1
|
Trakarnsanga K, Ferguson D, Daniels DE, Griffiths RE, Wilson MC, Mordue KE, Gartner A, Andrienko TN, Calvert A, Condie A, McCahill A, Mountford JC, Toye AM, Anstee DJ, Frayne J. Vimentin expression is retained in erythroid cells differentiated from human iPSC and ESC and indicates dysregulation in these cells early in differentiation. Stem Cell Res Ther 2019; 10:130. [PMID: 31036072 PMCID: PMC6489253 DOI: 10.1186/s13287-019-1231-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 05/16/2023] Open
Abstract
Background Pluripotent stem cells are attractive progenitor cells for the generation of erythroid cells in vitro as have expansive proliferative potential. However, although embryonic (ESC) and induced pluripotent (iPSC) stem cells can be induced to undergo erythroid differentiation, the majority of cells fail to enucleate and the molecular basis of this defect is unknown. One protein that has been associated with the initial phase of erythroid cell enucleation is the intermediate filament vimentin, with loss of vimentin potentially required for the process to proceed. Methods In this study, we used our established erythroid culture system along with western blot, PCR and interegation of comparative proteomic data sets to analyse the temporal expression profile of vimentin in erythroid cells differentiated from adult peripheral blood stem cells, iPSC and ESC throughout erythropoiesis. Confocal microscopy was also used to examine the intracellular localisation of vimentin. Results We show that expression of vimentin is turned off early during normal adult erythroid cell differentiation, with vimentin protein lost by the polychromatic erythroblast stage, just prior to enucleation. In contrast, in erythroid cells differentiated from iPSC and ESC, expression of vimentin persists, with high levels of both mRNA and protein even in orthochromatic erythroblasts. In the vimentin-positive iPSC orthochromatic erythroblasts, F-actin was localized around the cell periphery; however, in those rare cells captured undergoing enucleation, vimentin was absent and F-actin was re-localized to the enucleosome as found in normal adult orthrochromatic erythroblasts. Conclusion As both embryonic and adult erythroid cells loose vimentin and enucleate, retention of vimentin by iPSC and ESC erythroid cells indicates an intrinsic defect. By analogy with avian erythrocytes which naturally retain vimentin and remain nucleated, retention in iPSC- and ESC-derived erythroid cells may impede enucleation. Our data also provide the first evidence that dysregulation of processes in these cells occurs from the early stages of differentiation, facilitating targeting of future studies. Electronic supplementary material The online version of this article (10.1186/s13287-019-1231-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kongtana Trakarnsanga
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK.,Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Daniel Ferguson
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - Deborah E Daniels
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK.,NIHR Blood and Transplant Research Unit, University of Bristol, Bristol, BS8 1TD, UK
| | - Rebecca E Griffiths
- Bristol Institute for Transfusion Sciences, National Health Service Blood and Transplant (NHSBT), Bristol, BS34 7QH, UK.,NIHR Blood and Transplant Research Unit, University of Bristol, Bristol, BS8 1TD, UK
| | | | - Kathryn E Mordue
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - Abi Gartner
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - Tatyana N Andrienko
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK.,NIHR Blood and Transplant Research Unit, University of Bristol, Bristol, BS8 1TD, UK
| | - Annabel Calvert
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - Alison Condie
- Scottish National Blood Transfusion Service, Jack Copland Centre, Heriot Watt Research Park, Edinburgh, EH14 4AP, UK
| | - Angela McCahill
- Scottish National Blood Transfusion Service, Jack Copland Centre, Heriot Watt Research Park, Edinburgh, EH14 4AP, UK
| | - Joanne C Mountford
- Scottish National Blood Transfusion Service, Jack Copland Centre, Heriot Watt Research Park, Edinburgh, EH14 4AP, UK
| | - Ashley M Toye
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK.,Bristol Institute for Transfusion Sciences, National Health Service Blood and Transplant (NHSBT), Bristol, BS34 7QH, UK.,NIHR Blood and Transplant Research Unit, University of Bristol, Bristol, BS8 1TD, UK
| | - David J Anstee
- Bristol Institute for Transfusion Sciences, National Health Service Blood and Transplant (NHSBT), Bristol, BS34 7QH, UK.,NIHR Blood and Transplant Research Unit, University of Bristol, Bristol, BS8 1TD, UK
