1
|
Hubble KA, Henry MF. DPC29 promotes post-initiation mitochondrial translation in Saccharomyces cerevisiae. Nucleic Acids Res 2023; 51:1260-1276. [PMID: 36620885 PMCID: PMC9943650 DOI: 10.1093/nar/gkac1229] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 01/10/2023] Open
Abstract
Mitochondrial ribosomes synthesize essential components of the oxidative phosphorylation (OXPHOS) system in a tightly regulated process. In the yeast Saccharomyces cerevisiae, mitochondrial mRNAs require specific translational activators, which orchestrate protein synthesis by recognition of their target gene's 5'-untranslated region (UTR). Most of these yeast genes lack orthologues in mammals, and only one such gene-specific translational activator has been proposed in humans-TACO1. The mechanism by which TACO1 acts is unclear because mammalian mitochondrial mRNAs do not have significant 5'-UTRs, and therefore must promote translation by alternative mechanisms. In this study, we examined the role of the TACO1 orthologue in yeast. We found this 29 kDa protein to be a general mitochondrial translation factor, Dpc29, rather than a COX1-specific translational activator. Its activity was necessary for the optimal expression of OXPHOS mtDNA reporters, and mutations within the mitoribosomal large subunit protein gene MRP7 produced a global reduction of mitochondrial translation in dpc29Δ cells, indicative of a general mitochondrial translation factor. Northern-based mitoribosome profiling of dpc29Δ cells showed higher footprint frequencies at the 3' ends of mRNAs, suggesting a role in translation post-initiation. Additionally, human TACO1 expressed at native levels rescued defects in dpc29Δ yeast strains, suggesting that the two proteins perform highly conserved functions.
Collapse
Affiliation(s)
- Kyle A Hubble
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA,Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084, USA
| | - Michael F Henry
- To whom correspondence should be addressed. Tel: +1 856 566 6970; Fax: +1 856 566 6291; E-mail:
| |
Collapse
|
2
|
Tsr4 Is a Cytoplasmic Chaperone for the Ribosomal Protein Rps2 in Saccharomyces cerevisiae. Mol Cell Biol 2019; 39:MCB.00094-19. [PMID: 31182640 DOI: 10.1128/mcb.00094-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/03/2019] [Indexed: 01/31/2023] Open
Abstract
Eukaryotic ribosome biogenesis requires the action of approximately 200 trans-acting factors and the incorporation of 79 ribosomal proteins (RPs). The delivery of RPs to preribosomes is a major challenge for the cell because RPs are often highly basic and contain intrinsically disordered regions prone to nonspecific interactions and aggregation. To counteract this, eukaryotes developed dedicated chaperones for certain RPs that promote their solubility and expression, often by binding eukaryote-specific extensions of the RPs. Rps2 (uS5) is a universally conserved RP that assembles into nuclear pre-40S subunits. However, a chaperone for Rps2 had not been identified. Our laboratory previously characterized Tsr4 as a 40S biogenesis factor of unknown function. Here, we report that Tsr4 cotranslationally associates with Rps2. Rps2 harbors a eukaryote-specific N-terminal extension that is critical for its interaction with Tsr4. Moreover, Tsr4 perturbation resulted in decreased Rps2 levels and phenocopied Rps2 depletion. Despite Rps2 joining nuclear pre-40S particles, Tsr4 appears to be restricted to the cytoplasm. Thus, we conclude that Tsr4 is a cytoplasmic chaperone dedicated to Rps2.
Collapse
|
3
|
Hillman GA, Henry MF. The yeast protein Mam33 functions in the assembly of the mitochondrial ribosome. J Biol Chem 2019; 294:9813-9829. [PMID: 31053642 DOI: 10.1074/jbc.ra119.008476] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/24/2019] [Indexed: 02/04/2023] Open
Abstract
Mitochondrial ribosomes are functionally specialized for the synthesis of several essential inner membrane proteins of the respiratory chain. Although remarkable progress has been made toward understanding the structure of mitoribosomes, the pathways and factors that facilitate their biogenesis remain largely unknown. The long unstructured domains of unassembled ribosomal proteins are highly prone to misfolding and often require dedicated chaperones to prevent aggregation. To date, chaperones that ensure safe delivery to the assembling ribosome have not been identified in the mitochondrion. In this study, a respiratory synthetic lethality screen revealed a role for an evolutionarily conserved mitochondrial matrix protein called Mam33 in Saccharomyces cerevisiae mitoribosome biogenesis. We found that the absence of Mam33 results in misassembled, aggregated ribosomes and a respiratory lethal phenotype in combination with other ribosome-assembly mutants. Using sucrose gradient sedimentation, native affinity purifications, in vitro binding assays, and SILAC-based quantitative proteomics, we found that Mam33 does not associate with the mature mitoribosome, but directly binds a subset of unassembled large subunit proteins. Based on these data, we propose that Mam33 binds specific mitoribosomal proteins to ensure proper assembly.
