1
|
Raynal B, Cardinali B, Grimbergen J, Profumo A, Lord ST, England P, Rocco M. Hydrodynamic characterization of recombinant human fibrinogen species. Thromb Res 2013; 132:e48-53. [PMID: 23642654 DOI: 10.1016/j.thromres.2013.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/21/2013] [Accepted: 04/01/2013] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Fibrinogen is a key component of the blood coagulation system and plays important, diverse roles in several relevant pathologies such as thrombosis, hemorrhage, and cancer. It is a large glycoprotein whose three-dimensional molecular structure is not fully known. Furthermore, circulating fibrinogen is highly heterogeneous, mainly due to proteolytic degradation and alternative mRNA processing. Recombinant production of human fibrinogen allows investigating the impact on the three-dimensional structure of specific changes in the primary structure. METHODS We performed analytical ultracentrifugation analyses of a full-length recombinant human fibrinogen, its counterpart purified from human plasma, and a recombinant human fibrinogen with both Aα chains truncated at amino acid 251, thus missing their last 359 amino acid residues. RESULTS We have accurately determined the translational diffusion and sedimentation coefficients (Dt(20,w)(0), s(20,w)(0)) of all three species. This was confirmed by derived molecular weights within 1% for the full length species, and 5% for the truncated species, as assessed by comparison with SDS-PAGE/Western blot analyses and primary structure data. No significant differences in the values of Dt(20,w)(0) and s(20,w)(0) were found between the recombinant and purified full length human fibrinogens, while slightly lower and higher values, respectively, resulted for the recombinant truncated human fibrinogen compared to a previously characterized purified human fibrinogen fragment X obtained by plasmin digestion. CONCLUSIONS Full-length recombinant fibrinogen is less polydisperse but hydrodynamically indistinguishable from its counterpart purified from human plasma. Recombinant Aα251-truncated human fibrinogen instead behaves differently from fragment X, suggesting a role for the Bβ residues 1-52 in inter-molecular interactions. Overall, these new hydrodynamic data will constitute a reliable benchmark against which models of fibrinogen species could be compared.
Collapse
Affiliation(s)
- Bertrand Raynal
- Institut Pasteur, Protéopole, Plate-Forme de Biophysique des Macromolécules et de leurs Interactions, CNRS UMR 3528, 25 Rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | | | | | | | | | | | | |
Collapse
|
2
|
Fish RJ, Vorjohann S, Béna F, Fort A, Neerman-Arbez M. Developmental expression and organisation of fibrinogen genes in the zebrafish. Thromb Haemost 2011; 107:158-66. [PMID: 22116349 DOI: 10.1160/th11-04-0221] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 10/03/2011] [Indexed: 12/30/2022]
Abstract
The zebrafish is a model organism for studying vertebrate development and many human diseases. Orthologues of the majority of human coagulation factors are present in zebrafish, including fibrinogen. As a first step towards using zebrafish to model human fibrinogen disorders, we cloned the zebrafish fibrinogen cDNAs and made in situ hybridisations and quantitative reverse transcription-polymerase chain reactions (qRT-PCR) to detect zebrafish fibrinogen mRNAs. Prior to liver development or blood flow we detected zebrafish fibrinogen expression in the embryonic yolk syncytial layer and then in the early cells of the developing liver. While human fibrinogen is encoded by a three-gene, 50 kilobase (kb) cluster on chromosome 4 ( FGB-FGA-FGG ), recent genome assemblies showed that the zebrafish fgg gene appears distanced from fga and fgb , which we confirmed by in situ hybridisation. The zebrafish fibrinogen Bβ and γ protein chains are conserved at over 50% of amino acid positions, compared to the human polypeptides. The zebrafish Aα chain is less conserved and its C-terminal region is nearly 200 amino acids shorter than human Aα. We generated transgenic zebrafish which express a green fluorescent protein reporter gene under the control of a 1.6 kb regulatory region from zebrafish fgg . Transgenic embryos showed strong fluorescence in the developing liver, mimicking endogenous fibrinogen expression. This regulatory sequence can now be used for overexpression of transgenes in zebrafish hepatocytes. Our study is a proof-of-concept step towards using zebrafish to model human disease linked to fibrinogen gene mutations.
Collapse
Affiliation(s)
- Richard J Fish
- Department of Genetic Medicine and Development, University of Geneva Medical Centre, 1, rue Michel-Servet, 1211 Geneva 4, Switzerland.
| | | | | | | | | |
Collapse
|
3
|
Ping L, Huang L, Cardinali B, Profumo A, Gorkun OV, Lord ST. Substitution of the human αC region with the analogous chicken domain generates a fibrinogen with severely impaired lateral aggregation: fibrin monomers assemble into protofibrils but protofibrils do not assemble into fibers. Biochemistry 2011; 50:9066-75. [PMID: 21932842 DOI: 10.1021/bi201094v] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fibrin polymerization occurs in two steps: the assembly of fibrin monomers into protofibrils and the lateral aggregation of protofibrils into fibers. Here we describe a novel fibrinogen that apparently impairs only lateral aggregation. This variant is a hybrid, where the human αC region has been replaced with the homologous chicken region. Several experiments indicate this hybrid human-chicken (HC) fibrinogen has an overall structure similar to normal. Thrombin-catalyzed fibrinopeptide release from HC fibrinogen was normal. Plasmin digests of HC fibrinogen produced fragments that were similar to normal D and E; further, as with normal fibrinogen, the knob 'A' peptide, GPRP, reversed the plasmin cleavage associated with addition of EDTA. Dynamic light scattering and turbidity studies with HC fibrinogen showed polymerization was not normal. Whereas early small increases in hydrodynamic radius and absorbance paralleled the increases seen during the assembly of normal protofibrils, HC fibrinogen showed no dramatic increase in scattering as observed with normal lateral aggregation. To determine whether HC and normal fibrinogen could form a copolymer, we examined mixtures of these. Polymerization of normal fibrinogen was markedly changed by HC fibrinogen, as expected for mixed polymers. When the mixture contained 0.45 μM normal and 0.15 μM HC fibrinogen, the initiation of lateral aggregation was delayed and the final fiber size was reduced relative to normal fibrinogen at 0.45 μM. Considered altogether, our data suggest that HC fibrin monomers can assemble into protofibrils or protofibril-like structures, but these either cannot assemble into fibers or assemble into very thin fibers.
