chromosome relocates, most likely passively, to midcell, where it is replicated. Consequently, after completion of replication and segregation, the two chromosomes show an ori-ter-ter-ori arrangement with mirror symmetry about a transverse axis at midcell. Upon completion of segregation of the ParB/parS complex, ParA localizes in large patches in the DNA-free subpolar regions. Using an Ssb-YFP fusion as a proxy for replisome localization, we observed that the two replisomes track independently of each other from a subpolar region towards ter. We conclude that M. xanthus chromosome arrangement and dynamics combine features from previously described systems with new features leading to a novel spatiotemporal arrangement pattern. Work on several model organisms has revealed that bacterial chromosomes are spatially highly arranged throughout the cell cycle in a dynamic yet reproducible manner. These analyses have also demonstrated significant differences between chromosome arrangements and dynamics in different bacterial species. Here, we show that the Myxococcus xanthus genome is arranged about a longitudinal axis with ori in a subpolar region and ter in the opposite subpolar region. Upon replication, one ori remains at the original subpolar region while the second copy in a directed and parABS-dependent manner segregates to the opposite subpolar region followed by the rest of the chromosome. In parallel, ter relocates from a subpolar region to midcell. Replication involves replisomes that track independently of each other from the ori-containing subpolar region towards ter. Moreover, we find that the parABS system is essential in M. xanthus and ParB depletion not only results in chromosome segregation defects but also in cell division defects with cell divisions occurring over nucleoids. In M. xanthus the dynamics of chromosome replication and segregation combine features from previously described systems leading to a novel spatiotemporal arrangement pattern.
Collapse
Affiliation(s)
- Andrea Harms
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Anke Treuner-Lange
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Dominik Schumacher
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Lotte Søgaard-Andersen
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- * E-mail:
| |
Collapse
|
10
|
O'Donnell M, Langston L, Stillman B. Principles and concepts of DNA replication in bacteria, archaea, and eukarya. Cold Spring Harb Perspect Biol 2013; 5:5/7/a010108. [PMID: 23818497 DOI: 10.1101/cshperspect.a010108] [Citation(s) in RCA: 220] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The accurate copying of genetic information in the double helix of DNA is essential for inheritance of traits that define the phenotype of cells and the organism. The core machineries that copy DNA are conserved in all three domains of life: bacteria, archaea, and eukaryotes. This article outlines the general nature of the DNA replication machinery, but also points out important and key differences. The most complex organisms, eukaryotes, have to coordinate the initiation of DNA replication from many origins in each genome and impose regulation that maintains genomic integrity, not only for the sake of each cell, but for the organism as a whole. In addition, DNA replication in eukaryotes needs to be coordinated with inheritance of chromatin, developmental patterning of tissues, and cell division to ensure that the genome replicates once per cell division cycle.
Collapse
Affiliation(s)
- Michael O'Donnell
- The Rockefeller University and Howard Hughes Medical Institute, New York, New York 10065, USA
| | | | | |
Collapse
|
11
|
Wegrzyn K, Witosinska M, Schweiger P, Bury K, Jenal U, Konieczny I. RK2 plasmid dynamics in Caulobacter crescentus cells--two modes of DNA replication initiation. MICROBIOLOGY-SGM 2013; 159:1010-1022. [PMID: 23538715 DOI: 10.1099/mic.0.065490-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Undisturbed plasmid dynamics is required for the stable maintenance of plasmid DNA in bacterial cells. In this work, we analysed subcellular localization, DNA synthesis and nucleoprotein complex formation of plasmid RK2 during the cell cycle of Caulobacter crescentus. Our microscopic observations showed asymmetrical distribution of plasmid RK2 foci between the two compartments of Caulobacter predivisional cells, resulting in asymmetrical allocation of plasmids to progeny cells. Moreover, using a quantitative PCR (qPCR) method, we estimated that multiple plasmid particles form a single fluorescent focus and that the number of plasmids per focus is approximately equal in both swarmer and predivisional Caulobacter cells. Analysis of the dynamics of TrfA-oriV complex formation during the Caulobacter cell cycle revealed that TrfA binds oriV primarily during the G1 phase, however, plasmid DNA synthesis occurs during the S and G2 phases of the Caulobacter cell cycle. Both in vitro and in vivo analysis of RK2 replication initiation in C. crescentus cells demonstrated that it is independent of the Caulobacter DnaA protein in the presence of the longer version of TrfA protein, TrfA-44. However, in vivo stability tests of plasmid RK2 derivatives suggested that a DnaA-dependent mode of plasmid replication initiation is also possible.
Collapse
Affiliation(s)
- Katarzyna Wegrzyn
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, ul. Kladki 24, 80-822 Gdansk, Poland
| | - Monika Witosinska
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, ul. Kladki 24, 80-822 Gdansk, Poland
| | - Pawel Schweiger
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, ul. Kladki 24, 80-822 Gdansk, Poland
| | - Katarzyna Bury
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, ul. Kladki 24, 80-822 Gdansk, Poland
| | - Urs Jenal
- Center for Molecular Life Sciences, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Igor Konieczny
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, ul. Kladki 24, 80-822 Gdansk, Poland
| |
Collapse
|
12
|
Dame RT, Tark-Dame M, Schiessel H. A physical approach to segregation and folding of the Caulobacter crescentus genome. Mol Microbiol 2011; 82:1311-5. [DOI: 10.1111/j.1365-2958.2011.07898.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Hong SH, McAdams HH. Compaction and transport properties of newly replicated Caulobacter crescentus DNA. Mol Microbiol 2011; 82:1349-58. [DOI: 10.1111/j.1365-2958.2011.07899.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
Temporal controls of the asymmetric cell division cycle in Caulobacter crescentus. PLoS Comput Biol 2009; 5:e1000463. [PMID: 19680425 PMCID: PMC2714070 DOI: 10.1371/journal.pcbi.1000463] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 07/09/2009] [Indexed: 01/20/2023] Open
Abstract
The asymmetric cell division cycle of Caulobacter crescentus is orchestrated by an elaborate gene-protein regulatory network, centered on three major control proteins, DnaA, GcrA and CtrA. The regulatory network is cast into a quantitative computational model to investigate in a systematic fashion how these three proteins control the relevant genetic, biochemical and physiological properties of proliferating bacteria. Different controls for both swarmer and stalked cell cycles are represented in the mathematical scheme. The model is validated against observed phenotypes of wild-type cells and relevant mutants, and it predicts the phenotypes of novel mutants and of known mutants under novel experimental conditions. Because the cell cycle control proteins of Caulobacter are conserved across many species of alpha-proteobacteria, the model we are proposing here may be applicable to other genera of importance to agriculture and medicine (e.g., Rhizobium, Brucella).