| | - Jan Frayne
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK. .,NIHR Blood and Transplant Research Unit, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
2
|
Balasubramaniam VRMT, Wai TH, Omar AR, Othman I, Hassan SS. Cellular transcripts of chicken brain tissues in response to H5N1 and Newcastle disease virus infection. Virol J 2012; 9:53. [PMID: 22361110 PMCID: PMC3297529 DOI: 10.1186/1743-422x-9-53] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Accepted: 02/23/2012] [Indexed: 12/19/2022] Open
Abstract
Background Highly-pathogenic avian influenza (HPAI) H5N1 and Newcastle disease (ND) viruses are the two most important poultry viruses in the world, with the ability to cause classic central nervous system dysfunction in poultry and migratory birds. To elucidate the mechanisms of neurovirulence caused by these viruses, a preliminary study was design to analyze host's cellular responses during infections of these viruses. Methods An improved mRNA differential display technique (Gene Fishing™) was undertaken to analyze differentially expressed transcripts regulated during HPAI H5N1 and velogenic neurotropic NDV infections of whole brain of chickens. The identification of differentially expressed genes (DEGs) was made possible as this technique uses annealing control primers that generate reproducible, authentic and long PCR products that are detectable on agarose gels. Results Twenty-three genes were identified to be significantly regulated during infections with both viruses, where ten of the genes have been selected for validation using a TaqMan® based real time quantitative PCR assay. Some of the identified genes demonstrated to be key factors involving the cytoskeletal system, neural signal transduction and protein folding during stress. Interestingly, Septin 5, one of the genes isolated from HPAI H5N1-infected brain tissues has been reported to participate in the pathogenic process of Parkinson's disease. Conclusions In this limited study, the differentially expressed genes of infected brain tissues regulated by the viruses were found not to be identical, thus suggesting that their neurovirulence and neuropathogenesis may not share similar mechanisms and pathways.
Collapse
Affiliation(s)
- Vinod R M T Balasubramaniam
- Virus-Host Interaction Group, Infectious Disease Laboratory (MR3), School of Medicine and Health Sciences, Monash University, Sunway Campus, 46150 Sunway, Malaysia
| | | | | | | | | |
Collapse
|
3
|
Computational prediction of splicing regulatory elements shared by Tetrapoda organisms. BMC Genomics 2009; 10:508. [PMID: 19889216 PMCID: PMC2777938 DOI: 10.1186/1471-2164-10-508] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 11/04/2009] [Indexed: 11/26/2022] Open
Abstract
Background Auxiliary splicing sequences play an important role in ensuring accurate and efficient splicing by promoting or repressing recognition of authentic splice sites. These cis-acting motifs have been termed splicing enhancers and silencers and are located both in introns and exons. They co-evolved into an intricate splicing code together with additional functional constraints, such as tissue-specific and alternative splicing patterns. We used orthologous exons extracted from the University of California Santa Cruz multiple genome alignments of human and 22 Tetrapoda organisms to predict candidate enhancers and silencers that have reproducible and statistically significant bias towards annotated exonic boundaries. Results A total of 2,546 Tetrapoda enhancers and silencers were clustered into 15 putative core motifs based on their Markov properties. Most of these elements have been identified previously, but 118 putative silencers and 260 enhancers (~15%) were novel. Examination of previously published experimental data for the presence of predicted elements showed that their mutations in 21/23 (91.3%) cases altered the splicing pattern as expected. Predicted intronic motifs flanking 3' and 5' splice sites had higher evolutionary conservation than other sequences within intronic flanks and the intronic enhancers were markedly differed between 3' and 5' intronic flanks. Conclusion Difference in intronic enhancers supporting 5' and 3' splice sites suggests an independent splicing commitment for neighboring exons. Increased evolutionary conservation for ISEs/ISSs within intronic flanks and effect of modulation of predicted elements on splicing suggest functional significance of found elements in splicing regulation. Most of the elements identified were shown to have direct implications in human splicing and therefore could be useful for building computational splicing models in biomedical research.