Collapse
Affiliation(s)
- Lifang Ping
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7525, United States
| | | | | | | | | | | |
Collapse
|
4
|
Cardinali B, Profumo A, Aprile A, Byron O, Morris G, Harding SE, Stafford WF, Rocco M. Hydrodynamic and mass spectrometry analysis of nearly-intact human fibrinogen, chicken fibrinogen, and of a substantially monodisperse human fibrinogen fragment X. Arch Biochem Biophys 2009; 493:157-68. [PMID: 19853574 DOI: 10.1016/j.abb.2009.10.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 10/15/2009] [Accepted: 10/17/2009] [Indexed: 11/20/2022]
Abstract
The shape and solution properties of fibrinogen are affected by the location of the C-terminal portion of the Aalpha chains, which is presently still controversial. We have measured the hydrodynamic properties of a human fibrinogen fraction with these appendages mostly intact, of chicken fibrinogen, where they lack 11 characteristic 13-amino acids repeats, and of human fragment X, a plasmin early degradation product in which they have been removed. The human fibrinogen/fragment X samples were extensively characterized by SDS-PAGE/Western blotting and mass spectrometry, allowing their composition to be precisely determined. The solution properties of all samples were then investigated by analytical ultracentrifugation and size-exclusion HPLC coupled with multi-angle light scattering and differential pressure viscometry detectors. The measured parameters suggest that the extra repeats have little influence on the overall fibrinogen conformation, while a significant change is brought about by the removal of the C-terminal portion of the Aalpha chains beyond residue Aalpha200.
Collapse
Affiliation(s)
- Barbara Cardinali
- Biopolimeri e Proteomica, Istituto Nazionale per la Ricerca sul Cancro, Largo R. Benzi 10, Genoa, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Kollman JM, Pandi L, Sawaya MR, Riley M, Doolittle RF. Crystal structure of human fibrinogen. Biochemistry 2009; 48:3877-86. [PMID: 19296670 DOI: 10.1021/bi802205g] [Citation(s) in RCA: 253] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A crystal structure of human fibrinogen has been determined at approximately 3.3 A resolution. The protein was purified from human blood plasma, first by a cold ethanol precipitation procedure and then by stepwise chromatography on DEAE-cellulose. A product was obtained that was homogeneous on SDS-polyacrylamide gels. Nonetheless, when individual crystals used for X-ray diffraction were examined by SDS gel electrophoresis after data collection, two species of alpha chain were present, indicating that some proteolysis had occurred during the course of operations. Amino-terminal sequencing on post-X-ray crystals showed mostly intact native alpha- and gamma-chain sequences (the native beta chain is blocked). The overall structure differs from that of a native fibrinogen from chicken blood and those reported for a partially proteolyzed bovine fibrinogen in the nature of twist in the coiled-coil regions, likely due to weak forces imparted by unique crystal packing. As such, the structure adds to the inventory of possible conformations that may occur in solution. Other features include a novel interface with an antiparallel arrangement of beta chains and a unique tangential association of coiled coils from neighboring molecules. The carbohydrate groups attached to beta chains are unusually prominent, the full sweep of 11 sugar residues being positioned. As was the case for native chicken fibrinogen, no resolvable electron density could be associated with alphaC domains.
Collapse
Affiliation(s)
- Justin M Kollman
- Department of Chemistry and Biochemistry and Division of Biology, University of California at San Diego, La Jolla, California 92093-0314, USA
| | | | | | | | | |
Collapse
|
6
|
Tang H, Fu Y, Zhan S, Luo Y. αEC, the C-Terminal Extension of Fibrinogen, Has Chaperone-like Activity. Biochemistry 2009; 48:3967-76. [DOI: 10.1021/bi900015n] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Huadong Tang
- National Engineering Laboratory for Anti-tumor Protein Therapeutics
- Beijing Key Laboratory for Protein Therapeutics
- Cancer Biology Laboratory, Department of Biological Sciences and Biotechnology
| | - Yan Fu
- National Engineering Laboratory for Anti-tumor Protein Therapeutics
- Beijing Key Laboratory for Protein Therapeutics
- Cancer Biology Laboratory, Department of Biological Sciences and Biotechnology
| | - Shunli Zhan
- National Engineering Laboratory for Anti-tumor Protein Therapeutics
| | - Yongzhang Luo
- National Engineering Laboratory for Anti-tumor Protein Therapeutics
- Beijing Key Laboratory for Protein Therapeutics
- Cancer Biology Laboratory, Department of Biological Sciences and Biotechnology
| |
Collapse
|
7
|
Inaba Y, Tsurifune K, Sasazaki S, Mannen H. A new tandem repeat in bovine fibrinogen Aalpha gene. Anim Biotechnol 2008; 19:122-6. [PMID: 18432403 DOI: 10.1080/10495390801929122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In this study, we describe intraspecies variation in the alphaC connector region of the bovine fibrinogen Aalpha gene. Sequencing and genotyping of six bovine breeds revealed 7 to 10 tandem repeats in the alphaC connector region. In addition, we observed length differences between B. indicus and B. taurus, with the B. indicus having longer fibrinogen alphaC connectors (10-repeat alleles) than B. taurus (7- and 9-repeats). The difference in tandem repeats may be related to the function of blood coagulation system.
Collapse
Affiliation(s)
- Yumi Inaba
- Laboratory of Animal Breeding and Genetics, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | | | | | | |
Collapse
|
8
|
Lee JH, Kondo H, Sato S, Akimoto S, Saito T, Kodama M, Watabe S. Identification of novel genes related to tetrodotoxin intoxication in pufferfish. Toxicon 2007; 49:939-53. [PMID: 17360014 DOI: 10.1016/j.toxicon.2007.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Revised: 12/23/2006] [Accepted: 01/11/2007] [Indexed: 11/27/2022]
Abstract
To investigate the genes related to the biosynthesis or accumulation of tetrodotoxin (TTX) in pufferfish, mRNA expression patterns in the liver from pufferfish, akamefugu Takifugu chrysops and kusafugu Takifugu niphobles, were compared by mRNA arbitrarily primed reverse transcription-polymerase chain reaction (RAP RT-PCR) with fish bearing different concentrations of TTX and its derivatives. RAP RT-PCR provided a 383 bp cDNA fragment and its transcripts were higher in toxic than non-toxic pufferfish liver. Its deduced amino acid sequence was similar to those of fibrinogen-like proteins reported for other vertebrates. Northern blot analysis and rapid amplification of cDNA ends (RACE) revealed that the cDNA fragment of 383 bp was composed of at least three fibrinogen-like protein (flp) genes, flp-1, flp-2 and flp-3. Relative mRNA levels of flp-1, flp-2 and flp-3 showed a linear correlation with toxicity of the liver for two pufferfish species.
Collapse
Affiliation(s)
- Jeen Hee Lee
- Laboratory of Aquatic Molecular Biology and Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Although it has long been realized that a large portion of the fibrinogen alpha chain has little if any defined structure, the physiological significance of this flexible appendage remains mysterious.
