1
|
Opuu V, Simonson T. Enzyme redesign and genetic code expansion. Protein Eng Des Sel 2023; 36:gzad017. [PMID: 37879093 DOI: 10.1093/protein/gzad017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/10/2023] [Accepted: 09/19/2023] [Indexed: 10/27/2023] Open
Abstract
Enzyme design is an important application of computational protein design (CPD). It can benefit enormously from the additional chemistries provided by noncanonical amino acids (ncAAs). These can be incorporated into an 'expanded' genetic code, and introduced in vivo into target proteins. The key step for genetic code expansion is to engineer an aminoacyl-transfer RNA (tRNA) synthetase (aaRS) and an associated tRNA that handles the ncAA. Experimental directed evolution has been successfully used to engineer aaRSs and incorporate over 200 ncAAs into expanded codes. But directed evolution has severe limits, and is not yet applicable to noncanonical AA backbones. CPD can help address several of its limitations, and has begun to be applied to this problem. We review efforts to redesign aaRSs, studies that designed new proteins and functionalities with the help of ncAAs, and some of the method developments that have been used, such as adaptive landscape flattening Monte Carlo, which allows an enzyme to be redesigned with substrate or transition state binding as the design target.
Collapse
Affiliation(s)
- Vaitea Opuu
- Institut Chimie Biologie Innovation (CNRS UMR8231), Ecole Supérieure de Physique et Chimie de Paris (ESPCI), 75005 Paris, France
| | - Thomas Simonson
- Laboratoire de Biologie Structurale de la Cellule (CNRS UMR7654), Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| |
Collapse
|
2
|
Perl A-Kaján J, Malinowska A, Zimny JA, Cysewski D, Suszyńska-Zajczyk J, Jakubowski H. Proteome-Wide Analysis of Protein Lysine N-Homocysteinylation in Saccharomyces cerevisiae. J Proteome Res 2021; 20:2458-2476. [PMID: 33797904 DOI: 10.1021/acs.jproteome.0c00937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein N-homocysteinylation by a homocysteine (Hcy) metabolite, Hcy-thiolactone, is an emerging post-translational modification (PTM) that occurs in all tested organisms and has been linked to human diseases. The yeast Saccharomyces cerevisiae is widely used as a model eukaryotic organism in biomedical research, including studies of protein PTMs. However, patterns of global protein N-homocysteinylation in yeast are not known. Here, we identified 68 in vivo and 197 in vitro N-homocysteinylation sites at protein lysine residues (N-Hcy-Lys). Some of the N-homocysteinylation sites overlap with other previously identified PTM sites. Protein N-homocysteinylation in vivo, induced by supplementation of yeast cultures with Hcy, which elevates Hcy-thiolactone levels, was accompanied by significant changes in the levels of 70 yeast proteins (38 up-regulated and 32 down-regulated) involved in the ribosomal structure, amino acid biosynthesis, and basic cellular pathways. Our study provides the first global survey of N-homocysteinylation and accompanying changes in the yeast proteome caused by elevated Hcy level. These findings suggest that protein N-homocysteinylation and dysregulation of cellular proteostasis may contribute to the toxicity of Hcy in yeast. Homologous proteins and N-homocysteinylation sites are likely to be involved in Hcy-related pathophysiology in humans and experimental animals. Data are available via ProteomeXchange with identifier PXD020821.
Collapse
Affiliation(s)
- Joanna Perl A-Kaján
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań 60-632, Poland
| | - Agata Malinowska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, PAS, Warsaw 02-106, Poland
| | - Jarosl Aw Zimny
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań 60-632, Poland
| | - Dominik Cysewski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, PAS, Warsaw 02-106, Poland
| | - Joanna Suszyńska-Zajczyk
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań 60-632, Poland
| | - Hieronim Jakubowski
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań 60-632, Poland.,International Center for Public Health, Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, Newark, New Jersey 07103, United States
| |
Collapse
|
3
|
Moretti R, Giuffré M, Caruso P, Gazzin S, Tiribelli C. Homocysteine in Neurology: A Possible Contributing Factor to Small Vessel Disease. Int J Mol Sci 2021; 22:2051. [PMID: 33669577 PMCID: PMC7922986 DOI: 10.3390/ijms22042051] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/19/2022] Open
Abstract
Homocysteine (Hcy) is a sulfur-containing amino acid generated during methionine metabolism, accumulation of which may be caused by genetic defects or the deficit of vitamin B12 and folate. A serum level greater than 15 micro-mols/L is defined as hyperhomocysteinemia (HHcy). Hcy has many roles, the most important being the active participation in the transmethylation reactions, fundamental for the brain. Many studies focused on the role of homocysteine accumulation in vascular or degenerative neurological diseases, but the results are still undefined. More is known in cardiovascular disease. HHcy is a determinant for the development and progression of inflammation, atherosclerotic plaque formation, endothelium, arteriolar damage, smooth muscle cell proliferation, and altered-oxidative stress response. Conversely, few studies focused on the relationship between HHcy and small vessel disease (SVD), despite the evidence that mice with HHcy showed a significant end-feet disruption of astrocytes with a diffuse SVD. A severe reduction of vascular aquaporin-4-water channels, lower levels of high-functioning potassium channels, and higher metalloproteinases are also observed. HHcy modulates the N-homocysteinylation process, promoting a pro-coagulative state and damage of the cellular protein integrity. This altered process could be directly involved in the altered endothelium activation, typical of SVD and protein quality, inhibiting the ubiquitin-proteasome system control. HHcy also promotes a constant enhancement of microglia activation, inducing the sustained pro-inflammatory status observed in SVD. This review article addresses the possible role of HHcy in small-vessel disease and understands its pathogenic impact.
Collapse
Affiliation(s)
- Rita Moretti
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.G.); (P.C.)
| | - Mauro Giuffré
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.G.); (P.C.)
| | - Paola Caruso
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.G.); (P.C.)
| | - Silvia Gazzin
- Italian Liver Foundation, AREA SCIENCE PARK, 34149 Trieste, Italy; (S.G.); (C.T.)
| | - Claudio Tiribelli
- Italian Liver Foundation, AREA SCIENCE PARK, 34149 Trieste, Italy; (S.G.); (C.T.)
| |
Collapse
|
4
|
Jakubowski H. Homocysteine Modification in Protein Structure/Function and Human Disease. Physiol Rev 2019; 99:555-604. [PMID: 30427275 DOI: 10.1152/physrev.00003.2018] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Epidemiological studies established that elevated homocysteine, an important intermediate in folate, vitamin B12, and one carbon metabolism, is associated with poor health, including heart and brain diseases. Earlier studies show that patients with severe hyperhomocysteinemia, first identified in the 1960s, exhibit neurological and cardiovascular abnormalities and premature death due to vascular complications. Although homocysteine is considered to be a nonprotein amino acid, studies over the past 2 decades have led to discoveries of protein-related homocysteine metabolism and mechanisms by which homocysteine can become a component of proteins. Homocysteine-containing proteins lose their biological function and acquire cytotoxic, proinflammatory, proatherothrombotic, and proneuropathic properties, which can account for the various disease phenotypes associated with hyperhomocysteinemia. This review describes mechanisms by which hyperhomocysteinemia affects cellular proteostasis, provides a comprehensive account of the biological chemistry of homocysteine-containing proteins, and discusses pathophysiological consequences and clinical implications of their formation.