Collapse
|
4
|
Bornheim R, Müller M, Reuter U, Herrmann H, Büssow H, Magin TM. A dominant vimentin mutant upregulates Hsp70 and the activity of the ubiquitin-proteasome system, and causes posterior cataracts in transgenic mice. J Cell Sci 2008; 121:3737-46. [PMID: 18940912 DOI: 10.1242/jcs.030312] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Vimentin is the main intermediate filament (IF) protein of mesenchymal cells and tissues. Unlike other IF-/- mice, vimentin-/- mice provided no evidence of an involvement of vimentin in the development of a specific disease. Therefore, we generated two transgenic mouse lines, one with a (R113C) point mutation in the IF-consensus motif in coil1A and one with the complete deletion of coil 2B of the rod domain. In epidermal keratins and desmin, point mutations in these parts of the alpha-helical rod domain cause keratinopathies and desminopathies, respectively. Here, we demonstrate that substoichiometric amounts of vimentin carrying the R113C point mutation disrupted the endogenous vimentin network in all tissues examined but caused a disease phenotype only in the eye lens, leading to a posterior cataract that was paralleled by the formation of extensive protein aggregates in lens fibre cells. Unexpectedly, central, postmitotic fibres became depleted of aggregates, indicating that they were actively removed. In line with an increase in misfolded proteins, the amounts of Hsp70 and ubiquitylated vimentin were increased, and proteasome activity was raised. We demonstrate here for the first time that the expression of mutated vimentin induces a protein-stress response that contributes to disease pathology in mice, and hypothesise that vimentin mutations cause cataracts in humans.
Collapse
Affiliation(s)
- Roland Bornheim
- Institut für Biochemie and Molekularbiologie, Abteilung für Zellbiochemie und LIMES, Universität Bonn, Nussallee 11, 53115 Bonn, Germany
| | | | | | | | | | | |
Collapse
|
5
|
Perng MD, Zhang Q, Quinlan RA. Insights into the beaded filament of the eye lens. Exp Cell Res 2007; 313:2180-8. [PMID: 17490642 PMCID: PMC5073188 DOI: 10.1016/j.yexcr.2007.04.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 03/30/2007] [Accepted: 04/03/2007] [Indexed: 12/28/2022]
Abstract
Filensin (BFSP1) and CP49 (BFSP2) represent two members of the IF protein superfamily that are thus far exclusively expressed in the eye lens. Mutations in both proteins cause lens cataract and careful consideration of the detail of these cataract phenotypes alerts us to several interesting features concerning the function of filensin (BFSP1) and CP49 (BFSP2) in the lens. With the first filensin (BFSP1) mutation now having been reported to cause a recessive cataract phenotype, there is the suggestion that the mutation could predispose heterozygote carriers to the early onset of age-related nuclear cataract. In the case of CP49 (BFSP2), there are now three unrelated families who have been identified with a common E233 Delta mutation. Very interestingly this is linked to myopia in one family. Despite the apparent phenotypic differences of the filensin (BFSP1) and CP49 (BFSP2) mutations, the data are still consistent with the beaded filament proteins being essential for lens function and specifically contributing to the optical properties of the lens. The fact that none of the mutations thus far reported affect either the conserved LNDR or TYRKLLEGE motifs that flank the central rod domain supports the view that this pair of IF proteins have unusual structural features and a distinctive assembly mechanism. The multiple sequence divergences suggest these proteins have been adapted to the specific functional requirements of lens fibre cells, a function that can be traced from squid to man.
Collapse
Affiliation(s)
- Ming-Der Perng
- School of Biological and Biomedical Sciences, The University of Durham, DH1 3LE, UK.
| | | | | |
Collapse
|
6
|
Capetanaki Y, Bloch RJ, Kouloumenta A, Mavroidis M, Psarras S. Muscle intermediate filaments and their links to membranes and membranous organelles. Exp Cell Res 2007; 313:2063-76. [PMID: 17509566 DOI: 10.1016/j.yexcr.2007.03.033] [Citation(s) in RCA: 208] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Revised: 03/20/2007] [Accepted: 03/29/2007] [Indexed: 12/17/2022]
Abstract
Intermediate filaments (IFs) play a key role in the integration of structure and function of striated muscle, primarily by mediating mechanochemical links between the contractile apparatus and mitochondria, myonuclei, the sarcolemma and potentially the vesicle trafficking apparatus. Linkage of all these membranous structures to the contractile apparatus, mainly through the Z-disks, supports the integration and coordination of growth and energy demands of the working myocyte, not only with force transmission, but also with de novo gene expression, energy production and efficient protein and lipid trafficking and targeting. Desmin, the most abundant and intensively studied muscle intermediate filament protein, is linked to proper costamere organization, myoblast and stem cell fusion and differentiation, nuclear shape and positioning, as well as mitochondrial shape, structure, positioning and function. Similar links have been established for lysosomes and lysosome-related organelles, consistent with the presence of widespread links between IFs and membranous structures and the regulation of their fusion, morphology and stabilization necessary for cell survival.