Collapse
Affiliation(s)
- Gabrielle A Hillman
- From the Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, New Jersey 08084 and.,the Graduate School of Biomedical Sciences, Rowan University, Stratford, New Jersey 08084
| | - Michael F Henry
- From the Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, New Jersey 08084 and .,the Graduate School of Biomedical Sciences, Rowan University, Stratford, New Jersey 08084
| |
Collapse
|
4
|
Cvrčková F, Hála M. Heterologous expression in budding yeast as a tool for studying the plant cell morphogenesis machinery. Methods Mol Biol 2014; 1080:267-82. [PMID: 24132437 DOI: 10.1007/978-1-62703-643-6_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The budding yeast (Saccharomyces cerevisiae) can serve as a unique experimental system for functional studies of heterologous genes, allowing not only complementation of readily available yeast mutations but also generation of overexpression phenotypes and in some cases also rescue of such phenotypes. Here we summarize the main considerations that have to be taken into account when using the yeast expression system for investigating the function of plant genes participating in cell morphogenesis; outline the strategies of experiment planning, yeast strain selection (or construction), and expression vector choice; and provide detailed protocols for yeast transformation, transformant selection, and phenotype evaluation.
Collapse
Affiliation(s)
- Fatima Cvrčková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | | |
Collapse
|
5
|
Stevens JR, O'Donnell AF, Perry TE, Benjamin JJR, Barnes CA, Johnston GC, Singer RA. FACT, the Bur kinase pathway, and the histone co-repressor HirC have overlapping nucleosome-related roles in yeast transcription elongation. PLoS One 2011; 6:e25644. [PMID: 22022426 PMCID: PMC3192111 DOI: 10.1371/journal.pone.0025644] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 09/06/2011] [Indexed: 02/03/2023] Open
Abstract
Gene transcription is constrained by the nucleosomal nature of chromosomal DNA. This nucleosomal barrier is modulated by FACT, a conserved histone-binding heterodimer. FACT mediates transcription-linked nucleosome disassembly and also nucleosome reassembly in the wake of the RNA polymerase II transcription complex, and in this way maintains the repression of ‘cryptic’ promoters found within some genes. Here we focus on a novel mutant version of the yeast FACT subunit Spt16 that supplies essential Spt16 activities but impairs transcription-linked nucleosome reassembly in dominant fashion. This Spt16 mutant protein also has genetic effects that are recessive, which we used to show that certain Spt16 activities collaborate with histone acetylation and the activities of a Bur-kinase/Spt4–Spt5/Paf1C pathway that facilitate transcription elongation. These collaborating activities were opposed by the actions of Rpd3S, a histone deacetylase that restores a repressive chromatin environment in a transcription-linked manner. Spt16 activity paralleling that of HirC, a co-repressor of histone gene expression, was also found to be opposed by Rpd3S. Our findings suggest that Spt16, the Bur/Spt4–Spt5/Paf1C pathway, and normal histone abundance and/or stoichiometry, in mutually cooperative fashion, facilitate nucleosome disassembly during transcription elongation. The recessive nature of these effects of the mutant Spt16 protein on transcription-linked nucleosome disassembly, contrasted to its dominant negative effect on transcription-linked nucleosome reassembly, indicate that mutant FACT harbouring the mutant Spt16 protein competes poorly with normal FACT at the stage of transcription-linked nucleosome disassembly, but effectively with normal FACT for transcription-linked nucleosome reassembly. This functional difference is consistent with the idea that FACT association with the transcription elongation complex depends on nucleosome disassembly, and that the same FACT molecule that associates with an elongation complex through nucleosome disassembly is retained for reassembly of the same nucleosome.