Collapse
Affiliation(s)
- Hieronim Jakubowski
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, International Center for Public Health , Newark, New Jersey ; and Department of Biochemistry and Biotechnology, Poznań University of Life Sciences , Poznań , Poland
| |
Collapse
|
5
|
Bhushan B, Lin YA, Bak M, Phanumartwiwath A, Yang N, Bilyard MK, Tanaka T, Hudson KL, Lercher L, Stegmann M, Mohammed S, Davis BG. Genetic Incorporation of Olefin Cross-Metathesis Reaction Tags for Protein Modification. J Am Chem Soc 2018; 140:14599-14603. [DOI: 10.1021/jacs.8b09433] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bhaskar Bhushan
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, U.K
| | - Yuya A. Lin
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, U.K
| | - Martin Bak
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, U.K
| | - Anuchit Phanumartwiwath
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, U.K
| | - Nan Yang
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, U.K
| | - Matthew K. Bilyard
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, U.K
| | - Tomonari Tanaka
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, U.K
| | - Kieran L. Hudson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, U.K
| | - Lukas Lercher
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, U.K
| | - Monika Stegmann
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| | - Shabaz Mohammed
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, U.K
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| | - Benjamin G. Davis
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
6
|
Tavares NK, VanDrisse CM, Escalante-Semerena JC. Rhodobacterales use a unique L-threonine kinase for the assembly of the nucleotide loop of coenzyme B 12. Mol Microbiol 2018; 110:239-261. [PMID: 30098062 DOI: 10.1111/mmi.14100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Several of the enzymes involved in the conversion of adenosylcobyric acid (AdoCby) to adenosylcobamide (AdoCba) are yet to be identified and characterized in some cobamide (Cba)-producing prokaryotes. Using a bioinformatics approach, we identified the bluE gene (locus tag RSP_0788) of Rhodobacter sphaeroides 2.4.1 as a putative functional homolog of the L-threonine kinase enzyme (PduX, EC 2.7.1.177) of S. enterica. In AdoCba, (R)-1-aminopropan-2-ol O-phosphate (AP-P) links the nucleotide loop to the corrin ring; most known AdoCba producers derive AP-P from L-Thr-O-3-phosphate (L-Thr-P). Here, we show that RsBluE has L-Thr-independent ATPase activity in vivo and in vitro. We used 31 P-NMR spectroscopy to show that RsBluE generates L-Thr-P at the expense of ATP and is unable to use L-Ser as a substrate. BluE from R. sphaeroides or Rhodobacter capsulatus restored AdoCba biosynthesis in S. enterica ΕpduX and R. sphaeroides ΕbluE mutant strains. R. sphaeroides ΕbluE strains exhibited a decreased pigment phenotype that was restored by complementation with BluE. Finally, phylogenetic analyses revealed that bluE was restricted to the genomes of a few Rhodobacterales that appear to have a preference for a specific form of Cba, namely Coᴽ-(ᴽ-5,6-dimethylbenzimidazolyl-Coᵦ-adenosylcobamide (a.k.a. adenosylcobalamin, AdoCbl; coenzyme B12 , CoB12 ).
Collapse
|
7
|
Djuric D, Jakovljevic V, Zivkovic V, Srejovic I. Homocysteine and homocysteine-related compounds: an overview of the roles in the pathology of the cardiovascular and nervous systems. Can J Physiol Pharmacol 2018; 96:991-1003. [PMID: 30130426 DOI: 10.1139/cjpp-2018-0112] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Homocysteine, an amino acid containing a sulfhydryl group, is an intermediate product during metabolism of the amino acids methionine and cysteine. Hyperhomocysteinemia is used as a predictive risk factor for cardiovascular disorders, the stroke progression, screening for inborn errors of methionine metabolism, and as a supplementary test for vitamin B12 deficiency. Two organic systems in which homocysteine has the most harmful effects are the cardiovascular and nervous system. The adverse effects of homocysteine are achieved by the action of several different mechanisms, such as overactivation of N-methyl-d-aspartate receptors, activation of Toll-like receptor 4, disturbance in Ca2+ handling, increased activity of nicotinamide adenine dinucleotide phosphate-oxidase and subsequent increase of production of reactive oxygen species, increased activity of nitric oxide synthase and nitric oxide synthase uncoupling and consequent impairment in nitric oxide and reactive oxygen species synthesis. Increased production of reactive species during hyperhomocysteinemia is related with increased expression of several proinflammatory cytokines, including IL-1β, IL-6, TNF-α, MCP-1, and intracellular adhesion molecule-1. All these mechanisms contribute to the emergence of diseases like atherosclerosis and related complications such as myocardial infarction, stroke, aortic aneurysm, as well as Alzheimer disease and epilepsy. This review provides evidence that supports the causal role for hyperhomocysteinemia in the development of cardiovascular disease and nervous system disorders.
Collapse
Affiliation(s)
- Dragan Djuric
- a Institute of Medical Physiology "Richard Burian" Faculty of Medicine, University of Belgrade, Visegradska 26, Belgrade 11000, Serbia
| | - Vladimir Jakovljevic
- b Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, Kragujevac 34000, Serbia.,c Department of Human Pathology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st. 8, Moscow 119991, Russia
| | - Vladimir Zivkovic
- b Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, Kragujevac 34000, Serbia
| | - Ivan Srejovic
- b Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, Kragujevac 34000, Serbia
| |
Collapse
|
8
|
Cystathionine β-Synthase in Physiology and Cancer. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3205125. [PMID: 30050925 PMCID: PMC6046153 DOI: 10.1155/2018/3205125] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/29/2018] [Indexed: 01/20/2023]
Abstract
Cystathionine β-synthase (CBS) regulates homocysteine metabolism and contributes to hydrogen sulfide (H2S) biosynthesis through which it plays multifunctional roles in the regulation of cellular energetics, redox status, DNA methylation, and protein modification. Inactivating mutations in CBS contribute to the pathogenesis of the autosomal recessive disease CBS-deficient homocystinuria. Recent studies demonstrating that CBS promotes colon and ovarian cancer growth in preclinical models highlight a newly identified oncogenic role for CBS. On the contrary, tumor-suppressive effects of CBS have been reported in other cancer types, suggesting context-dependent roles of CBS in tumor growth and progression. Here, we review the physiological functions of CBS, summarize the complexities regarding CBS research in oncology, and discuss the potential of CBS and its key metabolites, including homocysteine and H2S, as potential biomarkers for cancer diagnosis or therapeutic targets for cancer treatment.
Collapse
|
9
|
Kruger WD. Cystathionine β-synthase deficiency: Of mice and men. Mol Genet Metab 2017; 121:199-205. [PMID: 28583326 PMCID: PMC5526210 DOI: 10.1016/j.ymgme.2017.05.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 01/28/2023]
Abstract
Cystathionine β-synthase (CBS) deficiency (Online Mendelian Inheritance in Man [OMIM] 236,200) is an autosomal recessive disorder that is caused by mutations in the CBS gene. It is the most common inborn error of sulfur metabolism and is the cause of classical homocystinuria, a condition characterized by very high levels of plasma total homocysteine and methionine. Although recognized as an inborn error of metabolism over 60years ago, these is still much we do not understand related to how this specific metabolic defect gives rise to its distinct phenotypes. To try and answer these questions, several groups have developed mouse models on CBS deficiency. In this article, we will review various mouse models of CBS deficiency and discuss how these mouse models compare to human CBS deficient patients.
Collapse
Affiliation(s)
- Warren D Kruger
- Cancer Biology Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA.
| |
Collapse
|
10
|
Jakubowski H. Homocysteine Editing, Thioester Chemistry, Coenzyme A, and the Origin of Coded Peptide Synthesis †. Life (Basel) 2017; 7:life7010006. [PMID: 28208756 PMCID: PMC5370406 DOI: 10.3390/life7010006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/03/2017] [Indexed: 12/22/2022] Open
Abstract
Aminoacyl-tRNA synthetases (AARSs) have evolved “quality control” mechanisms which prevent tRNA aminoacylation with non-protein amino acids, such as homocysteine, homoserine, and ornithine, and thus their access to the Genetic Code. Of the ten AARSs that possess editing function, five edit homocysteine: Class I MetRS, ValRS, IleRS, LeuRS, and Class II LysRS. Studies of their editing function reveal that catalytic modules of these AARSs have a thiol-binding site that confers the ability to catalyze the aminoacylation of coenzyme A, pantetheine, and other thiols. Other AARSs also catalyze aminoacyl-thioester synthesis. Amino acid selectivity of AARSs in the aminoacyl thioesters formation reaction is relaxed, characteristic of primitive amino acid activation systems that may have originated in the Thioester World. With homocysteine and cysteine as thiol substrates, AARSs support peptide bond synthesis. Evolutionary origin of these activities is revealed by genomic comparisons, which show that AARSs are structurally related to proteins involved in coenzyme A/sulfur metabolism and non-coded peptide bond synthesis. These findings suggest that the extant AARSs descended from ancestral forms that were involved in non-coded Thioester-dependent peptide synthesis, functionally similar to the present-day non-ribosomal peptide synthetases.
Collapse
Affiliation(s)
- Hieronim Jakubowski
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA.