Collapse
|
15
|
Complex regulatory pathways coordinate cell-cycle progression and development in Caulobacter crescentus. Adv Microb Physiol 2008; 54:1-101. [PMID: 18929067 DOI: 10.1016/s0065-2911(08)00001-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Caulobacter crescentus has become the predominant bacterial model system to study the regulation of cell-cycle progression. Stage-specific processes such as chromosome replication and segregation, and cell division are coordinated with the development of four polar structures: the flagellum, pili, stalk, and holdfast. The production, activation, localization, and proteolysis of specific regulatory proteins at precise times during the cell cycle culminate in the ability of the cell to produce two physiologically distinct daughter cells. We examine the recent advances that have enhanced our understanding of the mechanisms of temporal and spatial regulation that occur during cell-cycle progression.
Collapse
|
16
|
Nassonova ES. Pulsed field gel electrophoresis: Theory, instruments and application. ACTA ACUST UNITED AC 2008. [DOI: 10.1134/s1990519x08060011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Caulobacter requires a dedicated mechanism to initiate chromosome segregation. Proc Natl Acad Sci U S A 2008; 105:15435-40. [PMID: 18824683 DOI: 10.1073/pnas.0807448105] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Chromosome segregation in bacteria is rapid and directed, but the mechanisms responsible for this movement are still unclear. We show that Caulobacter crescentus makes use of and requires a dedicated mechanism to initiate chromosome segregation. Caulobacter has a single circular chromosome whose origin of replication is positioned at one cell pole. Upon initiation of replication, an 8-kb region of the chromosome containing both the origin and parS moves rapidly to the opposite pole. This movement requires the highly conserved ParABS locus that is essential in Caulobacter. We use chromosomal inversions and in vivo time-lapse imaging to show that parS is the Caulobacter site of force exertion, independent of its position in the chromosome. When parS is moved farther from the origin, the cell waits for parS to be replicated before segregation can begin. Also, a mutation in the ATPase domain of ParA halts segregation without affecting replication initiation. Chromosome segregation in Caulobacter cannot occur unless a dedicated parS guiding mechanism initiates movement.
Collapse
|
18
|
Goley ED, Iniesta AA, Shapiro L. Cell cycle regulation in Caulobacter: location, location, location. J Cell Sci 2008; 120:3501-7. [PMID: 17928306 DOI: 10.1242/jcs.005967] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cellular reproduction in all organisms requires temporal and spatial coordination of crucial events, notably DNA replication, chromosome segregation and cytokinesis. Recent studies on the dimorphic bacterium Caulobacter crescentus (Caulobacter) highlight mechanisms by which positional information is integrated with temporal modes of cell cycle regulation. Caulobacter cell division is inherently asymmetric, yielding progeny with different fates: stalked cells and swarmer cells. Cell type determinants in stalked progeny promote entry into S phase, whereas swarmer progeny remain in G1 phase. Moreover, initiation of DNA replication is allowed only once per cell cycle. This finite window of opportunity is imposed by coordinating spatially constrained proteolysis of CtrA, an inhibitor of DNA replication initiation, with forward progression of the cell cycle. Positional cues are equally important in coordinating movement of the chromosome with cell division site selection in Caulobacter. The chromosome is specifically and dynamically localized over the course of the cell cycle. As the duplicated chromosomes are partitioned, factors that restrict assembly of the cell division protein FtsZ associate with a chromosomal locus near the origin, ensuring that the division site is located towards the middle of the cell.
Collapse
Affiliation(s)
- Erin D Goley
- Department of Developmental Biology, Beckman Center, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA
| | | | | |
Collapse
|
19
|
Li S, Brazhnik P, Sobral B, Tyson JJ. A quantitative study of the division cycle of Caulobacter crescentus stalked cells. PLoS Comput Biol 2007; 4:e9. [PMID: 18225942 PMCID: PMC2217572 DOI: 10.1371/journal.pcbi.0040009] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 12/05/2007] [Indexed: 11/18/2022] Open
Abstract
Progression of a cell through the division cycle is tightly controlled at different steps to ensure the integrity of genome replication and partitioning to daughter cells. From published experimental evidence, we propose a molecular mechanism for control of the cell division cycle in Caulobacter crescentus. The mechanism, which is based on the synthesis and degradation of three “master regulator” proteins (CtrA, GcrA, and DnaA), is converted into a quantitative model, in order to study the temporal dynamics of these and other cell cycle proteins. The model accounts for important details of the physiology, biochemistry, and genetics of cell cycle control in stalked C. crescentus cell. It reproduces protein time courses in wild-type cells, mimics correctly the phenotypes of many mutant strains, and predicts the phenotypes of currently uncharacterized mutants. Since many of the proteins involved in regulating the cell cycle of C. crescentus are conserved among many genera of α-proteobacteria, the proposed mechanism may be applicable to other species of importance in agriculture and medicine. The cell cycle is the sequence of events by which a growing cell replicates all its components and divides them more or less evenly between two daughter cells. The timing and spatial organization of these events are controlled by gene–protein interaction networks of great complexity. A challenge for computational biology is to build realistic, accurate, predictive mathematical models of these control systems in a variety of organisms, both eukaryotes and prokaryotes. To this end, we present a model of a portion of the molecular network controlling DNA synthesis, cell cycle–related gene expression, DNA methylation, and cell division in stalked cells of the α-proteobacterium Caulobacter crescentus. The model is formulated in terms of nonlinear ordinary differential equations for the major cell cycle regulatory proteins in Caulobacter: CtrA, GcrA, DnaA, CcrM, and DivK. Kinetic rate constants are estimated, and the model is tested against available experimental observations on wild-type and mutant cells. The model is viewed as a starting point for more comprehensive models of the future that will account, in addition, for the spatial asymmetry of Caulobacter reproduction (swarmer cells as well as stalked cells), the correlation of cell growth and division, and cell cycle checkpoints.