Collapse
Affiliation(s)
- Russell F Doolittle
- Division of Biological Sciences, Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0634, USA.
| | | |
Collapse
|
10
|
Mosesson MW, DiOrio JP, Hernandez I, Hainfeld JF, Wall JS, Grieninger G. The ultrastructure of fibrinogen-420 and the fibrin-420 clot. Biophys Chem 2005; 112:209-14. [PMID: 15572250 DOI: 10.1016/j.bpc.2004.07.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Revised: 04/26/2004] [Accepted: 07/01/2004] [Indexed: 11/26/2022]
Abstract
Fibrinogen-420 is a minor subclass of human fibrinogen that is so named because of its higher molecular weight compared to fibrinogen-340, the predominant form of circulating fibrinogen. Each of the two Aalpha chains of fibrinogen-340 is replaced in fibrinogen-420 by an Aalpha isoform termed alphaE. Such chains contain a globular C-terminal extension, alphaEC, that is homologous with the C-terminal regions of Bbeta and gamma chains in the fibrin D domain. The alphaEC domain lacks a functional fibrin polymerization pocket like those found in the D domain, but it does contain a binding site for beta2 integrins. Electron microscopy of fibrinogen-340 molecules showed the major core fibrinogen domains, D-E-D, plus globular portions of the C-terminal alphaC domains. Fibrinogen-420 molecules had two additional globular domains that were attributable to alphaEC. Turbidity measurements of thrombin-cleaved fibrinogen-420 revealed a reduced rate of fibrin polymerization and a lower maximum turbidity. Thromboelastographic measurements also showed a reduced rate of fibrin-420 polymerization (amplitude development) compared with fibrin-340. Nevertheless, the final amplitude (MA) and the calculated elastic modulus (G) for fibrin-420 were greater than those for fibrin-340. These results suggested a greater degree of fibrin-420 branching and thinner matrix fibers, and such structures were found in SEM images. In addition, fibrin-420 fibers were irregular and often showed nodular structures protruding from the fiber surface. These nodularities represented alphaEC domains, and possibly alphaC domains as well. TEM images of negatively shadowed fibrin-420 networks showed irregular fiber borders, but the fibers possessed the same 22.5-nm periodicity that characterizes all fibrin fibers. From this result, we conclude that fibrin-420 fiber assembly occurs through the same D-E interactions that drive the assembly of all fibrin fibrils, and therefore that the staggered overlapping molecular packing arrangement is the same in both types of fibrin. The alphaEC domains are arrayed on fiber surfaces, and in this location, they would very likely slow lateral fibril association, causing thinner, more branched fibers to form. However, their location on the fiber surface would facilitate cellular interactions through the integrin receptor binding site.
Collapse
Affiliation(s)
- M W Mosesson
- The Blood Research Institute of The Blood Center of Southeastern Wisconsin, PO Box 2178, Milwaukee, WI 53201-2178, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Weir-M J, Acurero Z, Salas-A R, Arteaga-Vizcaino M. Blood coagulation factors in the black headed vulture (Coragyps atratus), a potential animal model for the study of haemostasis. Thromb Res 2004; 113:269-73. [PMID: 15140592 DOI: 10.1016/j.thromres.2004.02.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2003] [Revised: 02/12/2004] [Accepted: 02/25/2004] [Indexed: 11/16/2022]
Affiliation(s)
- Jesus Weir-M
- Instituto Hematológico de Occidente, Laboratorio de Coagulación y Hemostasia, lado Maternidad Castillo-Plaza, Av. 20, Maracaibo, Edo. Zulia, Maracaibo, Venezuela
| | | | | | | |
Collapse
|
12
|
Abstract
Summary. I have enjoyed reading previous historical sketches that have appeared in Journal of Thrombosis and Haemostasis, and especially those by Ted Tuddenham on factor VIII and Bjorn Dahlback on activated protein C resistance. Like those authors, I have tried to capture some of the excitement-as well as the disappointments-that occurred along the way to a long-term goal.
Collapse
Affiliation(s)
- R F Doolittle
- Center for Molecular Genetics, University of California, San Diego, La Jolla, CA 92093-0634, USA.
| |
Collapse
|
13
|
McLean L, Doherty MK, Deeming DC, Beynon RJ. A proteome analysis of the subcutaneous gel in avian hatchlings. Mol Cell Proteomics 2004; 3:250-6. [PMID: 14722260 DOI: 10.1074/mcp.m300104-mcp200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An appropriate level of water loss from eggs is critical to successful hatching. This water may be lost from the egg by evaporation, but where water loss is suboptimal, it is commonly observed that the hatchlings contain substantial amounts of a subcutaneous gel-like fluid. To characterize this fluid, we have analyzed the proteins that are contained within it. The protein complement comprised a small number of proteins in high concentrations. Proteomics analysis of the constituent proteins identified virtually all of these abundant proteins and confirmed that the subcutaneous gel was very similar in protein composition to plasma. However, the subcutaneous gel was substantially depleted of fibrinogen. It is possible that activation of the final stages of the coagulation process might account for the enhanced viscosity, creating a gel-like material that is relatively immobile in the subcutaneous space. This gel may function as a water volume that is partitioned during embryonic development in order to mitigate the effects of high water content of the egg caused by low mass loss during incubation and in some instances might also function as a water reserve to support the hatchling in the first few hours of life free of the shell.
Collapse
Affiliation(s)
- Lynn McLean
- Department of Veterinary Preclinical Sciences, University of Liverpool, Liverpool L69 7ZJ, United Kingdom
| | | | | | | |
Collapse
|
14
|
Lishko VK, Yakubenko VP, Hertzberg KM, Grieninger G, Ugarova TP. The alternatively spliced alpha(E)C domain of human fibrinogen-420 is a novel ligand for leukocyte integrins alpha(M)beta(2) and alpha(X)beta(2). Blood 2001; 98:2448-55. [PMID: 11588042 DOI: 10.1182/blood.v98.8.2448] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The interaction of human plasma fibrinogen with leukocyte integrins alpha(M)beta(2) (CD11b/CD18, Mac-1) and alpha(X)beta(2) (CD11c/CD18, p150,95) is an important component of the inflammatory response. Previously, it was demonstrated that binding of fibrinogen to these integrins is mediated by gammaC, the globular C-terminal domain of the gamma chain. In this study, evidence was found of another fibrinogen domain that can serve as a ligand for the 2 leukocyte integrins: alpha(E)C, a homologous domain that extends the alpha chains in a recently discovered subclass of fibrinogen known as fibrinogen-420. Recombinant alpha(E)C supported strong adhesion and migration of cells expressing alpha(M)beta(2) and alpha(X)beta(2), including nonactivated and activated U937 and THP-1 monocytoid cells, and neutrophils. Cells transfected with complementary DNA for these integrins also bound alpha(E)C. The specificity of interaction was substantiated by inhibition of cell adhesion with antibodies against alpha(M), alpha(X), and beta(2) subunits. Also, neutrophil inhibitory factor, a specific inhibitor of alpha(M)beta(2) and alpha(X)beta(2) function, efficiently blocked cell adhesion to alpha(E)C. In alpha(M)beta(2) and alpha(X)beta(2), the I domain is the binding site for alpha(E)C, since alpha(E)C bound to recombinant alpha(M) I and alpha(X)I domains in a dose-dependent and saturable manner. Synthetic peptides that duplicated sequences gamma190 to 202 and gamma377 to 395, previously considered putative binding sites in gammaC, effectively inhibited alpha(M)beta(2)- and alpha(X)beta(2)-mediated adhesion to alpha(E)C, suggesting that recognition of alpha(E)C by the I domain involves structural features in common with those of gammaC. These findings identify alpha(E)C as a second domain in fibrinogen-420 that binds alpha(M)beta(2) and alpha(X)beta(2) and can mediate leukocyte adhesion and migration.