- Department of Biochemistry and Biotechnology, University of Life Sciences, Poznan 60-632, Poland.
| |
Collapse
|
11
|
Khayati K, Antikainen H, Bonder EM, Weber GF, Kruger WD, Jakubowski H, Dobrowolski R. The amino acid metabolite homocysteine activates mTORC1 to inhibit autophagy and form abnormal proteins in human neurons and mice. FASEB J 2016; 31:598-609. [PMID: 28148781 DOI: 10.1096/fj.201600915r] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/11/2016] [Indexed: 11/11/2022]
Abstract
The molecular mechanisms leading to and responsible for age-related, sporadic Alzheimer's disease (AD) remain largely unknown. It is well documented that aging patients with elevated levels of the amino acid metabolite homocysteine (Hcy) are at high risk of developing AD. We investigated the impact of Hcy on molecular clearance pathways in mammalian cells, including in vitro cultured induced pluripotent stem cell-derived forebrain neurons and in vivo neurons in mouse brains. Exposure to Hcy resulted in up-regulation of the mechanistic target of rapamycin complex 1 (mTORC1) activity, one of the major kinases in cells that is tightly linked to anabolic and catabolic pathways. Hcy is sensed by a constitutive protein complex composed of leucyl-tRNA-synthetase and folliculin, which regulates mTOR tethering to lysosomal membranes. In hyperhomocysteinemic human cells and cystathionine β-synthase-deficient mouse brains, we find an acute and chronic inhibition of the molecular clearance of protein products resulting in a buildup of abnormal proteins, including β-amyloid and phospho-Tau. Formation of these protein aggregates leads to AD-like neurodegeneration. This pathology can be prevented by inhibition of mTORC1 or by induction of autophagy. We conclude that an increase of intracellular Hcy levels predisposes neurons to develop abnormal protein aggregates, which are hallmarks of AD and its associated onset and pathophysiology with age.-Khayati, K., Antikainen, H., Bonder, E. M., Weber, G. F., Kruger, W. D., Jakubowski, H., Dobrowolski, R. The amino acid metabolite homocysteine activates mTORC1 to inhibit autophagy and form abnormal proteins in human neurons and mice.
Collapse
Affiliation(s)
- Khoosheh Khayati
- Federated Department of Biological Sciences, Rutgers University/New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Henri Antikainen
- Federated Department of Biological Sciences, Rutgers University/New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Edward M Bonder
- Federated Department of Biological Sciences, Rutgers University/New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Gregory F Weber
- Federated Department of Biological Sciences, Rutgers University/New Jersey Institute of Technology, Newark, New Jersey, USA
| | | | - Hieronim Jakubowski
- Department of Microbiology, Biochemistry, and Molecular Genetics, International Center for Public Health, Rutgers-New Jersey Medical School, Newark, New Jersey, USA.,Institute of Bioorganic Chemistry, Poznań, Poland; and.,Department of Biochemistry and Biotechnology, University of Life Sciences, Poznań, Poland
| | - Radek Dobrowolski
- Federated Department of Biological Sciences, Rutgers University/New Jersey Institute of Technology, Newark, New Jersey, USA;
| |
Collapse
|
12
|
Methylfolate Trap Promotes Bacterial Thymineless Death by Sulfa Drugs. PLoS Pathog 2016; 12:e1005949. [PMID: 27760199 PMCID: PMC5070874 DOI: 10.1371/journal.ppat.1005949] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 09/22/2016] [Indexed: 01/16/2023] Open
Abstract
The methylfolate trap, a metabolic blockage associated with anemia, neural tube defects, Alzheimer’s dementia, cardiovascular diseases, and cancer, was discovered in the 1960s, linking the metabolism of folate, vitamin B12, methionine and homocysteine. However, the existence or physiological significance of this phenomenon has been unknown in bacteria, which synthesize folate de novo. Here we identify the methylfolate trap as a novel determinant of the bacterial intrinsic death by sulfonamides, antibiotics that block de novo folate synthesis. Genetic mutagenesis, chemical complementation, and metabolomic profiling revealed trap-mediated metabolic imbalances, which induced thymineless death, a phenomenon in which rapidly growing cells succumb to thymine starvation. Restriction of B12 bioavailability, required for preventing trap formation, using an “antivitamin B12” molecule, sensitized intracellular bacteria to sulfonamides. Since boosting the bactericidal activity of sulfonamides through methylfolate trap induction can be achieved in Gram-negative bacteria and mycobacteria, it represents a novel strategy to render these pathogens more susceptible to existing sulfonamides. Sulfonamides were the first agents to successfully treat bacterial infections, but their use later declined due to the emergence of resistant organisms. Restoration of these drugs may be achieved through inactivation of molecular mechanisms responsible for resistance. A chemo-genomic screen first identified 50 chromosomal loci representing the whole-genome antifolate resistance determinants in Mycobacterium smegmatis. Interestingly, many determinants resembled components of the methylfolate trap, a metabolic blockage exclusively described in mammalian cells. Targeted mutagenesis, genetic and chemical complementation, followed by chemical analyses established the methylfolate trap as a novel mechanism of sulfonamide sensitivity, ubiquitously present in mycobacteria and Gram-negative bacterial pathogens. Furthermore, metabolomic analyses revealed trap-mediated interruptions in folate and related metabolic pathways. These metabolic imbalances induced thymineless death, which was reversible with exogenous thymine supplementation. Chemical restriction of vitamin B12, an important molecule required for prevention of the methylfolate trap, sensitized intracellular bacteria to sulfonamides. Thus, pharmaceutical promotion of the methylfolate trap represents a novel folate antagonistic strategy to render pathogenic bacteria more susceptible to available, clinically approved sulfonamides.
Collapse
|
13
|
Jakubowski H. Aminoacyl-tRNA synthetases and the evolution of coded peptide synthesis: the Thioester World. FEBS Lett 2016; 590:469-81. [PMID: 26831912 DOI: 10.1002/1873-3468.12085] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 11/10/2022]
Abstract
Coded peptide synthesis must have been preceded by a prebiotic stage, in which thioesters played key roles. Fossils of the Thioester World are found in extant aminoacyl-tRNA synthetases (AARSs). Indeed, studies of the editing function reveal that AARSs have a thiol-binding site in their catalytic modules. The thiol-binding site confers the ability to catalyze aminoacyl~coenzyme A thioester synthesis and peptide bond formation. Genomic comparisons show that AARSs are structurally related to proteins involved in sulfur and coenzyme A metabolisms and peptide bond synthesis. These findings point to the origin of the amino acid activation and peptide bond synthesis functions in the Thioester World and suggest that the present-day AARSs had originated from ancestral forms that were involved in noncoded thioester-dependent peptide synthesis.
Collapse
Affiliation(s)
- Hieronim Jakubowski
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, International Center for Public Health, Newark, NJ, USA.,Institute of Bioorganic Chemistry, Poznań, Poland.,Department of Biochemistry and Biotechnology, University of Life Sciences, Poznań, Poland
| |
Collapse
|
14
|
Vaughan MD, Su Z, Daub E, Honek JF. Intriguing cellular processing of a fluorinated amino acid during protein biosynthesis in Escherichia coli. Org Biomol Chem 2016; 14:8942-8946. [DOI: 10.1039/c6ob01690a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unusual in vivo processing of a fluorinated amino acid provides unexpected dual protein labeling in E. coli.
Collapse
Affiliation(s)
- Mark D. Vaughan
- Department of Chemistry
- University of Waterloo
- Waterloo
- ON N2L 3G1 Canada
| | - Zhengding Su
- Department of Chemistry
- University of Waterloo
- Waterloo
- ON N2L 3G1 Canada
| | - Elisabeth Daub
- Department of Chemistry
- University of Waterloo
- Waterloo
- ON N2L 3G1 Canada
| | - J. F. Honek
- Department of Chemistry
- University of Waterloo
- Waterloo
- ON N2L 3G1 Canada
| |
Collapse
|
15
|
McCully KS. Homocysteine Metabolism, Atherosclerosis, and Diseases of Aging. Compr Physiol 2015; 6:471-505. [DOI: 10.1002/cphy.c150021] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
16
|
Abstract
Hyperhomocysteinemia occurs in chronic- and end-stage kidney disease at the time when dialysis or transplant becomes indispensable for survival. Excessive accumulation of homocysteine (Hcy) aggravates conditions associated with imbalanced homeostasis and cellular redox thereby resulting in severe oxidative stress leading to oxidation of reduced free and protein-bound thiols. Thiol modifications such as N-homocysteinylation, sulfination, cysteinylation, glutathionylation, and sulfhydration control cellular responses that direct complex metabolic pathways. Although cysteinyl modifications are kept low, under Hcy-induced stress, thiol modifications persist thus surpassing cellular proteostasis. Here, we review mechanisms of redox regulation and show how cysteinyl modifications triggered by excess Hcy contribute development and progression of chronic kidney disease. We discuss different signaling events resulting from aberrant cysteinyl modification with a focus on transsulfuration.
Collapse
|
17
|
Xu L, Chen J, Gao J, Yu H, Yang P. Crosstalk of homocysteinylation, methylation and acetylation on histone H3. Analyst 2015; 140:3057-63. [PMID: 25807213 DOI: 10.1039/c4an02355b] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Homocysteinylation on histone H3 was first identified by LC-MS/MS, which affects methylation and acetylation levels of histone H3.