Collapse
Affiliation(s)
- Shenghua Li
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Paul Brazhnik
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Bruno Sobral
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - John J Tyson
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
20
|
A DNA methylation ratchet governs progression through a bacterial cell cycle. Proc Natl Acad Sci U S A 2007; 104:17111-6. [PMID: 17942674 DOI: 10.1073/pnas.0708112104] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Caulobacter cell cycle is driven by a cascade of transient regulators, starting with the expression of DnaA in G(1) and ending with the expression of the essential CcrM DNA methyltransferase at the completion of DNA replication. The timing of DnaA accumulation was found to be regulated by the methylation state of the dnaA promoter, which in turn depends on the chromosomal position of dnaA near the origin of replication and restriction of CcrM synthesis to the end of the cell cycle. The dnaA gene is preferentially transcribed from a fully methylated promoter. DnaA initiates DNA replication and activates the transcription of the next cell-cycle regulator, GcrA. With the passage of the replication fork, the dnaA promoter becomes hemimethylated, and DnaA accumulation drops. GcrA then activates the transcription of the next cell-cycle regulator, CtrA, once the replication fork passes through the ctrA P1 promoter, generating two hemimethylated copies of ctrA. The ctrA gene is preferentially transcribed from a hemimethylated promoter. CtrA then activates the transcription of ccrM, to bring the newly replicated chromosome to the fully methylated state, promoting dnaA transcription and the start of a new cell cycle. We show that the cell-cycle timing of CcrM is critical for Caulobacter fitness. The sequential changes in the chromosomal methylation state serve to couple the progression of DNA replication to cell-cycle events regulated by the master transcriptional regulatory cascade, thus providing a ratchet mechanism for robust cell-cycle control.
Collapse
|
21
|
Tobiason DM, Seifert HS. The obligate human pathogen, Neisseria gonorrhoeae, is polyploid. PLoS Biol 2007; 4:e185. [PMID: 16719561 PMCID: PMC1470461 DOI: 10.1371/journal.pbio.0040185] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Accepted: 04/05/2006] [Indexed: 11/19/2022] Open
Abstract
We show using several methodologies that the Gram-negative, diplococcal-bacterium Neisseria gonorrhoeae has more than one complete genome copy per cell. Gene dosage measurements demonstrated that only a single replication initiation event per chromosome occurs per round of cell division, and that there is a single origin of replication. The region containing the origin does not encode any genes previously associated with bacterial origins of replication. Quantitative PCR results showed that there are on average three genome copies per coccal cell unit. These findings allow a model for gonococcal DNA replication and cell division to be proposed, in which a minimum of two chromosomal copies exist per coccal unit within a monococcal or diplococcal cell, and these chromosomes replicate in unison to produce four chromosomal copies during cell division. Immune evasion via antigenic variation is an important mechanism that allows these organisms to continually infect a high risk population of people. We propose that polyploidy may be necessary for the high frequency gene conversion system that mediates pilin antigenic variation and the propagation of N. gonorrhoeae within its human hosts.
Collapse
Affiliation(s)
- Deborah M Tobiason
- 1Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - H. Steven Seifert
- 1Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
22
|
Jensen RB. Analysis of the terminus region of the Caulobacter crescentus chromosome and identification of the dif site. J Bacteriol 2006; 188:6016-9. [PMID: 16885470 PMCID: PMC1540080 DOI: 10.1128/jb.00330-06] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The terminus region of the Caulobacter crescentus chromosome and the dif chromosome dimer resolution site were characterized. The Caulobacter genome contains skewed sequences that abruptly switch strands at dif and may have roles in chromosome maintenance and segregation. Absence of dif or the XerCD recombinase results in a chromosome segregation defect. The Caulobacter terminus region is unusual, since it contains many essential or highly expressed genes.
Collapse
Affiliation(s)
- Rasmus B Jensen
- Department of Life Sciences and Chemistry, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark.
| |
Collapse
|
23
|
Viollier PH, Thanbichler M, McGrath PT, West L, Meewan M, McAdams HH, Shapiro L. Rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication. Proc Natl Acad Sci U S A 2004; 101:9257-62. [PMID: 15178755 PMCID: PMC438963 DOI: 10.1073/pnas.0402606101] [Citation(s) in RCA: 328] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The chromosomal origin and terminus of replication are precisely localized in bacterial cells. We examined the cellular position of 112 individual loci that are dispersed over the circular Caulobacter crescentus chromosome and found that in living cells each locus has a specific subcellular address and that these loci are arrayed in linear order along the long axis of the cell. Time-lapse microscopy of the location of the chromosomal origin and 10 selected loci in the origin-proximal half of the chromosome showed that during DNA replication, as the replisome sequentially copies each locus, the newly replicated DNA segments are moved in chronological order to their final subcellular destination in the nascent half of the predivisional cell. Thus, the remarkable organization of the chromosome is being established while DNA replication is still in progress. The fact that the movement of these 10 loci is, like that of the origin, directed and rapid, and occurs at a similar rate, suggests that the same molecular machinery serves to partition and place many, if not most, chromosomal loci at defined subcellular sites.