Collapse
Affiliation(s)
- Yassemi Capetanaki
- Cell Biology Division, Center of Basic Research, Biomedical Research Foundation Academy of Athens, Soranou Efessiou 4, 12965 Athens, Greece.
| | | | | | | | | |
Collapse
|
7
|
Abstract
Reactive gliosis is a prominent result of many types of insult to the central nervous system (CNS) and leads to the formation of glial scar that impedes the regeneration of axons. The intermediate filament protein vimentin is found in pathology of the CNS, mainly in the vicinity of injuries to the CNS. In the present study we investigated the role of vimentin in the formation of glial scars in vitro and in vivo by using immunohistochemistry, Western blot analysis, and in situ hybridization. In vitro experiments showed that the intensity of immunofluorescent labeling for vimentin and glial fibrillary acidic protein (GFAP) was consistently decreased in astrocytes after transfection with a retrovirus carrying antisense complementary DNA (cDNA) for vimentin. Transfection also inhibited the growth of astrocytes and decreased the expression of vimentin mRNA. In vivo studies demonstrated that transfection with the retrovirus carrying the antisense cDNA vimentin inhibited the upregulation of vimentin and GFAP in stab wounds in rat cerebrum. These results suggest that vimentin may play a key role in the formation of glial scars in the CNS.
Collapse
Affiliation(s)
- Jiangkai Lin
- Department of Neurosurgery, Southwest Hospital, College of Medicine, Third Military Medical University, Chongqing, The People's Republic of China.
| | | |
Collapse
|
8
|
Carter JM, McLean WH, West S, Quinlan RA. Mapping of the human CP49 gene and identification of an intragenic polymorphic marker to allow genetic linkage analysis in autosomal dominant congenital cataract. Biochem Biophys Res Commun 2000; 270:432-6. [PMID: 10753642 DOI: 10.1006/bbrc.2000.2442] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The CP49 protein is an intermediate filament protein expressed specifically in the lens fibre cells of the lens, where it is an important cytoplasmic structural component. Dominant-negative mutations in other intermediate filament proteins, such as keratins, cause disorders characterised by dense cytoplasmic aggregates in specific cell types. The CP49 gene is therefore a good candidate for dominantly inherited forms of cataract. To allow genetic linkage analysis of families with autosomal dominant cataract with respect to CP49, a highly polymorphic intragenic microsatellite marker for this gene has been developed. In addition, both low and high resolution radiation hybrid mapping of the CP49 gene has been completed, placing it very close to microsatellite marker D3S1290 on human chromosome 3q. Furthermore, using the intragenic CP49 microsatellite, linkage was excluded in four families with genetically uncharacterized forms of autosomal dominant congenital cataract.
Collapse
Affiliation(s)
- J M Carter
- Department of Biochemistry, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | | | | | | |
Collapse
|
9
|
Eckes B, Dogic D, Colucci-Guyon E, Wang N, Maniotis A, Ingber D, Merckling A, Langa F, Aumailley M, Delouvée A, Koteliansky V, Babinet C, Krieg T. Impaired mechanical stability, migration and contractile capacity in vimentin-deficient fibroblasts. J Cell Sci 1998; 111 ( Pt 13):1897-907. [PMID: 9625752 DOI: 10.1242/jcs.111.13.1897] [Citation(s) in RCA: 332] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Loss of a vimentin network due to gene disruption created viable mice that did not differ overtly from wild-type littermates. Here, primary fibroblasts derived from vimentin-deficient (-/-) and wild-type (+/+) mouse embryos were cultured, and biological functions were studied in in vitro systems resembling stress situations. Stiffness of -/- fibroblasts was reduced by 40% in comparison to wild-type cells. Vimentin-deficient cells also displayed reduced mechanical stability, motility and directional migration towards different chemo-attractive stimuli. Reorganization of collagen fibrils and contraction of collagen lattices were severely impaired. The spatial organization of focal contact proteins, as well as actin microfilament organization was disturbed. Thus, absence of a vimentin filament network does not impair basic cellular functions needed for growth in culture, but cells are mechanically less stable, and we propose that therefore they are impaired in all functions depending upon mechanical stability.