Collapse
Affiliation(s)
- Leilei Xu
- Minhang Hospital and Institutes of Biomedical Sciences
- Fudan University Shanghai Medical College
- Shanghai 200032
- China
| | - Jiajia Chen
- Minhang Hospital and Institutes of Biomedical Sciences
- Fudan University Shanghai Medical College
- Shanghai 200032
- China
| | - Jun Gao
- Minhang Hospital and Institutes of Biomedical Sciences
- Fudan University Shanghai Medical College
- Shanghai 200032
- China
| | - Hongxiu Yu
- Minhang Hospital and Institutes of Biomedical Sciences
- Fudan University Shanghai Medical College
- Shanghai 200032
- China
- Department of Systems Biology for Medicine
| | - Pengyuan Yang
- Minhang Hospital and Institutes of Biomedical Sciences
- Fudan University Shanghai Medical College
- Shanghai 200032
- China
- Department of Chemistry
| |
Collapse
|
18
|
Inhibitors of amino acids biosynthesis as antifungal agents. Amino Acids 2014; 47:227-49. [PMID: 25408465 PMCID: PMC4302243 DOI: 10.1007/s00726-014-1873-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 11/05/2014] [Indexed: 12/22/2022]
Abstract
Fungal microorganisms, including the human pathogenic yeast and filamentous fungi, are able to synthesize all proteinogenic amino acids, including nine that are essential for humans. A number of enzymes catalyzing particular steps of human-essential amino acid biosynthesis are fungi specific. Numerous studies have shown that auxotrophic mutants of human pathogenic fungi impaired in biosynthesis of particular amino acids exhibit growth defect or at least reduced virulence under in vivo conditions. Several chemical compounds inhibiting activity of one of these enzymes exhibit good antifungal in vitro activity in minimal growth media, which is not always confirmed under in vivo conditions. This article provides a comprehensive overview of the present knowledge on pathways of amino acids biosynthesis in fungi, with a special emphasis put on enzymes catalyzing particular steps of these pathways as potential targets for antifungal chemotherapy.
Collapse
|
19
|
High dietary taurine inhibits myocardial apoptosis during an atherogenic diet: association with increased myocardial HSP70 and HSF-1 but not caspase 3. Eur J Nutr 2013; 53:929-37. [PMID: 24146099 DOI: 10.1007/s00394-013-0596-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 10/07/2013] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND AIM Apoptosis is a major cause of myocyte death, and taurine is anti-apoptotic. Heat shock protein 70 (HSP70) (which is regulated by heat shock factor-HSF-1) is also anti-apoptotic, and caspase 3 stimulates the apoptotic pathway. This study investigated whether taurine affects atherogenic diet-induced myocardial apoptosis, and whether HSP70, HSF-1 and caspase 3 are involved. METHODS New Zealand white rabbits were divided into 3 groups for 4 weeks according to their diet. Group 1 (control) was fed a normal rabbit diet; Group 2 (MC) received a normal rabbit diet with 1% methionine plus 0.5% cholesterol. Group 3 received MC diet + 2.5% taurine (MCT). RESULTS The atherogenic diet did not affect myocardial HSP70 or HSF-1 protein, but increased myocardial apoptotic nuclei to 40% (p < 0.01) versus 7% in con and 12% in MCT (p < 0.01). However, in MCT, myocardial HSP70 expression increased by 42.7% versus con and MC (p = 0.016), HSF-1 by 12% versus con and MC (p < 0.05), and total nuclei count increased by 37% versus MC (p < 0.05). Caspase 3 subunits remained unchanged in all groups, and HSP70 was increased approximately twofold in endothelial layer of arterioles (p = 0.01). CONCLUSION This study shows that taurine could reduce myocardial apoptotic nuclei and thus confer myocardial cytoprotection via stimulating myocardial HSP70 via HSF-1 and caspase 3-independent mechanisms.
Collapse
|
20
|
Is Endothelial Nitric Oxide Synthase a Moonlighting Protein Whose Day Job is Cholesterol Sulfate Synthesis? Implications for Cholesterol Transport, Diabetes and Cardiovascular Disease. ENTROPY 2012. [DOI: 10.3390/e14122492] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Aggregation and Fibrillation of Eye Lens Crystallins by Homocysteinylation; Implication in the Eye Pathological Disorders. Protein J 2012; 31:717-27. [DOI: 10.1007/s10930-012-9451-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Smirnova EV, Lakunina VA, Tarassov I, Krasheninnikov IA, Kamenski PA. Noncanonical functions of aminoacyl-tRNA synthetases. BIOCHEMISTRY (MOSCOW) 2012; 77:15-25. [PMID: 22339629 DOI: 10.1134/s0006297912010026] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Aminoacyl-tRNA synthetases, together with their main function of covalent binding of an amino acid to a corresponding tRNA, also perform many other functions. They take part in regulation of gene transcription, apoptosis, translation, and RNA splicing. Some of them function as cytokines or catalyze different reactions in living cells. Noncanonical functions can be mediated by additional domains of these proteins. On the other hand, some of the noncanonical functions are directly associated with the active center of the aminoacylation reaction. In this review we summarize recent data on the noncanonical functions of aminoacyl-tRNA synthetases and on the mechanisms of their action.
Collapse
Affiliation(s)
- E V Smirnova
- Department of Molecular Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | | | | | | |
Collapse
|
23
|
Borowczyk K, Tisończyk J, Jakubowski H. Metabolism and neurotoxicity of homocysteine thiolactone in mice: protective role of bleomycin hydrolase. Amino Acids 2012; 43:1339-48. [PMID: 22227865 DOI: 10.1007/s00726-011-1207-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 12/21/2011] [Indexed: 10/14/2022]
Abstract
Genetic or nutritional disorders in homocysteine (Hcy) metabolism elevate Hcy-thiolactone and cause heart and brain diseases. Hcy-thiolactone has been implicated in these diseases because it has the ability to modify protein lysine residues and generate toxic N-Hcy-proteins with auto-immunogenic, pro-thrombotic, and amyloidogenic properties. Bleomycin hydrolase (Blmh) has the ability to hydrolyze L-Hcy-thiolactone (but not D-Hcy-thiolactone) to Hcy in vitro, but whether this reflects a physiological function has been unknown. Here, we show that Blmh (-/-) mice excreted in urine 1.8-fold more Hcy-thiolactone than wild-type Blmh (+/+) animals (P = 0.02). Hcy-thiolactone was elevated 2.3-fold in brains (P = 0.004) and 2.0-fold in kidneys (P = 0.047) of Blmh (-/-) mice relative to Blmh (+/+) animals. Plasma N-Hcy-protein was elevated in Blmh (-/-) mice fed a normal (2.3-fold, P < 0.001) or hyperhomocysteinemic diet (1.5-fold, P < 0.001), compared with Blmh (+/+) animals. More intraperitoneally injected L-Hcy-thiolactone was recovered in plasma in Blmh (-/-) mice than in wild-type Blmh (+/+) animals (83.1 vs. 39.3 μM, P < 0.0001). In Blmh (+/+) mice injected intraperitoneally with D-Hcy-thiolactone, D,L-Hcy-thiolactone, or L-Hcy-thiolactone, 88, 47, or 6.3%, respectively, of the injected dose was recovered in plasma. The incidence of seizures induced by L-Hcy-thiolactone injections (3,700 nmol/g body weight) was higher in Blmh (-/-) than in Blmh (+/+) mice (93.8 vs. 29.5%, P < 0.001). Using the Blmh null mice, we provide the first direct evidence that a specific Hcy metabolite, Hcy-thiolactone, rather than Hcy itself, is neurotoxic in vivo. Taken together, our findings indicate that Blmh protects mice against L-Hcy-thiolactone toxicity by metabolizing it to Hcy and suggest a mechanism by which Blmh might protect against neurodegeneration associated with hyperhomocysteinemia and Alzheimer's disease.