Collapse
Affiliation(s)
- Patrick H Viollier
- Department of Developmental Biology, Beckman Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Caulobacter crescentus permits detailed analysis of chromosome replication control during a developmental cell cycle. Its chromosome replication origin (Cori) may be prototypical of the large and diverse class of alpha-proteobacteria. Cori has features that both affiliate and distinguish it from the Escherichia coli chromosome replication origin. For example, requirements for DnaA protein and RNA transcription affiliate both origins. However, Cori is distinguished by several features, and especially by five binding sites for the CtrA response regulator protein. To selectively repress and limit chromosome replication, CtrA receives both protein degradation and protein phosphorylation signals. The signal mediators, proteases, response regulators, and kinases, as well as Cori DNA and the replisome, all show distinct patterns of temporal and spatial organization during cell cycle progression. Future studies should integrate our knowledge of biochemical activities at Cori with our emerging understanding of cytological dynamics in C. crescentus and other bacteria.
Collapse
Affiliation(s)
- Gregory T Marczynski
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada H3A 2B4.
| | | |
Collapse
|
25
|
Reisenauer A, Shapiro L. DNA methylation affects the cell cycle transcription of the CtrA global regulator in Caulobacter. EMBO J 2002; 21:4969-77. [PMID: 12234936 PMCID: PMC126286 DOI: 10.1093/emboj/cdf490] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Caulobacter chromosome changes progressively from the fully methylated to the hemimethylated state during DNA replication. These changes in DNA methylation could signal differential binding of regulatory proteins to activate or repress transcription. The gene encoding CtrA, a key cell cycle regulatory protein, is transcribed from two promoters. The P1 promoter fires early in S phase and contains a GAnTC sequence that is recognized by the CcrM DNA methyltransferase. Using analysis of CcrM mutant strains, transcriptional reporters integrated at different sites on the chromosome, and a ctrA P1 mutant, we demonstrate that transcription of the P1 promoter is repressed by DNA methylation. Moreover moving the native ctrA gene to a position near the chromosomal terminus, which delays the conversion of the ctrA promoter from the fully to the hemimethylated state until late in the cell cycle, inhibited ctrA P1 transcription, and altered the time of accumulation of the CtrA protein and the size distribution of swarmer cells. Together, these results show that CcrM-catalyzed methylation adds another layer of control to the regulation of ctrA expression.
Collapse
Affiliation(s)
- Ann Reisenauer
- Developmental Biology, Stanford University, Stanford, CA 94305-5329, USA.
| | | |
Collapse
|
26
|
Quardokus EM, Brun YV. DNA replication initiation is required for mid-cell positioning of FtsZ rings in Caulobacter crescentus. Mol Microbiol 2002; 45:605-16. [PMID: 12139609 DOI: 10.1046/j.1365-2958.2002.03040.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Polymerization of the GTPase FtsZ to form a structure called the Z-ring is the earliest known step in bacterial cell division. Mid-cell Z-ring assembly coincides with the beginning of the replication cycle in the differentiating bacterium Caulobacter crescentus. Z-ring disassembly occurs at the end of the division cycle, resulting in the complete degradation of FtsZ from both stalked and swarmer progeny cells. New Z-rings can only form in the replicative stalked cell. Conditional mutants in DNA replication were used to determine what role DNA replication events play in the process of Z-ring assembly at different stages in the cell cycle. Z-ring assembly occurred even when early stages of DNA replication were blocked; however, the Z-rings were localized at a subpolar region of the cell. Z-rings only assembled at the proper mid-cell location if DNA replication had initiated. Z-ring assembly coincided with areas containing little or no DNA, and Z-rings could not form over an unreplicated chromosome. Overexpressed FtsZ in the absence of DNA replication did not stimulate productive mid-cell Z-ring assembly but, instead, caused the ends of cells to constrict over an extended area away from the nucleoid. These results indicate that the state of chromosome replication is a major determinant of Z-ring localization in Caulobacter.
Collapse
Affiliation(s)
- Ellen M Quardokus
- Indiana University, Department of Biology, Bloomington, IN 47405, USA
| | | |
Collapse
|
27
|
Jensen RB, Wang SC, Shapiro L. Dynamic localization of proteins and DNA during a bacterial cell cycle. Nat Rev Mol Cell Biol 2002; 3:167-76. [PMID: 11994737 DOI: 10.1038/nrm758] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A cellular differentiation programme that culminates in an asymmetric cell division is an integral part of the cell cycle in the bacterium Caulobacter crescentus. Recent work has uncovered mechanisms that ensure the execution of many events at different times during the cell cycle and at specific places in the cell. Surprisingly, in this one-micron bacterial cell, the dynamic spatial disposition of regulatory proteins, structural proteins and specific regions of the chromosome are important components of both cell-cycle progression and the generation of daughter cells with different cell fates.
Collapse
Affiliation(s)
- Rasmus B Jensen
- Genencor International Inc., 925 Page Mill Road, Palo Alto, California 94304-1013, USA
| | | | | |
Collapse
|
28
|
Brassinga AK, Marczynski GT. Replication intermediate analysis confirms that chromosomal replication origin initiates from an unusual intergenic region in Caulobacter crescentus. Nucleic Acids Res 2001; 29:4441-51. [PMID: 11691932 PMCID: PMC60194 DOI: 10.1093/nar/29.21.4441] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The alpha-proteobacterium Caulobacter crescentus possesses a developmental cell cycle that restricts chromosome replication to a stalked cell type. The proposed C.crescentus chromosome replication origin (Cori) lies between hemE and RP001, an unusual intergenic region not previously associated with bacterial replication origins, although a similar genomic arrangement is also present at the putative replication origin in the related bacterium Rickettsia prowazekii. The cloned Cori supports autonomous plasmid replication selectively in the stalked cell type implying that replication of the entire chromosome also initiates between hemE and RP001. To confirm this location, we applied the 2-D (N/N) agarose gel electrophoresis technique to resolve and identify chromosome replication intermediates throughout a 30 kb region spanning Cori. Replication initiation in Cori was uniquely characterized by an 'origin bubble and Y-arc' pattern and this observation was supported by simple replication fork 'Y-arc' patterns that characterized the regions flanking Cori. These replication forks originated bi-directionally from within Cori as determined by the fork direction assay. Therefore, chromosomal replication initiates from the unusual hemE/RP001 intergenic region that we propose represents a new class of replication origins.