Collapse
Affiliation(s)
- V K Lishko
- Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | |
Collapse
|
15
|
Abstract
In addition to the conventional fibrinogen with its alpha, beta, and gamma subunit chains, there is a subclass of fibrinogen molecules, accounting for one percent of the total in human adults, in which both alpha chains have been replaced by extended alpha chains (alpha E) that sport a globular C-terminal domain (alpha EC) comparable to beta C and gamma C. Using nomenclature based on molecular weight, the subclass of alpha E-containing molecules has been named fibrinogen-420 to differentiate it from the better known fibrinogen, now referred to as fibrinogen-340. Review of the events leading to the discovery of fibrinogen-420 in the early 1990s and its subsequent characterization, culminating in the crystal structure of its unique alpha EC domains, highlights special aspects of its evolutionary history, outstanding features of its structure, and the perplexities of its biology. Various working hypotheses that have driven prior investigation are evaluated and practical insights are offered to spur further research into the role of fibrinogen-420.
Collapse
Affiliation(s)
- G Grieninger
- Lindsley F. Kimball Research Institute, New York Blood Center, 310 East 67th Street, New York, New York 10021, USA.
| |
Collapse
|
16
|
Yang Z, Mochalkin I, Veerapandian L, Riley M, Doolittle RF. Crystal structure of native chicken fibrinogen at 5.5-A resolution. Proc Natl Acad Sci U S A 2000; 97:3907-12. [PMID: 10737772 PMCID: PMC18115 DOI: 10.1073/pnas.080065697] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The crystal structure of native chicken fibrinogen has been determined at a resolution of 5.5 A. The full-length molecule is 460 A in length and sigmoidally shaped. The structure includes the full sweep of the coiled coils that connect the central and terminal domains; the chain paths of the central domain confirm a predicted scheme of planar disulfide rings in apposition with each other. Electron density maps have revealed the outlines of disordered alphaC domains nestled within the confines of the sinuous coiled coils. The amino-terminal segments of the alpha- and beta-chains, including the fibrinopeptides A and B, are also disordered.
Collapse
Affiliation(s)
- Z Yang
- Center for Molecular Genetics, University of California, San Diego, La Jolla, CA 92093-0634, USA
| | | | | | | | | |
Collapse
|
17
|
Abstract
Human fibrinogen-420, (Eβγ)2, was isolated from plasma and evaluated for its ability to form clots and for its susceptibility to proteolysis. Clotting parameters, including cross-linking of subunit chains, of this subclass and of the more abundant fibrinogen-340 (βγ)2, were found to be similar, suggesting little impact of the unique EC domains of fibrinogen-420 on coagulation. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) analysis of plasmic digestion patterns revealed production from fibrinogen-420 of the conventional fibrinogen degradation products, X, Y, D, and E, to be comparable to that from fibrinogen-340 in all respects except the presence of at least 2 additional cleavage products that were shown by Western blot analysis to contain the EC domain. One was a stable fragment (ECX) comigrating with a 34-kd yeast recombinant EC domain, and the other was an apparent precursor. Their release occurred early, before that of fragments D and E. Two bands of the same mobility and antibody reactivity were found in Western blots of plasma collected from patients with myocardial infarction shortly after the initiation of thrombolytic therapy.
Collapse
|
18
|
Abstract
AbstractHuman fibrinogen-420, (Eβγ)2, was isolated from plasma and evaluated for its ability to form clots and for its susceptibility to proteolysis. Clotting parameters, including cross-linking of subunit chains, of this subclass and of the more abundant fibrinogen-340 (βγ)2, were found to be similar, suggesting little impact of the unique EC domains of fibrinogen-420 on coagulation. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) analysis of plasmic digestion patterns revealed production from fibrinogen-420 of the conventional fibrinogen degradation products, X, Y, D, and E, to be comparable to that from fibrinogen-340 in all respects except the presence of at least 2 additional cleavage products that were shown by Western blot analysis to contain the EC domain. One was a stable fragment (ECX) comigrating with a 34-kd yeast recombinant EC domain, and the other was an apparent precursor. Their release occurred early, before that of fragments D and E. Two bands of the same mobility and antibody reactivity were found in Western blots of plasma collected from patients with myocardial infarction shortly after the initiation of thrombolytic therapy.
Collapse
|
19
|
Storey KB. Living in the cold: freeze-induced gene responses in freeze-tolerant vertebrates. Clin Exp Pharmacol Physiol 1999; 26:57-63. [PMID: 10027071 DOI: 10.1046/j.1440-1681.1999.02990.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. Winter survival for numerous cold-blooded animals includes freeze tolerance: the ability to endure the conversion of as much as 65% of total body water into extracellular ice. Selected molecular adaptations underlying freeze tolerance (e.g. cryoprotectants, ice nucleating proteins) have been widely studied, but the full range of metabolic adjustments needed for freeze endurance remains unknown. 2. Recent studies using gene screening techniques are providing a different approach to the search for biochemical responses that support freezing survival by identifying genes and proteins that are up-regulated by freezing or thawing in freeze-tolerant amphibians and reptiles. 3. Screening of a cDNA library from wood frog liver revealed the freeze-induced up-regulation of genes coding for the alpha- and gamma-subunits of fibrinogen (a plasma clotting protein), the mitochondrial ADP/ATP translocase and a novel 10 kDa protein containing a nuclear exporting sequence. 4. Northern blotting revealed that these genes were differentially responsive to two of the component stresses of freezing (dehydration and anoxia), indicating that different genes are induced by signals radiating either from cell volume change or oxygen deprivation during freezing. 5. Freeze up-regulation of fibrinogen synthesis in liver and other organs appears to be a damage repair response that anticipates a need for enhanced plasma clotting capacity to deal with ice crystal damage to capillary beds. 6. Up-regulation of ADP/ATP translocase in frog liver is linked with ischaemia resistance and studies with freeze-tolerant turtles have shown that other genes encoding proteins involved in mitochondrial energetics (NADH-ubiquinone oxido-reductase subunit 5, cytochrome C oxidase subunit 1) are also up-regulated by both anoxia and freezing exposures. 7. These studies are making major advances in our understanding of freeze tolerance as a natural phenomenon and also highlight new key areas that can be targeted by applied interventions for the optimization of medical cryopreservation techniques for cells, tissues and organs.