Collapse
Affiliation(s)
- Kamila Borowczyk
- Department of Microbiology and Molecular Genetics, International Center for Public Health, UMDNJ-New Jersey Medical School, 225 Warren Street, Newark, NJ 07101, USA
| | | | | |
Collapse
|
24
|
Jakubowski H, Głowacki R. Chemical biology of homocysteine thiolactone and related metabolites. Adv Clin Chem 2011; 55:81-103. [PMID: 22126025 DOI: 10.1016/b978-0-12-387042-1.00005-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Protein-related homocysteine (Hcy) metabolism produces Hcy-thiolactone, N-Hcy-protein, and N epsilon-homocysteinyl-lysine (N epsilon-Hcy-Lys). Hcy-thiolactone is generated in an error-editing reaction in protein biosynthesis when Hcy is erroneously selected in place of methionine by methionyl-tRNA synthetase. Hcy-thiolactone, an intramolecular thioester, is chemically reactive and forms isopeptide bonds with protein lysine residues in a process called N-homocysteinylation, which impairs or alters the protein's biological function. The resulting protein damage is exacerbated by a thiyl radical-mediated oxidation. N-Hcy-proteins undergo structural changes leading to aggregation and amyloid formation. These structural changes generate proteins, which are toxic and which induce an autoimmune response. Proteolytic degradation of N-Hcy-proteins generates N epsilon-Hcy-Lys. Levels of Hcy-thiolactone, N-Hcy-protein, and N epsilon-Hcy-Lys increase under pathological conditions in humans and mice and have been linked to cardiovascular and brain disorders. This chapter reviews fundamental biological chemistry of Hcy-thiolactone, N-Hcy-protein, and N epsilon-Hcy-Lys and discusses their clinical significance.
Collapse
Affiliation(s)
- Hieronim Jakubowski
- Department of Microbiology and Molecular Genetics, UMDNJ-New Jersey Medical School, International Center for Public Health, Newark, New Jersey, USA.
| | | |
Collapse
|
25
|
Jakubowski H. Quality control in tRNA charging. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:295-310. [PMID: 22095844 DOI: 10.1002/wrna.122] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Faithful translation of the genetic code during protein synthesis is fundamental to the growth, development, and function of living organisms. Aminoacyl-tRNA synthetases (AARSs), which define the genetic code by correctly pairing amino acids with their cognate tRNAs, are responsible for 'quality control' in the flow of information from a gene to a protein. When differences in binding energies of amino acids to an AARS are inadequate, editing is used to achieve high selectivity. Editing occurs at the synthetic active site by hydrolysis of noncognate aminoacyl-adenylates (pretransfer editing) and at a dedicated editing site located in a separate domain by deacylation of mischarged aminoacyl-tRNA (posttransfer editing). Access of nonprotein amino acids, such as homocysteine or ornithine, to the genetic code is prevented by the editing function of AARSs, which functionally partitions amino acids present in living cells into protein and nonprotein amino acids. Continuous editing is part of the tRNA aminoacylation process in living organisms from bacteria to human beings. Preventing mistranslation by the clearance of misactivated amino acids is crucial to cellular homeostasis and has a role in etiology of disease. Although there is a strong selective pressure to minimize mistranslation, some organisms possess error-prone AARSs that cause mistranslation. Elevated levels of mistranslation and the synthesis of statistical proteins can be beneficial for pathogens by increasing phenotypic variation essential for the evasion of host defenses.
Collapse
Affiliation(s)
- Hieronim Jakubowski
- Department of Microbiology and Molecular Genetics, UMDNJ-New Jersey Medical School, International Center for Public Health, Newark, NJ, USA.
| |
Collapse
|
26
|
So BR, An S, Kumar S, Das M, Turner DA, Hadad CM, Musier-Forsyth K. Substrate-mediated fidelity mechanism ensures accurate decoding of proline codons. J Biol Chem 2011; 286:31810-20. [PMID: 21768119 DOI: 10.1074/jbc.m111.232611] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aminoacyl-tRNA synthetases attach specific amino acids to cognate tRNAs. Prolyl-tRNA synthetases are known to mischarge tRNA(Pro) with the smaller amino acid alanine and with cysteine, which is the same size as proline. Quality control in proline codon translation is partly ensured by an editing domain (INS) present in most bacterial prolyl-tRNA synthetases that hydrolyzes smaller Ala-tRNA(Pro) and excludes Pro-tRNA(Pro). In contrast, Cys-tRNA(Pro) is cleared by a freestanding INS domain homolog, YbaK. Here, we have investigated the molecular mechanism of catalysis and substrate recognition by Hemophilus influenzae YbaK using site-directed mutagenesis, enzymatic assays of isosteric substrates and functional group analogs, and computational modeling. These studies together with mass spectrometric characterization of the YbaK-catalyzed reaction products support a novel substrate-assisted mechanism of Cys-tRNA(Pro) deacylation that prevents nonspecific Pro-tRNA(Pro) hydrolysis. Collectively, we propose that the INS and YbaK domains co-evolved distinct mechanisms involving steric exclusion and thiol-specific chemistry, respectively, to ensure accurate decoding of proline codons.
Collapse
Affiliation(s)
- Byung Ran So
- Department of Chemistry, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Yokoyama J, Matsuda T, Koshiba S, Tochio N, Kigawa T. A practical method for cell-free protein synthesis to avoid stable isotope scrambling and dilution. Anal Biochem 2011; 411:223-9. [DOI: 10.1016/j.ab.2011.01.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/11/2011] [Accepted: 01/12/2011] [Indexed: 11/16/2022]
|
28
|
Głowacki R, Bald E, Jakubowski H. An on-column derivatization method for the determination of homocysteine-thiolactone and protein N-linked homocysteine. Amino Acids 2010; 41:187-94. [DOI: 10.1007/s00726-010-0521-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 02/09/2010] [Indexed: 11/30/2022]
|
29
|
Zang T, Dai S, Chen D, Lee BWK, Liu S, Karger BL, Zhou ZS. Chemical methods for the detection of protein N-homocysteinylation via selective reactions with aldehydes. Anal Chem 2009; 81:9065-71. [PMID: 19874060 PMCID: PMC2771319 DOI: 10.1021/ac9017132] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Elevated blood levels of homocysteine (Hcy), hyperhomocysteinemia or homocystinuria, have been associated with various diseases and conditions. Homocysteine thiolactone (Hcy TL) is a metabolite of Hcy and reacts with amine groups in proteins to form stable amides, homocystamides, or N-homocysteinylated proteins. It has been proposed that protein N-homocysteinylation contributes to the cytotoxicity of elevated Hcy. Due to its heterogeneity and relatively low abundance, detection of this posttranslational modification remains challenging. On the other hand, the gamma-aminothiol group in homocystamides imparts different chemical reactivities than the native proteins. Under mildly acidic conditions, gamma-aminothiols irreversibly and stoichiometrically react with aldehydes to form stable 1,3-thiazines, whereas the reversible Schiff base formation between aldehydes and amino groups in native proteins is markedly disfavored due to protonation of amines. As such, we have developed highly selective chemical methods to derivatize N-homocysteinylated proteins with various aldehyde tags, thereby facilitating the subsequent analyses. For instance, fluorescent or biotin tagging coupled with gel electrophoresis permits quantification and global profiling of complex biological samples, such as hemoglobin and plasma from rat, mouse and human; affinity enrichment with aldehyde resins drastically reduces sample complexity. In addition, different reactivities of lysine residues in hemoglobin toward Hcy TL were observed.
Collapse
Affiliation(s)
- Tianzhu Zang
- Barnett Institute of Chemical and Biological Analysis and Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115
| | - Shujia Dai
- Barnett Institute of Chemical and Biological Analysis and Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115
| | - Dajun Chen
- Barnett Institute of Chemical and Biological Analysis and Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115
| | - Bobby W. K. Lee
- Barnett Institute of Chemical and Biological Analysis and Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115
| | - Suli Liu
- Barnett Institute of Chemical and Biological Analysis and Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115
| | - Barry L. Karger
- Barnett Institute of Chemical and Biological Analysis and Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115
| | - Zhaohui Sunny Zhou
- Barnett Institute of Chemical and Biological Analysis and Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115
| |
Collapse
|
30
|
Sikora M, Jakubowski H. Homocysteine editing and growth inhibition in Escherichia coli. MICROBIOLOGY-SGM 2009; 155:1858-1865. [PMID: 19383686 DOI: 10.1099/mic.0.026609-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In Escherichia coli homocysteine (Hcy) is metabolically converted to the thioester Hcy-thiolactone in ATP-consuming reactions catalysed by methionyl-, isoleucyl- and leucyl-tRNA synthetases. Here we show that growth inhibition caused by supplementation of E. coli cultures with Hcy is accompanied by greatly increased accumulation of Hcy-thiolactone. Energy dissipation for Hcy editing increases 100-fold in the presence of exogenous Hcy and reaches one mole of ATP unproductively dissipated for Hcy-thiolactone synthesis per each mole of ATP that is consumed for methionine activation. Inhibiting Hcy-thiolactone synthesis with isoleucine, leucine or methionine accelerates bacterial growth in Hcy-supplemented cultures. Growth rates in Hcy-inhibited cultures are inversely related to the accumulation of Hcy-thiolactone. We also show that the levels of protein N-linked Hcy modestly increase in E. coli cells in Hcy-supplemented cultures. The results suggest that Hcy editing restrains bacterial growth.