Collapse
Affiliation(s)
- A K Brassinga
- Department of Microbiology and Immunology, Lyman-Duff Building, Room 506, McGill University, 3775 University Street, Montreal, Quebec H3A 2B4, Canada
| | | |
Collapse
|
29
|
Gorbatyuk B, Marczynski GT. Physiological consequences of blocked Caulobacter crescentus dnaA expression, an essential DNA replication gene. Mol Microbiol 2001; 40:485-97. [PMID: 11309130 DOI: 10.1046/j.1365-2958.2001.02404.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Caulobacter crescentus chromosome replication is precisely coupled to a developmental cell cycle. Like most eubacteria, C. crescentus has a DnaA homologue that is presumed to initiate chromosome replication. However, the C. crescentus replication origin (Cori) lacks perfect consensus Escherichia coli DnaA boxes. Instead, the Cori strong transcription promoter (Ps) may regulate chromosome replication through the CtrA cell cycle response regulator. We therefore created a conditional dnaA C. crescentus strain. Blocking dnaA expression immediately decreased DNA synthesis, which stopped after approximately one doubling period. Fluorescent flow cytometry confirmed that DNA synthesis is blocked at the initiation stage. Cell division also stopped, but not swarmer to stalked cell differentiation. All cells became stalked cells that grew as long filaments. Therefore, general transcription and protein synthesis continued, whereas DNA synthesis stopped. However, transcription was selectively blocked from the flagellar fliQ and fliL and methyltransferase ccrM promoters, which require CtrA and are blocked by different DNA synthesis inhibitors. Interestingly, transcription from Cori Ps continued unaltered. Therefore, Ps transcription is not sufficient for chromosome replication. Approximately 6-8 h after blocked dnaA expression, cells lost viability exponentially. Coincidentally, beta-galactosidase was induced from one transcription reporter, suggesting an altered physiology. We conclude that C. crescentus DnaA is essential for chromosome replication initiation, and perhaps also has a wider role in cell homeostasis.
Collapse
Affiliation(s)
- B Gorbatyuk
- Department of Microbiology and Immunology, McGill University, 3775 University Street, Montreal, Quebec, Canada H3A 2B4
| | | |
Collapse
|
30
|
Myllykallio H, Lopez P, López-García P, Heilig R, Saurin W, Zivanovic Y, Philippe H, Forterre P. Bacterial mode of replication with eukaryotic-like machinery in a hyperthermophilic archaeon. Science 2000; 288:2212-5. [PMID: 10864870 DOI: 10.1126/science.288.5474.2212] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Despite a rapid increase in the amount of available archaeal sequence information, little is known about the duplication of genetic material in the third domain of life. We identified a single origin of bidirectional replication in Pyrococcus abyssi by means of in silico analyses of cumulative oligomer skew and the identification of an early replicating chromosomal segment. The replication origin in three Pyrococcus species was found to be highly conserved, and several eukaryotic-like DNA replication genes were clustered around it. As in Bacteria, the chromosomal region containing the replication terminus was a hot spot of genome shuffling. Thus, although bacterial and archaeal replication proteins differ profoundly, they are used to replicate chromosomes in a similar manner in both prokaryotic domains.
Collapse
Affiliation(s)
- H Myllykallio
- Institut de Génétique et Microbiologie, Laboratoire de Biologie Cellulaire, Université de Paris-Sud, 91405 Orsay Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Affiliation(s)
- A Reisenauer
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305-5329, USA.
| | | | | | | |
Collapse
|
32
|
Marczynski GT. Chromosome methylation and measurement of faithful, once and only once per cell cycle chromosome replication in Caulobacter crescentus. J Bacteriol 1999; 181:1984-93. [PMID: 10094673 PMCID: PMC93608 DOI: 10.1128/jb.181.7.1984-1993.1999] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Caulobacter crescentus exhibits cell-type-specific control of chromosome replication and DNA methylation. Asymmetric cell division yields a replicating stalked cell and a nonreplicating swarmer cell. The motile swarmer cell must differentiate into a sessile stalked cell in order to replicate and execute asymmetric cell division. This program of cell division implies that chromosome replication initiates in the stalked cell only once per cell cycle. DNA methylation is restricted to the predivisional cell stage, and since DNA synthesis produces an unmethylated nascent strand, late DNA methylation also implies that DNA near the replication origin remains hemimethylated longer than DNA located further away. In this report, both assumptions are tested with an engineered Tn5-based transposon, Tn5Omega-MP. This allows a sensitive Southern blot assay that measures fully methylated, hemimethylated, and unmethylated DNA duplexes. Tn5Omega-MP was placed at 11 sites around the chromosome and it was clearly demonstrated that Tn5Omega-MP DNA near the replication origin remained hemimethylated longer than DNA located further away. One Tn5Omega-MP placed near the replication origin revealed small but detectable amounts of unmethylated duplex DNA in replicating stalked cells. Extra DNA synthesis produces a second unmethylated nascent strand. Therefore, measurement of unmethylated DNA is a critical test of the "once and only once per cell cycle" rule of chromosome replication in C. crescentus. Fewer than 1 in 1,000 stalked cells prematurely initiate a second round of chromosome replication. The implications for very precise negative control of chromosome replication are discussed with respect to the bacterial cell cycle.