Collapse
Affiliation(s)
- K B Storey
- Department of Biology, Carleton University, Ottawa, Ontario, Canada.
| |
Collapse
|
20
|
Doolittle RF, Spraggon G, Everse SJ. Three-dimensional structural studies on fragments of fibrinogen and fibrin. Curr Opin Struct Biol 1998; 8:792-8. [PMID: 9914253 DOI: 10.1016/s0959-440x(98)80100-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Fibrinogen is a 340 kDa glycoprotein found in the blood plasma of all vertebrates. It is transformed into a fibrin clot by the action of thrombin. Recent X-ray structures of core fragments of both fibrinogen and fibrin have revealed many details about this polymerization event. These include structures of a 30 kDa recombinant gammaC domain, an 86 kDa fragment D from human fibrinogen and a cross-linked double-D fragment from fibrin.
Collapse
Affiliation(s)
- R F Doolittle
- Center for Molecular Genetics University of California San Diego La Jolla CA 92093-0634 USA.
| | | | | |
Collapse
|
21
|
The EC Domains of Human Fibrinogen420Contain Calcium Binding Sites But Lack Polymerization Pockets. Blood 1998. [DOI: 10.1182/blood.v92.10.3669] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe extended (E) isoform unique to Fibrinogen420 (Fib420) is distinguished from the conventional chain of Fibrinogen340 by the presence of an additional 236-residue carboxyl terminus globular domain (EC). A recombinant form of EC (rEC), having a predicted mass of 27,653 Daltons, was expressed in yeast (Pichia pastoris) and purified by anion exchange column chromatography. Purified rEC appears to be predominantly intact, as judged by N-terminal sequence analysis, mass spectral analysis of the C-terminal cyanogen bromide (CNBr) fragment, and comparison of recognition by epitope-specific monoclonal antibodies. Carbohydrate determination, coupled with analysis of CNBr digestion fragments, confirms N-linked glycosylation at Asn667, the site at which sugar is attached in E. Analysis of CNBr digestion fragments confirms that two disulfide bridges exist at cysteine pairs E613/644 and E780/793. In the presence of 5 mmol/L EDTA, rEC is highly susceptible to plasmic degradation, but Ca2+ (5 mmol/L) renders rEC resistant. No protective effect from plasmic degradation was conferred to rEC by the peptides GPRPamide or GHRP, nor did rEC bind to a GPR peptide column. These results suggest that the EC domain contains a calcium-binding site, but lacks a polymerization pocket. By analogy with the site elucidated in the γC domain, we predict that the EC calcium binding site involves residues E772-778: DADQWEE.
Collapse
|
22
|
Abstract
The extended (E) isoform unique to Fibrinogen420 (Fib420) is distinguished from the conventional chain of Fibrinogen340 by the presence of an additional 236-residue carboxyl terminus globular domain (EC). A recombinant form of EC (rEC), having a predicted mass of 27,653 Daltons, was expressed in yeast (Pichia pastoris) and purified by anion exchange column chromatography. Purified rEC appears to be predominantly intact, as judged by N-terminal sequence analysis, mass spectral analysis of the C-terminal cyanogen bromide (CNBr) fragment, and comparison of recognition by epitope-specific monoclonal antibodies. Carbohydrate determination, coupled with analysis of CNBr digestion fragments, confirms N-linked glycosylation at Asn667, the site at which sugar is attached in E. Analysis of CNBr digestion fragments confirms that two disulfide bridges exist at cysteine pairs E613/644 and E780/793. In the presence of 5 mmol/L EDTA, rEC is highly susceptible to plasmic degradation, but Ca2+ (5 mmol/L) renders rEC resistant. No protective effect from plasmic degradation was conferred to rEC by the peptides GPRPamide or GHRP, nor did rEC bind to a GPR peptide column. These results suggest that the EC domain contains a calcium-binding site, but lacks a polymerization pocket. By analogy with the site elucidated in the γC domain, we predict that the EC calcium binding site involves residues E772-778: DADQWEE.
Collapse
|
23
|
Formation of the Human Fibrinogen Subclass Fib420: Disulfide Bonds and Glycosylation in Its Unique (EChain) Domains. Blood 1998. [DOI: 10.1182/blood.v92.9.3302] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractCOS cell transfection has been used to monitor the assembly and secretion of fibrinogen molecules, both those of the subclass containing the novel E chain and those of the more abundant subclass whose chains lack E’s globular C-terminus. That region, referred to as the EC domain, is closely related to the ends of β and γ chains of fibrinogen (βC and γC). Transfection of COS cells with E, β, and γ cDNAs alone results in secretion of the symmetrical molecule (Eβγ)2, also known as Fib420. Cotransfection with cDNA for the shorter chain yielded secretion of both (βγ)2 and (Eβγ)2 but no mixed molecules of the structure E(βγ)2. Exploiting the COS cells’ fidelity with regard to Fib420 production, identification was made of the highly conserved Asn667 as the sole site of N-linked glycosylation in the E chain. No evidence from Cys → Ser replacements was found for interchain disulfide bridges involving the four cysteines of the EC domain. However, for fibrinogen secretion, the E, β, and γ subunits do exhibit different requirements for integrity of the two intradomain disulfide bridges located at homologous positions in their respective C-termini, indicating dissimilar structural roles in the process of fibrinogen assembly.© 1998 by The American Society of Hematology.
Collapse
|
24
|
Formation of the Human Fibrinogen Subclass Fib420: Disulfide Bonds and Glycosylation in Its Unique (EChain) Domains. Blood 1998. [DOI: 10.1182/blood.v92.9.3302.421k48_3302_3308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
COS cell transfection has been used to monitor the assembly and secretion of fibrinogen molecules, both those of the subclass containing the novel E chain and those of the more abundant subclass whose chains lack E’s globular C-terminus. That region, referred to as the EC domain, is closely related to the ends of β and γ chains of fibrinogen (βC and γC). Transfection of COS cells with E, β, and γ cDNAs alone results in secretion of the symmetrical molecule (Eβγ)2, also known as Fib420. Cotransfection with cDNA for the shorter chain yielded secretion of both (βγ)2 and (Eβγ)2 but no mixed molecules of the structure E(βγ)2. Exploiting the COS cells’ fidelity with regard to Fib420 production, identification was made of the highly conserved Asn667 as the sole site of N-linked glycosylation in the E chain. No evidence from Cys → Ser replacements was found for interchain disulfide bridges involving the four cysteines of the EC domain. However, for fibrinogen secretion, the E, β, and γ subunits do exhibit different requirements for integrity of the two intradomain disulfide bridges located at homologous positions in their respective C-termini, indicating dissimilar structural roles in the process of fibrinogen assembly.© 1998 by The American Society of Hematology.