Collapse
Affiliation(s)
- Marta Sikora
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland.,Department of Microbiology and Molecular Genetics, UMDNJ-New Jersey Medical School, International Center for Public Health, Newark, NJ 07101, USA
| | - Hieronim Jakubowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland.,Department of Microbiology and Molecular Genetics, UMDNJ-New Jersey Medical School, International Center for Public Health, Newark, NJ 07101, USA
| |
Collapse
|
31
|
Jakubowski H. Facile syntheses of [35S]homocysteine-thiolactone, [35S]homocystine, [35S]homocysteine, and [S-nitroso-35S]homocysteine. Anal Biochem 2007; 370:124-6. [PMID: 17624291 DOI: 10.1016/j.ab.2007.05.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 05/31/2007] [Indexed: 11/16/2022]
Affiliation(s)
- Hieronim Jakubowski
- Department of Microbiology and Molecular Genetics, UMDNJ-New Jersey Medical School, International Center for Public Health, Newark, NJ 07101, USA.
| |
Collapse
|
32
|
Taurog RE, Jakubowski H, Matthews RG. Synergistic, random sequential binding of substrates in cobalamin-independent methionine synthase. Biochemistry 2006; 45:5083-91. [PMID: 16618097 PMCID: PMC2041902 DOI: 10.1021/bi060051u] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cobalamin-independent methionine synthase (MetE) catalyzes the transfer of the N5-methyl group of methyltetrahydrofolate (CH(3)-H(4)folate) to the sulfur of homocysteine (Hcy) to form methionine and tetrahydrofolate (H(4)folate) as products. This reaction is thought to involve a direct methyl transfer from one substrate to the other, requiring the two substrates to interact in a ternary complex. The crystal structure of a MetE.CH(3)-H(4)folate binary complex shows that the methyl group is pointing away from the Hcy binding site and is quite distant from the position where the sulfur of Hcy would be, raising the possibility that this binary complex is nonproductive. The CH(3)-H(4)folate must either rearrange or dissociate before methyl transfer can occur. Therefore, determining the order of substrate binding is of interest. We have used kinetic and equilibrium measurements in addition to isotope trapping experiments to elucidate the kinetic pathway of substrate binding in MetE. These studies demonstrate that both substrate binary complexes are chemically and kinetically competent for methyl transfer and suggest that the conformation observed in the crystal structure is indeed on-pathway. Additionally, the substrates are shown to bind synergistically, with each substrate binding 30-fold more tightly in the presence of the other. Methyl transfer has been determined to be slow compared to ternary complex formation and dissociation. Simulations indicate that nearly all of the enzyme is present as the ternary complex under physiological conditions.
Collapse
Affiliation(s)
| | | | - Rowena G. Matthews
- * To whom correspondence should be addressed. E-mail: . Fax: (734) 763-6492. Phone: (734) 764-9459
| |
Collapse
|
33
|
Tuite NL, Fraser KR, O'Byrne CP. Homocysteine toxicity in Escherichia coli is caused by a perturbation of branched-chain amino acid biosynthesis. J Bacteriol 2005; 187:4362-71. [PMID: 15968045 PMCID: PMC1151774 DOI: 10.1128/jb.187.13.4362-4371.2005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli the sulfur-containing amino acid homocysteine (Hcy) is the last intermediate on the methionine biosynthetic pathway. Supplementation of a glucose-based minimal medium with Hcy at concentrations greater than 0.2 mM causes the growth of E. coli Frag1 to be inhibited. Supplementation of Hcy-treated cultures with combinations of branched-chain amino acids containing isoleucine or with isoleucine alone reversed the inhibitory effects of Hcy on growth. The last intermediate of the isoleucine biosynthetic pathway, alpha-keto-beta-methylvalerate, could also alleviate the growth inhibition caused by Hcy. Analysis of amino acid pools in Hcy-treated cells revealed that alanine, valine, and glutamate levels are depleted. Isoleucine could reverse the effects of Hcy on the cytoplasmic pools of valine and alanine. Supplementation of the culture medium with alanine gave partial relief from the inhibitory effects of Hcy. Enzyme assays revealed that the first step of the isoleucine biosynthetic pathway, catalyzed by threonine deaminase, was sensitive to inhibition by Hcy. The gene encoding threonine deaminase, ilvA, was found to be transcribed at higher levels in the presence of Hcy. Overexpression of the ilvA gene from a plasmid could overcome Hcy-mediated growth inhibition. Together, these data indicate that in E. coli Hcy toxicity is caused by a perturbation of branched-chain amino acid biosynthesis that is caused, at least in part, by the inhibition of threonine deaminase.
Collapse
Affiliation(s)
- Nina L. Tuite
- Department of Microbiology, National University of Ireland-Galway, Galway, Ireland
| | - Katy R. Fraser
- Department of Microbiology, National University of Ireland-Galway, Galway, Ireland
| | - Conor P. O'Byrne
- Department of Microbiology, National University of Ireland-Galway, Galway, Ireland
- Corresponding author. Mailing address: Department of Microbiology, National University of Ireland-Galway, Galway, Ireland. Phone: (353) 91-512342. Fax: (353) 91-525700. E-mail:
| |
Collapse
|
34
|
Jakubowski H. Homocysteine-thiolactone and S-nitroso-homocysteine mediate incorporation of homocysteine into protein in humans. Clin Chem Lab Med 2004; 41:1462-6. [PMID: 14656026 DOI: 10.1515/cclm.2003.224] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Indirect pathways, involving homocysteine (Hcy)-thiolactone and S-nitroso-Hcy, allow incorporation of Hcy into protein. Hcy-thiolactone, synthesized by methionyl-tRNA synthetase in all organisms investigated, including human, modifies proteins post-translationally by forming adducts in which Hcy is linked by amide bonds to epsilon-amino group of protein lysine residues. S-Nitroso-Hcy, synthesized in human vascular endothelial cells, is incorporated translationally into peptide bonds in protein at positions normally occupied by methionine. Hcy-N-hemoglobin and Hcy-N-albumin constitute a major pool of Hcy in human blood. Hcy-thiolactone is present in human plasma. Modification with Hcy-thiolactone leads to protein damage. Hcy-thiolactone is detoxified by Hcy-thiolactonase/paraoxonase present in a subset of high-density lipoprotein particles in humans.
Collapse
Affiliation(s)
- Hieronim Jakubowski
- Department of Microbiology & Molecular Genetics, UMDNJ-New Jersey Medical School, International Center for Public Health, Newark 07101-1709, USA.
| |
Collapse
|
35
|
Láng A, György K, Csizmadia IG, Perczel A. A conformational comparison of N- and C-protected methionine and N- and C-protected homocysteine. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/j.theochem.2003.08.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Han JM, Kim JY, Kim S. Molecular network and functional implications of macromolecular tRNA synthetase complex. Biochem Biophys Res Commun 2003; 303:985-993. [PMID: 12684031 DOI: 10.1016/s0006-291x(03)00485-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Understanding the complex network and multi-functionality of proteins is one of the main objectives of post-genome research. Aminoacyl-tRNA synthetases (ARSs) are the family of enzymes that are essential for cellular protein synthesis and viability that catalyze the attachment of specific amino acids to their cognate tRNAs. However, a lot of evidence has shown that these enzymes are multi-functional proteins that are involved in diverse cellular processes, such as tRNA processing, RNA splicing and trafficking, rRNA synthesis, apoptosis, angiogenesis, and inflammation. In addition, mammalian ARSs form a macromolecular complex with three auxiliary factors or with the elongation factor complex. Although the functional meaning and physiological significance of these complexes are poorly understood, recent data on the molecular interactions among the components for the multi-ARS complex are beginning to provide insights into the structural organization and cellular functions. In this review, the molecular mechanism for the assembly and functional implications of the multi-ARS complex will be discussed.
Collapse
Affiliation(s)
- Jung Min Han
- Imagene Co. Biotechnology Incubating Center, Golden Helix, Seoul National University, San 56-1, Shillim-dong, Kwanak-Gu, Republic of Korea
| | | | | |
Collapse
|
37
|
Abstract
Editing of the amino acid homocysteine (Hcy) by certain aminoacyl-tRNA synthetases results in the formation of an intramolecular thioester, Hcy-thiolactone. Here we show that the plant yellow lupin, Lupinus luteus, has the ability to synthesize Hcy-thiolactone. The inhibition of methylation of Hcy to methionine by the anitifolate drug aminopterin results in greatly enhanced synthesis of Hcy-thiolactone by L. luteus plants. Methionine inhibits the synthesis of Hcy-thiolactone in L. luteus, suggesting involvement of methionyl-tRNA synthetase. Consistent with this suggestion is our finding that the plant Oryza sativa methionyl-tRNA synthetase, expressed in Escherichia coli, catalyzes conversion of Hcy to Hcy-thiolactone. We also show that Hcy is a component of L. luteus proteins, most likely due to facile reaction of Hcy-thiolactone with protein amino groups. In addition, L. luteus possesses constitutively expressed, highly specific Hcy-thiolactone-hydrolyzing enzyme. Thus, Hcy-thiolactone and Hcy bound to protein by an amide (or peptide) linkage (Hcy-N-protein) are significant components of plant Hcy metabolism.