Collapse
Affiliation(s)
- G T Marczynski
- Department of Microbiology & Immunology, McGill University, Montreal, Quebec, Canada H3A 2B4.
| |
Collapse
|
33
|
Roberts RC, Shapiro L. Transcription of genes encoding DNA replication proteins is coincident with cell cycle control of DNA replication in Caulobacter crescentus. J Bacteriol 1997; 179:2319-30. [PMID: 9079919 PMCID: PMC178970 DOI: 10.1128/jb.179.7.2319-2330.1997] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
DNA replication in the dimorphic bacterium Caulobacter crescentus is tightly linked to its developmental cell cycle. The initiation of chromosomal replication occurs concomitantly with the transition of the motile swarmer cell to the sessile stalked cell. To identify the signals responsible for the cell cycle control of DNA replication initiation, we have characterized a region of the C. crescentus chromosome containing genes that are all involved in DNA replication or recombination, including dnaN, recF, and gyrB. The essential dnaN gene encodes a homolog of the Escherichia coli beta subunit of DNA polymerase III. It is transcribed from three promoters; one is heat inducible, and the other two are induced at the transition from swarmer to stalked cell, coincident with the initiation of DNA replication. The single gyrB promoter is induced at the same time point in the cell cycle. These promoters, as well as those for several other genes encoding DNA replication proteins that are induced at the same time in the cell cycle, share two sequence motifs, suggesting that they represent a family whose transcription is coordinately regulated.
Collapse
Affiliation(s)
- R C Roberts
- Department of Developmental Biology, Stanford University School of Medicine, California 94305-5427, USA
| | | |
Collapse
|
34
|
Mohl DA, Gober JW. Cell cycle-dependent polar localization of chromosome partitioning proteins in Caulobacter crescentus. Cell 1997; 88:675-84. [PMID: 9054507 DOI: 10.1016/s0092-8674(00)81910-8] [Citation(s) in RCA: 260] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In the bacterium C. crescentus, the cellular homologs of plasmid partitioning proteins, ParA and ParB, localize to both poles of the predivisional cell following the completion of DNA replication. ParB binds to DNA sequences adjacent to the origin of replication suggesting that this region of the genome is tethered to the poles of the cell at a specific time in the cell cycle. Increasing the cellular levels of ParA and ParB disrupts polar localization and results in defects in both cell division and chromosome partitioning. These results suggest that ParA and ParB are involved in partitioning newly replicated chromosomes to the poles of the predivisional cell and may function as components of a bacterial mitotic apparatus.
Collapse
Affiliation(s)
- D A Mohl
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles 90095-1569, USA
| | | |
Collapse
|
35
|
Affiliation(s)
- R C Roberts
- Department of Developmental Biology, Stanford University School of Medicine, California 94305, USA
| | | | | |
Collapse
|
36
|
Marczynski GT, Lentine K, Shapiro L. A developmentally regulated chromosomal origin of replication uses essential transcription elements. Genes Dev 1995; 9:1543-57. [PMID: 7601356 DOI: 10.1101/gad.9.12.1543] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Only one of the two chromosomes in the asymmetric Caulobacter predivisional cell initiates replication in the progeny cells. Transcription from a strong promoter within the origin occurs uniquely from the replication-competent chromosome at the stalked pole of the predivisional cell. This regulated promoter has an unusual sequence organization, and transcription from this promoter is essential for regulated (cell type-specific) replication. Our analysis defines a new class of bacterial origins and suggests a coupling between transcription and replication that is consistent with the phylogenetic relationship of Caulobacter to the ancestral mitochondrion.
Collapse
Affiliation(s)
- G T Marczynski
- Department of Developmental Biology, Beckman Center, Stanford University School of Medicine, California 94305-5427, USA
| | | | | |
Collapse
|
37
|
Marczynski GT, Shapiro L. The control of asymmetric gene expression during Caulobacter cell differentiation. Arch Microbiol 1995; 163:313-21. [PMID: 7794099 DOI: 10.1007/bf00404203] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The dimorphic bacterium Caulobacter crescentus provides a simple model for cellular differentiation. Each cell division produces two distinct cell types: a swarmer cell and a stalked cell. These cells possess distinct functional morphologies and differential programs of transcription and DNA replication. The synthesis of a single polar flagellum is restricted to the swarmer pole of the predivisional cell by a genetic hierarchy comprising at least 50 genes whose transcription is regulated by novel and ubiquitous promoters, cognate sigma factors, and auxiliary transcriptional regulators. Chromosome replication is restricted to the stalked cell by a unique chromosome origin of replication that may be regulated by a novel cell-specific transcriptional control system. Phosphorylation signals, DNA methylation, differential chromosome structures, protein targeting, and selective protein degradation are also involved in establishing and maintaining cellular asymmetry. The molecular details of these universal cellular processes in C. crescentus will provide paradigms applicable to many general aspects of cellular differentiation.
Collapse
Affiliation(s)
- G T Marczynski
- Department of Developmental Biology, Beckman Center, Stanford University School of Medicine, CA 94305-5427, USA
| | | |
Collapse
|
38
|
Abstract
In Caulobacter crescentus, asymmetry is generated in the predivisional cell, resulting in the formation of two distinct cell types upon cell division: a motile swarmer cell and a sessile stalked cell. These progeny cell types differ in their relative programs of gene expression and DNA replication. In progeny swarmer cells, DNA replication is silenced for a defined period, but stalked cells reinitiate chromosomal DNA replication immediately following cell division. The establishment of these differential programs of DNA replication may be due to the polar localization of DNA replication proteins, differences in chromosome higher-order structure, or pole-specific transcription. The best-understood aspect of Caulobacter development is biogenesis of the polar flagellum. The genes encoding the flagellum are expressed under cell cycle control predominantly in the predivisional cell type. Transcription of flagellar genes is regulated by a trans-acting hierarchy that responds to both flagellar assembly and cell cycle cues. As the flagellar genes are expressed, their products are targeted to the swarmer pole of the predivisional cell, where assembly occurs. Specific protein targeting and compartmentalized transcription are two mechanisms that contribute to the positioning of flagellar gene products at the swarmer pole of the predivisional cell.