Collapse
|
25
|
Spraggon G, Applegate D, Everse SJ, Zhang JZ, Veerapandian L, Redman C, Doolittle RF, Grieninger G. Crystal structure of a recombinant alphaEC domain from human fibrinogen-420. Proc Natl Acad Sci U S A 1998; 95:9099-104. [PMID: 9689040 PMCID: PMC21298 DOI: 10.1073/pnas.95.16.9099] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/1998] [Indexed: 02/08/2023] Open
Abstract
The crystal structure of a recombinant alphaEC domain from human fibrinogen-420 has been determined at a resolution of 2.1 A. The protein, which corresponds to the carboxyl domain of the alphaE chain, was expressed in and purified from Pichia pastoris cells. Felicitously, during crystallization an amino-terminal segment was removed, apparently by a contaminating protease, allowing the 201-residue remaining parent body to crystallize. An x-ray structure was determined by molecular replacement. The electron density was clearly defined, partly as a result of averaging made possible by there being eight molecules in the asymmetric unit related by noncrystallographic symmetry (P1 space group). Virtually all of an asparagine-linked sugar cluster is present. Comparison with structures of the beta- and gamma-chain carboxyl domains of human fibrinogen revealed that the binding cleft is essentially neutral and should not bind Gly-Pro-Arg or Gly-His-Arg peptides of the sort bound by those other domains. Nonetheless, the cleft is clearly evident, and the possibility of binding a carbohydrate ligand like sialic acid has been considered.
Collapse
Affiliation(s)
- G Spraggon
- Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Antipeptide Monoclonal Antibodies to Defined Fibrinogen Aα Chain Regions: Anti-Aα 487-498, a Structural Probe for Fibrinogenolysis. Blood 1998. [DOI: 10.1182/blood.v91.5.1590.1590_1590_1598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fibrinogen αC domain (Aα 220-610) is one of the earliest targets attacked by plasmin following fibrinolytic system activation. Monoclonal antibodies (MoAbs) to defined sequences within the αC domain provide the opportunity to explore the structure-function relationships involved in plasmin's interaction with its Aα chain substrate at greater resolution and can serve as reagents with potential clinical use for detecting fibrinogenolysis in vivo. The MoAb F-104 was raised against a multiple antigenic peptide derivative modelled after the hydrophilic 12-residue sequence corresponding to Aα 487-498 within the αC domain. A sensitive solution phase competitive enzyme-linked immunosorbent assay (ELISA) was developed for MoAb F-104 that can be applied for the direct measurement of intact fibrinogen (purified or plasma; ED50%≈5 pmol Aα chain equivalents/mL), with negligible cross-reactive interference from peptide cleavage products released by plasmin from the COOH-terminal end of the Aα chain (<3%). Immunoblotting and ELISA studies to characterize the fate of the F-104 epitope during fibrinogenolysis in vitro indicated a rapid loss of fibrinogen-associated immunoreactivity that reflected the heterogeneity of plasmin cleavage sites within the αC domain; cleavage at the 493-494 arg-his bond destroyed the F-104 epitope, while cleavage at other sites released it in an altered, inaccessible, conformation within the structure of 35- to 40-kD and 17.5- to 18-kD Aα chain degradation products. Application of the F-104 ELISA to monitor the course of Aα chain proteolysis in a small study population of patients undergoing thrombolytic therapy for myocardial infarction (n = 14) showed that the loss of fibrinogen-associated F-104 immunoreactivity was a very early marker (within 15 to 30 minutes) of in vivo fibrinogenolysis. Additional data obtained suggest that MoAb F-104 may have promise as a reagent for evaluating the creation of an effective lytic state early during therapy, information that could help determine the need for further clinical intervention. Thus, these studies illustrate a rational, targeted, approach towards the development of a novel antifibrinogen MoAb whose application as a structural probe for the region Aα 487-498 in vitro and in vivo can provide new insights into the various molecular forms of fibrinogen that circulate under physiologic conditions and in disease.
Collapse
|
27
|
Antipeptide Monoclonal Antibodies to Defined Fibrinogen Aα Chain Regions: Anti-Aα 487-498, a Structural Probe for Fibrinogenolysis. Blood 1998. [DOI: 10.1182/blood.v91.5.1590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe fibrinogen αC domain (Aα 220-610) is one of the earliest targets attacked by plasmin following fibrinolytic system activation. Monoclonal antibodies (MoAbs) to defined sequences within the αC domain provide the opportunity to explore the structure-function relationships involved in plasmin's interaction with its Aα chain substrate at greater resolution and can serve as reagents with potential clinical use for detecting fibrinogenolysis in vivo. The MoAb F-104 was raised against a multiple antigenic peptide derivative modelled after the hydrophilic 12-residue sequence corresponding to Aα 487-498 within the αC domain. A sensitive solution phase competitive enzyme-linked immunosorbent assay (ELISA) was developed for MoAb F-104 that can be applied for the direct measurement of intact fibrinogen (purified or plasma; ED50%≈5 pmol Aα chain equivalents/mL), with negligible cross-reactive interference from peptide cleavage products released by plasmin from the COOH-terminal end of the Aα chain (<3%). Immunoblotting and ELISA studies to characterize the fate of the F-104 epitope during fibrinogenolysis in vitro indicated a rapid loss of fibrinogen-associated immunoreactivity that reflected the heterogeneity of plasmin cleavage sites within the αC domain; cleavage at the 493-494 arg-his bond destroyed the F-104 epitope, while cleavage at other sites released it in an altered, inaccessible, conformation within the structure of 35- to 40-kD and 17.5- to 18-kD Aα chain degradation products. Application of the F-104 ELISA to monitor the course of Aα chain proteolysis in a small study population of patients undergoing thrombolytic therapy for myocardial infarction (n = 14) showed that the loss of fibrinogen-associated F-104 immunoreactivity was a very early marker (within 15 to 30 minutes) of in vivo fibrinogenolysis. Additional data obtained suggest that MoAb F-104 may have promise as a reagent for evaluating the creation of an effective lytic state early during therapy, information that could help determine the need for further clinical intervention. Thus, these studies illustrate a rational, targeted, approach towards the development of a novel antifibrinogen MoAb whose application as a structural probe for the region Aα 487-498 in vitro and in vivo can provide new insights into the various molecular forms of fibrinogen that circulate under physiologic conditions and in disease.
Collapse
|
28
|
Abstract
Fib420 is a recently identified subclass of normal human fibrinogen in which two extended α chain isoforms (αE ) replace the common α chains, yielding a molecule (ca. 420 kD) which is larger than the more abundant 340-kD form. Evidence for preservation of this subclass throughout vertebrate evolution suggests it performs some as yet unidentified vital function. A survey was undertaken to establish the range of plasma Fib420 levels in normal, healthy adults and in placental cord (fetal) blood. For measuring Fib420 , a quantitative Western blot assay was developed using monoclonal antibody against the exon-VI encoded C-terminus of the molecule's unique αE chain. This αE chain signal was normalized to that of the β chain, common to both fibrinogen forms. Analysis of plasma samples from the adult and newborn cohorts (n = 25 each; total fibrinogen ca. 2.6 mg/mL in both) revealed a statistically significant difference, with a mean level of 100 ± 28 μg/mL in the neonate compared to 34 ± 7 μg/mL in the adult. On average, 1 out of every 100 fibrinogen molecules in adult plasma belongs to the Fib420 subclass. Unlike in the newborn, adult Fib420 levels remained the same over a wide range of total plasma fibrinogen. The striking difference observed between these two cohorts suggests a changing developmental expression of the Fib420 subclass and a homeostatic control operating in later stages of life.