Collapse
Affiliation(s)
- B Eckes
- Department of Dermatology, University of Cologne, Federal Republic of Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Specialized cytoskeletons play many fascinating roles, including mechanical integrity and wound-healing in epidermal cells, cell polarity in simple epithelia, contraction in muscle cells, hearing and balance in the inner ear cells, axonal transport in neurons, and neuromuscular junction formation between muscle cells and motor neurons. These varied functions are dependent upon cytoplasmic networks of actin microfilaments (6 nm), intermediate filaments (10 nm) and microtubules (23 nm), and their many associated proteins. In this chapter, I review what is known about the cytoskeletons of intermediate filaments and their associated proteins. I focus largely on epidermal cells, which devote most of their protein-synthesizing machinery to producing an extensive intermediate filament network composed of keratin. Recent studies have shown that many of the devastating human disorders that arise from degeneration of this cell type have as their underlying basis either defects in the genes encoding keratins or abnormalities in keratin IF networks. I discuss what we know about the functions of IFs, and how the link to genetic disease has enhanced this understanding.
Collapse
Affiliation(s)
- E Fuchs
- Howard Hughes Medical Institute, University of Chicago, Illinois 60637, USA
| |
Collapse
|
11
|
Goldman RD, Khuon S, Chou YH, Opal P, Steinert PM. The function of intermediate filaments in cell shape and cytoskeletal integrity. J Biophys Biochem Cytol 1996; 134:971-83. [PMID: 8769421 PMCID: PMC2120965 DOI: 10.1083/jcb.134.4.971] [Citation(s) in RCA: 276] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
This study describes the development and use of a specific method for disassembling intermediate filament (IF) networks in living cells. It takes advantage of the disruptive effects of mimetic peptides derived from the amino acid sequence of the helix initiation 1A domain of IF protein chains. The results demonstrate that at 1:1 molar ratios, these peptides disassemble vimentin IF into small oligomeric complexes and monomers within 30 min at room temperature in vitro. Upon microinjection into cultured fibroblasts, these same peptides induce the rapid disassembly of IF networks. The disassembly process is accompanied by a dramatic alteration in cell shape and the destabilization of microtubule and actin-stress fiber networks. These changes in cell shape and IF assembly states are reversible. The results are discussed with respect to the roles of IF in cell shape and the maintenance of the integrity and mechanical properties of the cytoplasm, as well as the stability of the other major cytoskeletal systems.
Collapse
Affiliation(s)
- R D Goldman
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
12
|
Abstract
Several lines of transgenic mice developing eye malformations have been described in the literature and appear to be of increasing interest for the study of eye teratology in humans, since gene expression and regulation can be studied in the developing animal. Transgenic applications are briefly described here and an overview of existing transgenic mouse models carrying different eye abnormalities is given according to the major diagnosis (e.g., cataract, microphthalmia, anterior segment dysgenesis, retinal dysplasia). Interestingly, many transgenic models exhibit pathological findings similar to those observed in human pediatric ophthalmology. Unfortunately, detailed embryological studies in transgenic mice bearing congenital eye malformations are not available for all lines. Thus, the importance of creating further transgenic models to study the function of morphogenes and growth factors in eye development is also discussed.