Collapse
Affiliation(s)
- Jennifer R. Stevens
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Allyson F. O'Donnell
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Troy E. Perry
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jeremy J. R. Benjamin
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Christine A. Barnes
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Gerald C. Johnston
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Richard A. Singer
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail:
| |
Collapse
|
6
|
Esberg A, Moqtaderi Z, Fan X, Lu J, Struhl K, Byström A. Iwr1 protein is important for preinitiation complex formation by all three nuclear RNA polymerases in Saccharomyces cerevisiae. PLoS One 2011; 6:e20829. [PMID: 21695216 PMCID: PMC3112208 DOI: 10.1371/journal.pone.0020829] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 05/09/2011] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Iwr1, a protein conserved throughout eukaryotes, was originally identified by its physical interaction with RNA polymerase (Pol) II. PRINCIPAL FINDINGS Here, we identify Iwr1 in a genetic screen designed to uncover proteins involved in Pol III transcription in S. cerevisiae. Iwr1 is important for Pol III transcription, because an iwr1 mutant strain shows reduced association of TBP and Pol III at Pol III promoters, a decreased rate of Pol III transcription, and lower steady-state levels of Pol III transcripts. Interestingly, an iwr1 mutant strain also displays reduced association of TBP to Pol I-transcribed genes and of both TBP and Pol II to Pol II-transcribed promoters. Despite this, rRNA and mRNA levels are virtually unaffected, suggesting a post-transcriptional mechanism compensating for the occupancy defect. CONCLUSIONS Thus, Iwr1 plays an important role in preinitiation complex formation by all three nuclear RNA polymerases.
Collapse
Affiliation(s)
- Anders Esberg
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Zarmik Moqtaderi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xiaochun Fan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jian Lu
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Kevin Struhl
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (AB); (KS)
| | - Anders Byström
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- * E-mail: (AB); (KS)
| |
Collapse
|
7
|
Costello JL, Stead JA, Feigenbutz M, Jones RM, Mitchell P. The C-terminal region of the exosome-associated protein Rrp47 is specifically required for box C/D small nucleolar RNA 3'-maturation. J Biol Chem 2010; 286:4535-43. [PMID: 21135092 PMCID: PMC3039359 DOI: 10.1074/jbc.m110.162826] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Cells lacking the exosome-associated protein Rrp47 show similar defects in stable RNA processing to those observed in the absence of the catalytic subunit Rrp6, but the precise mechanism(s) by which Rrp47 functions together with Rrp6 remains unclear. Deletion complementation analyses defined an N-terminal region of Rrp47, largely coincident with the bioinformatically defined Sas10/C1D domain, which was sufficient for protein function in vivo. In vitro protein interaction studies demonstrated that this domain of Rrp47 binds the PMC2NT domain of Rrp6. Expression of the N-terminal domain of Rrp47 in yeast complemented most RNA-processing defects associated with the rrp47Δ mutant but failed to complement the defect observed in 3′-end maturation of box C/D small nucleolar RNAs. Consistent with these results, protein capture assays revealed an interaction between the C-terminal region of Rrp47 and the small nucleolar ribonucleoproteins Nop56 and Nop58. Filter binding assays demonstrated that deletion of the lysine-rich sequence at the C terminus of Rrp47 blocked RNA binding in vitro. Furthermore, a protein mutated both at the C terminus and within the N-terminal domain showed a synergistic defect in RNA binding without impacting on its ability to interact with Rrp6. These studies provide evidence for a role of Rrp47 in registering a small nucleolar ribonucleoprotein particle assembly, functionally characterize the Sas10/C1D domain of Rrp47, and show that both the C terminus of Rrp47 and the N-terminal domain contribute to its RNA-binding activity.