Collapse
|
29
|
Abstract
Abstract
Fib420 is a recently identified subclass of normal human fibrinogen in which two extended α chain isoforms (αE ) replace the common α chains, yielding a molecule (ca. 420 kD) which is larger than the more abundant 340-kD form. Evidence for preservation of this subclass throughout vertebrate evolution suggests it performs some as yet unidentified vital function. A survey was undertaken to establish the range of plasma Fib420 levels in normal, healthy adults and in placental cord (fetal) blood. For measuring Fib420 , a quantitative Western blot assay was developed using monoclonal antibody against the exon-VI encoded C-terminus of the molecule's unique αE chain. This αE chain signal was normalized to that of the β chain, common to both fibrinogen forms. Analysis of plasma samples from the adult and newborn cohorts (n = 25 each; total fibrinogen ca. 2.6 mg/mL in both) revealed a statistically significant difference, with a mean level of 100 ± 28 μg/mL in the neonate compared to 34 ± 7 μg/mL in the adult. On average, 1 out of every 100 fibrinogen molecules in adult plasma belongs to the Fib420 subclass. Unlike in the newborn, adult Fib420 levels remained the same over a wide range of total plasma fibrinogen. The striking difference observed between these two cohorts suggests a changing developmental expression of the Fib420 subclass and a homeostatic control operating in later stages of life.
Collapse
|
30
|
Abstract
A new multidimensional scoring approach for identifying and distinguishing trimeric and dimeric coiled coils is implemented in the MultiCoil program. The program extends the two-stranded coiled-coil prediction program PairCoil to the identification of three-stranded coiled coils. The computations are based upon data gathered from a three-stranded coiled-coil database comprising 6,319 amino acid residues, as well as from the previously constructed two-stranded coiled-coil database. In addition to identifying coiled coils not predicted by the two-stranded database programs, MultiCoil accurately classifies the oligomerization states of known dimeric and trimeric coiled coils. Analysis of the MultiCoil scores provides insight into structural features of coiled coils, and yields estimates that 0.9% of all protein residues form three-stranded coiled coils and that 1.5% form two-stranded coiled coils. The MultiCoil program is available at http:/(/)theory.lcs.mit.edu/multicoil.
Collapse
Affiliation(s)
- E Wolf
- Howard Hughes Medical Institute, Whitehead Institute, MIT, Cambridge, Massachusetts 02142, USA
| | | | | |
Collapse
|
31
|
Affiliation(s)
- B Blombäck
- Department of Medical Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
32
|
Shipwash E, Pan Y, Doolittle RF. The minor form alpha' chain from lamprey fibrinogen is rapidly crosslinked during clotting. Proc Natl Acad Sci U S A 1995; 92:968-72. [PMID: 7862675 PMCID: PMC42618 DOI: 10.1073/pnas.92.4.968] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Lampreys have two genes for the alpha chains of fibrinogen, the second of which encodes a minor form with a carboxyl-terminal domain homologous to the carboxyl-terminal domains of beta and gamma chains. Initially, we referred to the alternative chain as alpha-II; we now use the designation alpha' in order to facilitate reference to crosslinked dimers. Antisera raised to synthetic peptides based on the cDNA sequence confirmed that the alpha' chain was present in fibrinogen prepared directly from plasma. The same antibodies were used to determine the size and properties of the carboxyl-terminal domain after its release by mild tryptic digestion, a fragment of apparent molecular weight 35,000-40,000 being produced. Unlike fragment D generated in the same digestions, the alpha' fragment did not bind to Gly-Pro-Arg or Gly-Val-Arg peptide affinity columns. During clotting under conditions where factor XIII is active, the alpha' chains became crosslinked very much more rapidly than ordinary alpha chains, the principal product being an apparent dimer, but smaller amounts of higher multimers being detectable. The crosslinking was inhibited by various amines, as well as by peptides that prevent polymerization.
Collapse
Affiliation(s)
- E Shipwash
- Center for Molecular Genetics M-034, University of California at San Diego, La Jolla 92093-0634
| | | | | |
Collapse
|
33
|
Fu Y, Grieninger G. Fib420: a normal human variant of fibrinogen with two extended alpha chains. Proc Natl Acad Sci U S A 1994; 91:2625-8. [PMID: 8146165 PMCID: PMC43422 DOI: 10.1073/pnas.91.7.2625] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In fibrinogen, alpha E chains form a subpopulation of alpha subunits that are distinguished by a carboxyl extension homologous to the C termini of the other two constituent chains: beta and gamma. The molecular mass of alpha E is > 50% greater than that of the common alpha subunit, due in part to an extra 236 amino acids. These residues are encoded by exon VI, a recently discovered extension of the fibrinogen alpha gene. Additional mass is contributed by posttranslational processing, including N-glycosylation, which, based on experiments with the inhibitor tunicamycin, was found to account in large measure for alpha E migration on SDS/PAGE at approximately 110 kDa rather than at its calculated mass of 92,843 Da. An antibody specific for the exon VI-encoded domain of alpha E (anti-VI) and capable of recognizing alpha E-containing fibrinogen in both native and denatured form was generated using a recombinant protein as immunogen. Its use in Western blot analysis of fractions of normal human blood (plasma and preparations of fibrinogen) revealed a single, sharp, alpha E-containing band migrating behind the position of the broad, predominant fibrinogen band, (alpha beta gamma)2. Designation of the upper band as Fib420, an approximately 420-kDa homodimer of the formula (alpha E beta gamma)2, is based on the overwhelming proportion of alpha E subunits (> 80% of the total alpha chains) found in anti-VI-immunoprecipitable material from hepatoma cell medium. Several lines of evidence suggest that the alpha E subunit, alone or incorporated into fibrinogen, is more stable than the common alpha chain, a feature of potential clinical importance.
Collapse
Affiliation(s)
- Y Fu
- L.F. Kimball Research Institute, New York Blood Center, NY 10021
| | | |
Collapse
|
34
|
Oddoux C, Grieninger G. Characterization of a chicken hepatoma cell line with a specific defect in fibrinogen secretion. Hepatology 1994; 19:682-7. [PMID: 8119693 DOI: 10.1002/hep.1840190320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This study characterizes plasma protein synthesis and its hormonal regulation in a chicken hepatoma cell line, with particular emphasis on fibrinogen. Whereas virtually all aspects of hemopexin, transferrin and albumin production in these cells corresponded to those of cultured primary hepatocytes, fibrinogen was not secreted. Analysis of fibrinogen subunit synthesis revealed a specific defect in synthesis of one subunit, gamma, correlating with a lack of its mRNA. Pulse-chase and electron microscopic studies demonstrate that, despite the inability of these cells to secrete the A alpha and B beta subunits produced, there is no long-term accumulation of unsecreted fibrinogen. The B beta fibrinogen subunits are largely degraded 2 hr after synthesis. During this time, approximately half of the A alpha subunits are degraded; the rest are converted to the glycosylated form. The implications of this type of defect with respect to the pathogenesis of fibrinogen storage disease are discussed.