Collapse
Affiliation(s)
- W Götz
- Department of Histology, University of Göttingen, Germany
| |
Collapse
|
13
|
Sandilands A, Prescott AR, Carter JM, Hutcheson AM, Quinlan RA, Richards J, FitzGerald PG. Vimentin and CP49/filensin form distinct networks in the lens which are independently modulated during lens fibre cell differentiation. J Cell Sci 1995; 108 ( Pt 4):1397-406. [PMID: 7615661 DOI: 10.1242/jcs.108.4.1397] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cells of the eye lens contain the type III intermediate filament protein vimentin, as well as two other intermediate filament proteins, CP49 and filensin. These two proteins appear to be unique to the differentiated lens fibre cell. Immunoblotting and confocal microscopy were used to describe changes which occur in these three intermediate filament proteins and the networks they form during fibre cell differentiation and maturation. The vimentin network was present in both epithelial cells and some fibre cells. Fibre cells were vimentin positive up to a specific point 2–3 mm in from the lens capsule where the vimentin signal was drastically reduced. The CP49/filensin network was not present in the undifferentiated epithelial cells but emerged in the differentiating fibre cells. This latter network exhibited a principally plasma membrane localization in younger fibre cells but became more cytoplasmic in older fibre cells. This change also occurred at a distinct point in fibre cell differentiation, much earlier than the observed loss of the vimentin network. The subcellular changes in the distributions of these cytoskeletal networks were correlated to the loss of the fibre cell nucleus, another feature of fibre cell differentiation. No correlation was found to changes in the vimentin network but nuclear loss did coincide with changes in the CP49/filensin network. Concomitant with nuclear pyknosis, there were also changes in the nuclear lamina as well as infringement of the nuclear compartment by CP49, as shown by confocal microscopy. This study demonstrates vimentin and the CP49/filensin network to be independent in the lens but both networks undergo dramatic changes in subcellular distribution during the differentiation/maturation of the fibre cell. Only changes in the CP49/filensin network can be correlated to nuclear loss. Thus in the lens, unlike mammalian erythropoiesis which is also characterized by nuclear loss, the vimentin network does not appear linked to nuclear retention.
Collapse
Affiliation(s)
- A Sandilands
- Department of Biochemistry, The University, Dundee, UK
| | | | | | | | | | | | | |
Collapse
|
14
|
Andreoli JM, Trevor KT. Structural and biological consequences of increased vimentin expression in simple epithelial cell types. CELL MOTILITY AND THE CYTOSKELETON 1995; 32:10-25. [PMID: 8674130 DOI: 10.1002/cm.970320103] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cytoskeletal intermediate filaments (IFs) constitute a diverse family of proteins whose members are expressed in tissue-specific patterns. Although vimentin IFs are normally restricted to mesenchyme, a variety of cell types express vimentin alone or together with cell-specific IFs during growth, differentiation, and neoplasia. In this study, we have investigated the influence of increased vimentin expression on the simple epithelial cell phenotype. An expression vector encoding a human vimentin cDNA was transfected into murine HR9 endoderm and F9 embryonal carcinoma cell lines, which serve as models for early extraembryonic epithelial differentiation. Stable clones that expressed varying levels of human vimentin were characterized by human vimentin were characterized by immunofluorescence and biochemical analysis. A relatively high level of vimentin expression in HR9 and differentiated F9 epithelial cells resulted in aberrant vimentin structures with co-collapse of keratin K8/K18 filaments and lowered amounts of keratin protein. In F9 epithelial cells, the desmosomal proteins DP I/II did not appear to localize to cell surface desmosome s but rather but rather co-aggregated with the perturbed IFs. Although overall cell morphology was not dramatically altered, individual nuclei were distorted by excess intracellular vimentin. Furthermore, cell proliferation as well as the cell spreading response time were slowed. Ther appears to be a threshold effect regarding overall vimentin levels as cells that expressed lower amounts of the human vimentin exhibited no obvious structural nor biological effects. Our results demonstrate that wild-type vimentin can act as a "mutant" protein when present at high intracellular levels, inducing a variety of phenotypic changes.
Collapse
Affiliation(s)
- J M Andreoli
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | | |
Collapse
|
15
|
Li H, Choudhary SK, Milner DJ, Munir MI, Kuisk IR, Capetanaki Y. Inhibition of desmin expression blocks myoblast fusion and interferes with the myogenic regulators MyoD and myogenin. J Cell Biol 1994; 124:827-41. [PMID: 8120103 PMCID: PMC2119944 DOI: 10.1083/jcb.124.5.827] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The muscle-specific intermediate filament protein, desmin, is one of the earliest myogenic markers whose functional role during myogenic commitment and differentiation is unknown. Sequence comparison of the presently isolated and fully characterized mouse desmin cDNA clones revealed a single domain of polypeptide similarity between desmin and the basic and helix-loop-helix region of members of the myoD family myogenic regulators. This further substantiated the need to search for the function of desmin. Constructs designed to express anti-sense desmin RNA were used to obtain stably transfected C2C12 myoblast cell lines. Several lines were obtained where expression of the anti-sense desmin RNA inhibited the expression of desmin RNA and protein down to basal levels. As a consequence, the differentiation of these myoblasts was blocked; complete inhibition of myoblast fusion and myotube formation was observed. Rescue of the normal phenotype was achieved either by spontaneous revertants, or by overexpression of the desmin sense RNA in the defective cell lines. In several of the cell lines obtained, inhibition of desmin expression was followed by differential inhibition of the myogenic regulators myoD and/or myogenin, depending on the stage and extent of desmin inhibition in these cells. These data suggested that myogenesis is modulated by at least more than one pathway and desmin, which so far was believed to be merely an architectural protein, seems to play a key role in this process.