Collapse
Affiliation(s)
- Hieronim Jakubowski
- Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey (UMDNJ)-New Jersey Medical School, International Center for Public Health, Newark, New Jersey 07101, USA.
| | | |
Collapse
|
38
|
Abstract
Homocysteine-thiolactone, a cyclic thioester of homocysteine, is synthesized by methionyl-tRNA synthetase in all cell types. A new assay for the determination of homocysteine-thiolactone in biological samples is described. The assay involves separation of homocysteine-thiolactone from macromolecules by ultrafiltration. Homocysteine-thiolactone is further purified and quantified by high-pressure liquid chromatography either on a reverse phase or a cation exchange micro-bore column. The detection and quantitation are obtained by monitoring the absorbance at 240 nm, a maximum in a UV spectrum of homocysteine-thiolactone. The sensitivity of detection is 5 pmol. This assay has been applied to bacteria (Escherichia coli and Mycobacterium smegmatis), the yeast Saccharomyces cerevisiae, cultured human vascular endothelial cells, and human plasma. The data support the conclusion that homocysteine-thiolactone is a ubiquitous metabolite whose levels are directly related to homocysteine levels.
Collapse
Affiliation(s)
- Hieronim Jakubowski
- Department of Microbiology and Molecular Genetics, UMDNJ-New Jersey Medical School, International Center for Public Health, Newark 07101, USA.
| |
Collapse
|
39
|
Jakubowski H. Translational accuracy of aminoacyl-tRNA synthetases: implications for atherosclerosis. J Nutr 2001; 131:2983S-7S. [PMID: 11694633 DOI: 10.1093/jn/131.11.2983s] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aminoacyl-tRNA synthetases establish the rules of the genetic code by matching amino acids (AA) with their cognate tRNA. When differences in binding energies of AA to an aminoacyl-tRNA synthetase are inadequate, editing is used as a major determinant of the enzyme selectivity. Metabolic conversion of the nonprotein AA homocysteine (Hcy) to the thioester Hcy thiolactone by methionyl-, isoleucyl-, and leucyl-tRNA synthetases in vivo shows that continuous editing of incorrect AA is part of the process of tRNA aminoacylation in living organisms, including humans. Reversible S-nitrosylation of Hcy prevents its editing by methionyl-tRNA synthetase and allows incorporation of Hcy into proteins at positions specified by methionine codons. This illustrates how the genetic code can be expanded by invasion of the methionine-coding pathway by Hcy. Translational (nitric oxide-mediated) and post-translational (thiolactone-mediated) incorporation of Hcy into protein provide plausible chemical mechanisms by which elevated levels of Hcy may contribute to the pathology of human cardiovascular diseases.
Collapse
Affiliation(s)
- H Jakubowski
- Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, NJ 07103, USA.
| |
Collapse
|
40
|
Abstract
Elevated levels of homocysteine (Hcy) are associated with various human pathologies, including cardiovascular disease. However, it is not exactly known why Hcy is harmful. A plausible hypothesis is that the indirect incorporation of Hcy into protein, referred to as protein N-homocysteinylation, leads to cell damage. A translational pathway involves: 1) reversible S-nitrosylation of Hcy with nitric oxide produced by nitric oxide synthase; 2) aminoacylation of tRNAMet with S-nitroso-Hcy catalyzed by MetRS; and 3) transfer of S-nitroso-Hcy from S-nitroso-Hcy-tRNAMet into growing polypeptide chains at positions normally occupied by methionine. Subsequent transnitrosylation leaves Hcy in the protein chain. A post-translational pathway involves: 1) metabolic conversion of Hcy to thiolactone by methionyl-tRNAsynthetase (MetRS), and 2) acylation of protein lysine residues by Hcy thiolactone. The levels of Hcy thiolactone and N-homocysteinylated protein in human vascular endothelial cells depend on the ratio of Hcy/Met, levels of folic acid, and HDL, factors linked to cardiovascular disease. HDL-associated human serum Hcy thiolactonase/paraoxonase hydrolyzes thiolactone to Hcy, thereby minimizing protein N-homocysteinylation. Variations in Hcy thiolactonase may play an important role in Hcy-associated human cardiovascular disease.
Collapse
Affiliation(s)
- H Jakubowski
- Department of Microbiology & Molecular Genetics, UMDNJ-New Jersey Medical School, Newark 07103, USA.
| |
Collapse
|
41
|
Senger B, Despons L, Walter P, Jakubowski H, Fasiolo F. Yeast cytoplasmic and mitochondrial methionyl-tRNA synthetases: two structural frameworks for identical functions. J Mol Biol 2001; 311:205-16. [PMID: 11469869 DOI: 10.1006/jmbi.2001.4844] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The yeast Saccharomyces cerevisiae possesses two methionyl-tRNA synthetases (MetRS), one in the cytoplasm and the other in mitochondria. The cytoplasmic MetRS has a zinc-finger motif of the type Cys-X(2)-Cys-X(9)-Cys-X(2)-Cys in an insertion domain that divides the nucleotide-binding fold into two halves, whereas no such motif is present in the mitochondrial MetRS. Here, we show that tightly bound zinc atom is present in the cytoplasmic MetRS but not in the mitochondrial MetRS. To test whether the presence of a zinc-binding site is required for cytoplasmic functions of MetRS, we constructed a yeast strain in which cytoplasmic MetRS gene was inactivated and the mitochondrial MetRS gene was expressed in the cytoplasm. Provided that methionine-accepting tRNA is overexpressed, this strain was viable, indicating that mitochondrial MetRS was able to aminoacylate tRNA(Met) in the cytoplasm. Site-directed mutagenesis demonstrated that the zinc domain was required for the stability and consequently for the activity of cytoplasmic MetRS. Mitochondrial MetRS, like cytoplasmic MetRS, supported homocysteine editing in vivo in the yeast cytoplasm. Both MetRSs catalyzed homocysteine editing and aminoacylation of coenzyme A in vitro. Thus, identical synthetic and editing functions can be carried out in different structural frameworks of cytoplasmic and mitochondrial MetRSs.
Collapse
Affiliation(s)
- B Senger
- UPR n degrees 9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire du CNRS, 15, rue René Descartes, Strasbourg Cedex, 67084, France
| | | | | | | | | |
Collapse
|
42
|
Serre L, Verdon G, Choinowski T, Hervouet N, Risler JL, Zelwer C. How methionyl-tRNA synthetase creates its amino acid recognition pocket upon L-methionine binding. J Mol Biol 2001; 306:863-76. [PMID: 11243794 DOI: 10.1006/jmbi.2001.4408] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Amino acid selection by aminoacyl-tRNA synthetases requires efficient mechanisms to avoid incorrect charging of the cognate tRNAs. A proofreading mechanism prevents Escherichia coli methionyl-tRNA synthetase (EcMet-RS) from activating in vivo L-homocysteine, a natural competitor of L-methionine recognised by the enzyme. The crystal structure of the complex between EcMet-RS and L-methionine solved at 1.8 A resolution exhibits some conspicuous differences with the recently published free enzyme structure. Thus, the methionine delta-sulphur atom replaces a water molecule H-bonded to Leu13N and Tyr260O(eta) in the free enzyme. Rearrangements of aromatic residues enable the protein to form a hydrophobic pocket around the ligand side-chain. The subsequent formation of an extended water molecule network contributes to relative displacements, up to 3 A, of several domains of the protein. The structure of this complex supports a plausible mechanism for the selection of L-methionine versus L-homocysteine and suggests the possibility of information transfer between the different functional domains of the enzyme.