Collapse
Affiliation(s)
- C Oddoux
- Lindsley F. Kimball Research Institute of the New York Blood Center, New York 10021
| | | |
Collapse
|
35
|
Abstract
In all vertebrate species studied, the complex, disulfide-linked structure of fibrinogen is essentially the same: a hexamer assembled from three different subunits (A alpha, B beta, gamma)2. This study utilized species differences in fibrinogen subunit monomer pools to address the question of how these surplus subunit pools may affect the assembly process. We used a chicken model system in which B beta and gamma-subunits are present in excess, in contrast to the A alpha and gamma-subunit surplus found in human model systems. Analysis was based on pulse-chase experiments with electrophoretic separation of intracellular forms and secreted fibrinogen on reducing and nonreducing gels. The chicken liver-derived cells employed for this purpose, primary hepatocytes and a hepatoma cell line with a fortuitous defect in fibrinogen synthesis, together offer advantages over human systems for resolving the complexes formed in the early stages of assembly. The results demonstrate that in chicken hepatocytes there is an initial binding of gamma to A alpha subunits rather than to B beta subunits, as occurs in human hepatoma cells. Nevertheless, the presence of similar intracellular fibrinogen-related forms in both chicken- and human-derived cells, in the context of their differing subunit monomer pools, suggests an assembly pathway common to both species, with the versatility to be regulated by limitation of A alpha or B beta subunit production.
Collapse
Affiliation(s)
- C Oddoux
- Lindsley F. Kimball Research Institute of the New York Blood Center, New York 10021
| | | |
Collapse
|
36
|
Fu Y, Weissbach L, Plant PW, Oddoux C, Cao Y, Liang TJ, Roy SN, Redman CM, Grieninger G. Carboxy-terminal-extended variant of the human fibrinogen alpha subunit: a novel exon conferring marked homology to beta and gamma subunits. Biochemistry 1992; 31:11968-72. [PMID: 1457396 DOI: 10.1021/bi00163a002] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Similarities between the N-terminal regions of the three subunits of the clotting protein fibrinogen--(alpha beta gamma)2--suggest that they evolved from a common progenitor. However, to date no human alpha chain has been found with the strong C-terminal homology shared by the beta and gamma chains. Here we examine the natural product of a novel fibrinogen alpha chain transcript bearing a separate open reading frame that supplies the missing C-terminal homology to the other chains. Additional splicing leads to the use of this extra sequence as a sixth exon elongating the alpha chain by 35%. Since the extended alpha chain (alpha E) is assembled into fibrinogen molecules and its synthesis is enhanced by interleukin-6, it suggests participation in both the acute phase response and normal physiology.
Collapse
Affiliation(s)
- Y Fu
- Lindsley F. Kimball Research Institute, New York Blood Center, New York 10021
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Doolittle RF. A detailed consideration of a principal domain of vertebrate fibrinogen and its relatives. Protein Sci 1992; 1:1563-77. [PMID: 1304888 PMCID: PMC2142140 DOI: 10.1002/pro.5560011204] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Vertebrate fibrinogen is a complex multidomained protein, the structure of which has been inferred mainly from electron microscopy and amino acid sequence studies. Among its most prominent features are two terminal globules, moieties that are mostly composed of the carboxyl-terminal two-thirds of the beta and gamma chains. Sequences homologous to the latter segments are found in several other animal proteins, always as the carboxyl-terminal contributions. An alignment of 15 amino acid sequences from various fibrinogens and related proteins has been used to make judgments about secondary structure. The nature of amino acids at each position in the alignment was used to distinguish alpha helices and beta structure on the one hand from loops and turns on the other, and the resulting assignments compared with predictions of secondary structure by other methods. Additionally, constraints imposed by the locations of cystines, carbohydrate attachment residues, and proteinase-sensitive points provided further insights into the general organization of the postulated secondary structures. Other ancillary data, including the effects of bound calcium and the locations of labeled or variant residues, were also considered. An intriguing similarity to a portion of the recently reported structure of a calcium-dependent lectin is noted.
Collapse
Affiliation(s)
- R F Doolittle
- Departments of Chemistry and Biology, University of California, San Diego, La Jolla 92093-0634
| |
Collapse
|
38
|
Pan Y, Doolittle RF. cDNA sequence of a second fibrinogen alpha chain in lamprey: an archetypal version alignable with full-length beta and gamma chains. Proc Natl Acad Sci U S A 1992; 89:2066-70. [PMID: 1549566 PMCID: PMC48597 DOI: 10.1073/pnas.89.6.2066] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The message for a second fibrinogen alpha chain has been cloned from a lamprey liver cDNA library. The sequence is unique in that the amino-terminal half is homologous to all other known alpha chains, including another from lamprey, but its carboxyl-terminal half is homologous to the carboxyl-terminal portions of beta and gamma chains, segments that compose the distal globular regions of fibrinogen. The structural pattern of this newly discovered alpha chain suggests that it could be a direct descendant of the archetypal chain that existed prior to the gene duplications that led to unique beta and gamma chains and before the dislocating events that gave rise to contemporary alpha chains.
Collapse
Affiliation(s)
- Y Pan
- Department of Chemistry, University of California, San Diego, La Jolla 92093-0634
| | | |
Collapse
|
39
|
Weissbach L, Oddoux C, Procyk R, Grieninger G. The beta chain of chicken fibrinogen contains an atypical thrombin cleavage site. Biochemistry 1991; 30:3290-4. [PMID: 2009266 DOI: 10.1021/bi00227a017] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A cDNA corresponding to almost the entire coding region of the mRNA for the beta chain of chicken fibrinogen was sequenced. At the protein level, significant homology to the beta subunits of other vertebrate fibrinogens was found, with the highest degree of amino acid identity localized in the C-terminal region. In general, features conserved in the fibrinogens from other species also characterize the chicken sequence, including the cysteine motifs bordering an alpha-helical permissive region of fixed length and a single glycosylation site in the C-terminal region. However, the site of thrombin-catalyzed cleavage, which in other species consists of an Arg-Gly peptide bond, is instead an Arg-Ala bond in the chicken beta chain. The Ala was confirmed directly from a sequencing analysis of the purified beta chain of chicken fibrin. This finding may explain the observed slow clotting time of chicken fibrinogen relative to that of other species.
Collapse
Affiliation(s)
- L Weissbach
- Lindsley F. Kimball Research Institute of the New York Blood Center, New York 10021
| | | | | | | |
Collapse
|
40
|
Blombäck B. Fibrinogen and fibrin formation and its role in fibrinolysis. BIOTECHNOLOGY (READING, MASS.) 1991; 19:225-79. [PMID: 1723911 DOI: 10.1016/b978-0-7506-9120-8.50016-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
41
|
New nucleotide sequence data on the EMBL File Server. Nucleic Acids Res 1990; 18:5587-605. [PMID: 2216753 PMCID: PMC332285 DOI: 10.1093/nar/18.18.5587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|