Collapse
Affiliation(s)
- J W Gober
- Department of Chemistry and Biochemistry, University of California, Los Angeles 90024-1569
| | | |
Collapse
|
39
|
Abstract
Cell differentiation is an inherent component of the Caulobacter crescentus cell cycle. The transition of a swarmer cell, with a single polar flagellum, into a sessile stalked cell includes several morphogenetic events. These include the release of the flagellum and pili, the proteolysis of chemotaxis proteins, the biogenesis of the polar stalk, and the initiation of DNA replication. We have isolated a group of temperature-sensitive mutants that are unable to complete this process at the restrictive temperature. We show here that one of these strains has a mutation in a homolog of the Escherichia coli secA gene, whose product is involved in protein translocation at the cell membrane. This C. crescentus secA mutant has allowed the identification of morphogenetic events in the swarmer-to-stalked cell transition that require SecA-dependent protein translocation. Upon shift to the nonpermissive temperature, the mutant secA swarmer cell is able to release the polar flagellum, degrade chemoreceptors, and initiate DNA replication, but it is unable to form a stalk, complete DNA replication, or carry out cell division. At the nonpermissive temperature, the cell cycle blocks prior to the de novo synthesis of flagella and chemotaxis proteins that normally occurs in the predivisional cell. Although interactions between the chromosome and the cytoplasmic membrane are believed to be a functional component of the temporal regulation of DNA replication, the ability of this secA mutant to initiate replication at the nonpermissive temperature suggests that SecA-dependent events are not involved in this process. However, both cell division and stalk formation, which is analogous to a polar division event, require SecA function.
Collapse
Affiliation(s)
- P J Kang
- Department of Developmental Biology, Stanford University School of Medicine, California 94305-5427
| | | |
Collapse
|
40
|
Abstract
The initiation of DNA replication is under differential control in Caulobacter crescentus. Following cell division, only the chromosome in the progeny stalked cell is able to initiate DNA replication, while the chromosome in the progeny swarmer cell does not replicate until later in the cell cycle. We have isolated the dnaA gene in order to determine whether this essential and ubiquitous replication initiation protein also contributes to differential replication control in C. crescentus. Analysis of the cloned C. crescentus dnaA gene has shown that the deduced amino acid sequence can encode a 486-amino-acid protein that is 37% identical to the DnaA protein of Escherichia coli. The gene is located 2 kb from the origin of replication. Primer extension analysis revealed a single transcript originating from a sigma 70-type promoter. Immunoprecipitation of a DnaA'-beta-lactamase fusion protein showed that although expression occurs throughout the cell cycle, there is a doubling in the rate of expression just prior to the initiation of replication.
Collapse
Affiliation(s)
- G Zweiger
- Department of Genetics, Stanford University School of Medicine, California 94305
| | | |
Collapse
|
41
|
Townsend KM, Dawkins HJ. Field alternation gel electrophoresis--status quo. JOURNAL OF CHROMATOGRAPHY 1993; 618:223-49. [PMID: 8227258 DOI: 10.1016/0378-4347(93)80036-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Since the description of the original technique of field alternation gel electrophoresis (FAGE) about ten years ago there have been significant developments in the area. Between 1983 and early 1987 dramatic improvements in the technique and apparatus resulted in a 500- to 600-fold increase in the functional separation capacity of conventional agarose gel electrophoresis. Details of the improvements in technique and equipment was the subject of an earlier review [H. J. S. Dawkins, J. Chromatogr., 492 (1989) 615]. This review concentrates on the application of FAGE technology. The FAGE technique is no longer restricted to simply separating large DNA fragments. This method is presently being used for electrophoretic karyotyping, long-range genomic mapping, cloning of large DNA fragments into new vectors, the study of pathogenic chromosomal alterations and the structural analysis of chromosomes. The applications of FAGE in molecular biology and genetics is constantly expanding, with the full potential of this technique still to be realised.
Collapse
Affiliation(s)
- K M Townsend
- Department of Pathology, Queen Elizabeth II Medical Centre, Nedlands, Western Australia
| | | |
Collapse
|
42
|
Miyata M, Wang L, Fukumura T. Localizing the replication origin region on the physical map of the Mycoplasma capricolum genome. J Bacteriol 1993; 175:655-60. [PMID: 8423141 PMCID: PMC196202 DOI: 10.1128/jb.175.3.655-660.1993] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Four lines of evidence argue that the replication origin of the Mycoplasma capricolum genome lies within the 46-kb BamHI fragment bordered by two BamHI sites of the total of nine BamHI sites that have been located on the physical map (M. Miyata, L. Wang, and T. Fukumura, FEMS Microbiol. Lett. 79:329-334, 1991). First, this fragment lost its labeling in preference to other fragments when log-phase cultures were incubated in the presence of chloramphenicol for various times to inhibit the initiation of new rounds of replication and then further incubated with radioactive dTMP to allow DNA elongation to continue. Second, the relative frequencies of various restriction fragments of the genome DNA from exponentially growing cells decreased with increasing distance from the putative origin. Third, preferential labeling occurred when radioactive dTMP was added to cultures of a DNA elongation-defective, temperature-sensitive mutant with a simultaneous temperature downshift. Fourth, the M. capricolum homolog of the dnaA gene, which is located near the replication origin in many other bacteria, was found in the 46-kb fragment.