Collapse
Affiliation(s)
- H Li
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030
| | | | | | | | | | | |
Collapse
|
16
|
Raats JM, Bloemendal H. The role of protein domains in the assembly process of intermediate filaments. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1992; 43:67-86. [PMID: 1410448 DOI: 10.1016/s0079-6603(08)61044-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- J M Raats
- Department of Biochemistry, University of Nijmegen, The Netherlands
| | | |
Collapse
|
17
|
Albers K, Fuchs E. The molecular biology of intermediate filament proteins. INTERNATIONAL REVIEW OF CYTOLOGY 1992; 134:243-79. [PMID: 1374743 DOI: 10.1016/s0074-7696(08)62030-6] [Citation(s) in RCA: 146] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- K Albers
- Howard Hughes Medical Institute, University of Chicago, Illinois 60637
| | | |
Collapse
|
18
|
Raats JM, Pieper FR, Vree Egberts WT, Verrijp KN, Ramaekers FC, Bloemendal H. Assembly of amino-terminally deleted desmin in vimentin-free cells. J Biophys Biochem Cytol 1990; 111:1971-85. [PMID: 1699950 PMCID: PMC2116339 DOI: 10.1083/jcb.111.5.1971] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
To study the role of the amino-terminal domain of the desmin subunit in intermediate filament (IF) formation, several deletions in the sequence encoding this domain were made. The deleted hamster desmin genes were fused to the RSV promoter. Expression of such constructs in vimentin-free MCF-7 cells as well as in vimentin-containing HeLa cells, resulted in the synthesis of mutant proteins of the expected size. Single- and double-label immunofluorescence assays of transfected cells showed that in the absence of vimentin, desmin subunits missing amino acids 4-13 are still capable of filament formation, although in addition to filaments large numbers of desmin dots are present. Mutant desmin subunits missing larger portions of their amino terminus cannot form filaments on their own. It may be concluded that the amino-terminal region comprising amino acids 7-17 contains residues indispensable for desmin filament formation in vivo. Furthermore it was shown that the endogenous vimentin IF network in HeLa cells masks the effects of mutant desmin on IF assembly. Intact and mutant desmin colocalized completely with endogenous vimentin in HeLa cells. Surprisingly, in these cells endogenous keratin also seemed to colocalize with endogenous vimentin, even if the endogenous vimentin filaments were disturbed after expression of some of the mutant desmin proteins. In MCF-7 cells some overlap between endogenous keratin and intact exogenous desmin filaments was also observed, but mutant desmin proteins did not affect the keratin IF structures. In the absence of vimentin networks (MCF-7 cells), the initiation of desmin filament formation seems to start on the preexisting keratin filaments. However, in the presence of vimentin (HeLa cells) a gradual integration of desmin in the preexisting vimentin filaments apparently takes place.
Collapse
Affiliation(s)
- J M Raats
- Department of Biochemistry, University of Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
19
|
Capetanaki Y, Smith S, Heath JP. Overexpression of the vimentin gene in transgenic mice inhibits normal lens cell differentiation. J Cell Biol 1989; 109:1653-64. [PMID: 2793935 PMCID: PMC2115810 DOI: 10.1083/jcb.109.4.1653] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
To investigate the role of the intermediate filament protein vimentin in the normal differentiation and morphogenesis of the eye lens fiber cells, we generated transgenic mice bearing multiple copies of the chicken vimentin gene. In most cases, the vimentin transgene was overexpressed in the lenses of these animals, reaching up to 10 times the endogenous levels. This high expression of vimentin interfered very strongly with the normal differentiation of the lens fibers. The normal fiber cell denucleation and elongation processes were impaired and the animals developed pronounced cataracts, followed by extensive lens degeneration. The age of appearance and extent of these abnormalities in the different transgenic lines were directly related to the vimentin level. Electron microscopic analysis revealed that the accumulated transgenic protein forms normal intermediate filaments.
Collapse
Affiliation(s)
- Y Capetanaki
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030
| | | | | |
Collapse
|