Collapse
Affiliation(s)
- L Serre
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique, rue Charles Sadron, Orléans Cedex 2, 45071, France
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
The non-protein amino acid homocysteine (Hcy), owing to its structural similarity to the protein amino acids methionine, isoleucine, and leucine, enters first steps of protein synthesis and is activated by methionyl-, isoleucyl-, and leucyl-tRNA synthetases in vivo. However, translational incorporation of Hcy into protein is prevented by editing mechanisms of these synthetases, which convert misactivated Hcy into thiolactone. The lack of efficient interactions of the side chain of Hcy with the specificity subsite of the synthetic/editing active site is a prerequisite for editing of Hcy. Thus, if the side chain thiol of Hcy were reversibly modified with a small molecule that would enhance its binding to the specificity subsite and prevent editing, such modified Hcy is predicted to be transferred to tRNA and incorporated translationally into protein. Here I show that S-nitroso-Hcy is in fact transferred to tRNA by methionyl-tRNA synthetase and incorporated into protein by the bacterium Escherichia coli. S-Nitroso-Hcy-tRNA also supports translation of mRNAs in a rabbit reticulocyte system. Removal of the nitroso group yields Hcy-tRNA and protein containing Hcy in peptide bonds. S-Nitrosylation-mediated translational incorporation of Hcy into protein may occur under natural conditions in cells and contribute to Hcy-induced pathogenesis in atherosclerosis.
Collapse
Affiliation(s)
- H Jakubowski
- Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey 07103, USA.
| |
Collapse
|
44
|
Jakubowski H, Zhang L, Bardeguez A, Aviv A. Homocysteine thiolactone and protein homocysteinylation in human endothelial cells: implications for atherosclerosis. Circ Res 2000; 87:45-51. [PMID: 10884371 DOI: 10.1161/01.res.87.1.45] [Citation(s) in RCA: 216] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Editing of the nonprotein amino acid homocysteine by certain aminoacyl-tRNA synthetases results in the formation of the thioester homocysteine thiolactone. Here we show that in the presence of physiological concentrations of homocysteine, methionine, and folic acid, human umbilical vein endothelial cells efficiently convert homocysteine to thiolactone. The extent of this conversion is directly proportional to homocysteine concentration and inversely proportional to methionine concentration, suggesting involvement of methionyl-tRNA synthetase. Folic acid inhibits the synthesis of thiolactone by lowering homocysteine and increasing methionine concentrations in endothelial cells. We also show that the extent of post-translational protein homocysteinylation increases with increasing homocysteine levels but decreases with increasing folic acid and HDL levels in endothelial cell cultures. These data support a hypothesis that metabolic conversion of homocysteine to thiolactone and protein homocysteinylation by thiolactone may play a role in homocysteine-induced vascular damage.
Collapse
Affiliation(s)
- H Jakubowski
- Department of Microbiology, UMDNJ-New Jersey Medical School, Newark, NJ, USA.
| | | | | | | |
Collapse
|
45
|
Goodrich-Blair H, Kolter R. Homocysteine thiolactone is a positive effector of sigma(S) levels in Escherichia coli. FEMS Microbiol Lett 2000; 185:117-21. [PMID: 10754234 DOI: 10.1111/j.1574-6968.2000.tb09048.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
sigma(S) is a regulator of the stationary phase response in Escherichia coli. Multi-copy suppressors were sought in a strain with decreased levels of sigma(S) and one such suppressor was found to encode HsrA, a putative efflux pump. Multi-copy expression of hsrA was shown to lead to accumulation of homocysteine, which is predicted to cause an increase in homocysteine thiolactone (HCTL) levels. A direct correlation between HCTL levels and sigma(S) accumulation was observed both in mutants and during normal cell growth, leading to the hypothesis that HCTL is a physiologically relevant positive effector of sigma(S) levels in vivo.
Collapse
Affiliation(s)
- H Goodrich-Blair
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| | | |
Collapse
|
46
|
Jakubowski H. Calcium-dependent human serum homocysteine thiolactone hydrolase. A protective mechanism against protein N-homocysteinylation. J Biol Chem 2000; 275:3957-62. [PMID: 10660550 DOI: 10.1074/jbc.275.6.3957] [Citation(s) in RCA: 300] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Homocysteine thiolactone is formed in all cell types studied thus far as a result of editing reactions of some aminoacyl-tRNA synthetases. Because inadvertent reactions of thiolactone with proteins are potentially harmful, the ability to detoxify homocysteine thiolactone is essential for biological integrity. This work shows that a single specific enzyme, present in mammalian but not in avian sera, hydrolyzes thiolactone to homocysteine. Human serum thiolactonase, a 45-kDa protein component of high density lipoprotein, requires calcium for activity and stability and is inhibited by isoleucine and penicillamine. Substrate specificity studies suggest that homocysteine thiolactone is a likely natural substrate of this enzyme. However, thiolactonase also hydrolyzes non-natural substrates, such as phenyl acetate, p-nitrophenyl acetate, and the organophospate paraoxon. N-terminal amino acid sequence of pure thiolactonase is identical with that of human paraoxonase. These and other data indicate that paraoxonase, an organophosphate-detoxifying enzyme whose natural substrate and function remained unknown up to now, is in fact homocysteine thiolactonase. By detoxifying homocysteine thiolactone, the thiolactonase/paraoxonase would protect proteins against homocysteinylation, a potential contributing factor to atherosclerosis.
Collapse
Affiliation(s)
- H Jakubowski
- Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey 07103, USA.
| |
Collapse
|
47
|
Jakubowski H. Homocysteine thiolactone: metabolic origin and protein homocysteinylation in humans. J Nutr 2000; 130:377S-381S. [PMID: 10721911 DOI: 10.1093/jn/130.2.377s] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Homocysteine thiolactone, an intramolecular thioester of homocysteine, is synthesized by methionyl-tRNA synthetase in an error-editing reaction that prevents translational incorporation of homocysteine into proteins. The synthesis of thiolactone occurs in all human cell types investigated. An increase in homocysteine levels leads to elevation of thiolactone levels in human cells. In cultured human cells and in human serum, homocysteine thiolactone reacts with proteins by a mechanism involving homocysteinylation of protein lysine residues. The homocysteinylation leads to protein damage. A calcium-dependent homocysteine thiolactonase, tightly associated with HDL in human serum, may prevent protein damage by detoxifying thiolactone.
Collapse
Affiliation(s)
- H Jakubowski
- Department of Microbiology & Molecular Genetics, UMDNJ-New Jersey Medical School, Newark 07103, USA
| |
Collapse
|
48
|
JAKUBOWSKI HIERONIM. Protein homocysteinylation: possible mechanism underlying pathological consequences of elevated homocysteine levels. FASEB J 1999. [DOI: 10.1096/fasebj.13.15.2277] [Citation(s) in RCA: 282] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- HIERONIM JAKUBOWSKI
- Department of Microbiology and Molecular GeneticsUMDNJ‐New Jersey Medical SchoolNewarkNew JerseyUSA
| |
Collapse
|
49
|
Antonio CM, Nunes MC, Refsum H, Abraham AK. A novel pathway for the conversion of homocysteine to methionine in eukaryotes. Biochem J 1997; 328 ( Pt 1):165-70. [PMID: 9359848 PMCID: PMC1218901 DOI: 10.1042/bj3280165] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Activation of amino acid homocysteine was compared with that of methionine in rabbit crude liver extracts and purified multi-enzyme complex of aminoacyl-tRNA synthetases. Activation was studied by measuring the incorporation of radioactive amino acid into unlabelled trichloroacetic-acid insoluble materials in the absence of protein synthesis. Homocysteine synthetase activity was found in the crude extract and in the purified multi-enzyme complex of aminoacyl-tRNA synthetases. On a molar basis, the activation of methionine by the crude extract was five times higher than the activation of homocysteine. There was a partial loss of Hcy-tRNA synthetase activity in the purified multi-enzyme complex. Preliminary reconstitution experiments indicated a requirement for an additional factor for Hcy-tRNA synthetase activity. TLC of the amino acid released from tRNA charged with [14C]homocysteine, revealed radioactivity in homocysteine, methionine and homocysteine thiolactone, indicating a conversion of tRNA-attached homocysteine to methionine. Total tRNA was separated on a benzoylated cellulose column into a fraction enriched in initiator tRNA and a methionine-accepting, but initiator tRNA-deficient, fraction. Homocysteine-accepting activity was present only in the initiator tRNA-enriched fraction. Based on the above data we propose that homocysteine activation in reticulocyte lysates, reported previously, also occurs in liver. Activated homocysteine is attached to initiator tRNA and then converted to methionine by a methylating enzyme. In the absence of methylation, tRNA-attached homocysteine is hydrolysed to produce homocysteine thiolactone.
Collapse
Affiliation(s)
- C M Antonio
- Institute for Biochemistry and Molecular Biology, University of Bergen, Norway
| | | | | | | |
Collapse
|
50
|
Synthesis of Homocysteine Thiolactone in Normal and Malignant Cells. DEVELOPMENTS IN CARDIOVASCULAR MEDICINE 1997. [DOI: 10.1007/978-1-4615-5771-5_22] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|