Collapse
Affiliation(s)
- M Miyata
- Department of Biology, Faculty of Science, Osaka City University, Japan
| | | | | |
Collapse
|
43
|
Development in Caulobacter crescentus. Development 1992. [DOI: 10.1007/978-3-642-77043-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
Loewy B, Marczynski GT, Dingwall A, Shapiro L. Regulatory interactions between phospholipid synthesis and DNA replication in Caulobacter crescentus. J Bacteriol 1990; 172:5523-30. [PMID: 2211495 PMCID: PMC526862 DOI: 10.1128/jb.172.10.5523-5530.1990] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Several Caulobacter crescentus mutants with lesions in phospholipid biosynthesis have DNA replication phenotypes. A C. crescentus mutant deficient in glycerol 3-phosphate dehydrogenase activity (gpsA) blocks phospholipid synthesis, ceases DNA replication, and loses viability in the absence of a glycerol phosphate supplement. To investigate the interaction between membrane synthesis and DNA replication during a single cell cycle, we moved the gpsA mutation into a synchronizable, but otherwise wild-type, strain. The first effect of withholding supplement was the cessation of synthesis of phosphatidylglycerol, a major component of the C. crescentus membrane. In the absence of glycerol 3-phosphate, DNA replication was initiated in the stalked cell at the correct time in the cell cycle and at the correct site on the chromosome. However, after replication proceeded bidirectionally for a short time, DNA synthesis dropped to a low level. The cell cycle blocked at a distinct middivision stalked cell, and this was followed by cell death. The "glycerol-less" death of the gpsA mutant could be prevented if the cells were treated with novobiocin to prevent the initiation of DNA replication. Our observations suggest that the processivity of C. crescentus replication requires concomitant phospholipid synthesis and that cell death results from incomplete replication of the chromosome.
Collapse
Affiliation(s)
- B Loewy
- Department of Developmental Biology, Stanford University School of Medicine, California 94305
| | | | | | | |
Collapse
|
45
|
Dingwall A, Gober JW, Shapiro L. Identification of a Caulobacter basal body structural gene and a cis-acting site required for activation of transcription. J Bacteriol 1990; 172:6066-76. [PMID: 2211524 PMCID: PMC526931 DOI: 10.1128/jb.172.10.6066-6076.1990] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The genes that encode the components and regulatory proteins of the Caulobacter crescentus flagellum are transcribed at specific times in the cell cycle. One of these genes, flbN, is required early in the flagellar assembly process. The flbN gene was cloned and sequenced, and the time of transcription activation was determined. The derived amino acid sequence indicates that fibN encodes a 25-kilodalton protein with a cleavable leader peptide. The flbN-encoded protein has 30.8% identity with the protein encoded by the Salmonella typhimurium basal body L-ring gene, flgH. Site-directed mutagenesis and gel mobility shift assays identified a binding site at -100 from the transcription start site for a trans-acting protein, RF-2, that functions to partially activate flbN transcription at a defined time in the cell cycle. The RF-2 binding region is similar to a NifA binding site normally used in the activation of some sigma 54 promoters involved in nitrogen fixation in other bacteria. Transcription of a flbN-reporter gene fusion in an Escherichia coli background was dependent on the presence of a NifA transcription factor supplied by a plasmid-borne Rhizobium meliloti gene encoding NifA. A deletion or base changes in the RF-2 binding region eliminated expression of the flbN gene in E. coli even when a NifA protein was provided in trans, suggesting that a sigma 54 promoter with an upstream activator element is used by the C. crescentus flbN gene. A consensus sequence for a sigma 54 promoter was found at the appropriate distance 5' to one of two identified transcription start sites. Site-directed mutagenesis confirmed that a conserved nucleotide in this sigma 54 promoter consensus sequence was required for transcription. Deletion of the region 5' to the apparent sigma 54 promoter caused a complete loss of transcription activation. Transcription activation of flbN in C. crescentus involves the combination of several elements: the NifA-like site is required for full activation, and other sequence elements 5' to the promoter and 3' to the transcription start site are necessary for the correct time of transcription initiation.
Collapse
Affiliation(s)
- A Dingwall
- Department of Developmental Biology, Beckman Center, Stanford University School of Medicine, California 94305-5427
| | | | | |
Collapse
|
46
|
Ely B, Ely TW, Gerardot CJ, Dingwall A. Circularity of the Caulobacter crescentus chromosome determined by pulsed-field gel electrophoresis. J Bacteriol 1990; 172:1262-6. [PMID: 2155197 PMCID: PMC208592 DOI: 10.1128/jb.172.3.1262-1266.1990] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Previous genetic analyses of the Caulobacter crescentus chromosome have resulted in the construction of a linear genetic map. To establish the circularity of the C. crescentus chromosome, restriction fragments generated by digestion with AseI and SpeI were analyzed by pulsed-field gel electrophoresis and Southern hybridization. The size of each fragment was calculated and used to demonstrate that C. crescentus has a genome size of approximately 4,000 kilobases. In addition, both enzymes gave rise to large DNA fragments which contained genes from both ends of the genetic map. Thus, there is physical linkage between the genes at the ends of the genetic map and the chromosome is circular. Since this region of the chromosome appears to contain the replication terminus, we propose that recombination occurs at a high frequency in the vicinity of the terminus. This high frequency of recombination would prevent genetic linkage from being observed between genes on opposite sides of the terminus. Additional experiments using insertions which introduced new AseI and DraI restriction sites into the genome allowed us to calculate the physical distance between genes located in the vicinity of the replication terminus.
Collapse
Affiliation(s)
- B Ely
- Department of Biological Sciences, University of South Carolina, Columbia 29208
| | | | | | | |
Collapse
|
47
|
Bryan R, Glaser D, Shapiro L. Genetic regulatory hierarchy in Caulobacter development. ADVANCES IN GENETICS 1990; 27:1-31. [PMID: 2112299 DOI: 10.1016/s0065-2660(08)60022-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- R Bryan
- Department of Microbiology, College of Physicians and Surgeons of Columbia University, New York, New York 10032
| | | | | |
Collapse
|