Collapse
Affiliation(s)
- Joe L Costello
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | | | | | | | | |
Collapse
|
8
|
C-terminal flap endonuclease (rad27) mutations: lethal interactions with a DNA ligase I mutation (cdc9-p) and suppression by proliferating cell nuclear antigen (POL30) in Saccharomyces cerevisiae. Genetics 2009; 183:63-78. [PMID: 19596905 DOI: 10.1534/genetics.109.103937] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During lagging-strand DNA replication in eukaryotic cells primers are removed from Okazaki fragments by the flap endonuclease and DNA ligase I joins nascent fragments. Both enzymes are brought to the replication fork by the sliding clamp proliferating cell nuclear antigen (PCNA). To understand the relationship among these three components, we have carried out a synthetic lethal screen with cdc9-p, a DNA ligase mutation with two substitutions (F43A/F44A) in its PCNA interaction domain. We recovered the flap endonuclease mutation rad27-K325* with a stop codon at residue 325. We created two additional rad27 alleles, rad27-A358* with a stop codon at residue 358 and rad27-pX8 with substitutions of all eight residues of the PCNA interaction domain. rad27-pX8 is temperature lethal and rad27-A358* grows slowly in combination with cdc9-p. Tests of mutation avoidance, DNA repair, and compatibility with DNA repair mutations showed that rad27-K325* confers severe phenotypes similar to rad27Delta, rad27-A358* confers mild phenotypes, and rad27-pX8 confers phenotypes intermediate between the other two alleles. High-copy expression of POL30 (PCNA) suppresses the canavanine mutation rate of all the rad27 alleles, including rad27Delta. These studies show the importance of the C terminus of the flap endonuclease in DNA replication and repair and, by virtue of the initial screen, show that this portion of the enzyme helps coordinate the entry of DNA ligase during Okazaki fragment maturation.
Collapse
|
9
|
Nomura M. Switching from prokaryotic molecular biology to eukaryotic molecular biology. J Biol Chem 2009; 284:9625-35. [PMID: 19074426 DOI: 10.1074/jbc.x800014200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Masayasu Nomura
- Department of Biological Chemistry, University of California, Irvine, California 92697-1700, USA.
| |
Collapse
|
10
|
Abstract
High-fidelity chromosome segregation requires that the sister chromatids produced during S phase also become paired during S phase. Ctf7p (Eco1p) is required to establish sister chromatid pairing specifically during DNA replication. However, Ctf7p also becomes active during G2/M in response to DNA damage. Ctf7p is a phosphoprotein and an in vitro target of Cdc28p cyclin-dependent kinase (CDK), suggesting one possible mechanism for regulating the essential function of Ctf7p. Here, we report a novel synthetic lethal interaction between ctf7 and cdc28. However, neither elevated CDC28 levels nor CDC28 Cak1p-bypass alleles rescue ctf7 cell phenotypes. Moreover, cells expressing Ctf7p mutated at all full- and partial-consensus CDK-phosphorylation sites exhibit robust cell growth. These and other results reveal that Ctf7p regulation is more complicated than previously envisioned and suggest that CDK acts in sister chromatid cohesion parallel to Ctf7p reactions.
Collapse
|
11
|
Two RNA polymerase I subunits control the binding and release of Rrn3 during transcription. Mol Cell Biol 2007; 28:1596-605. [PMID: 18086878 DOI: 10.1128/mcb.01464-07] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Rpa34 and Rpa49 are nonessential subunits of RNA polymerase I, conserved in species from Saccharomyces cerevisiae and Schizosaccharomyces pombe to humans. Rpa34 bound an N-terminal region of Rpa49 in a two-hybrid assay and was lost from RNA polymerase in an rpa49 mutant lacking this Rpa34-binding domain, whereas rpa34Delta weakened the binding of Rpa49 to RNA polymerase. rpa34Delta mutants were caffeine sensitive, and the rpa34Delta mutation was lethal in a top1Delta mutant and in rpa14Delta, rpa135(L656P), and rpa135(D395N) RNA polymerase mutants. These defects were shared by rpa49Delta mutants, were suppressed by the overexpression of Rpa49, and thus, were presumably mediated by Rpa49 itself. rpa49 mutants lacking the Rpa34-binding domain behaved essentially like rpa34Delta mutants, but strains carrying rpa49Delta and rpa49-338::HIS3 (encoding a form of Rpa49 lacking the conserved C terminus) had reduced polymerase occupancy at 30 degrees C, failed to grow at 25 degrees C, and were sensitive to 6-azauracil and mycophenolate. Mycophenolate almost fully dissociated the mutant polymerase from its ribosomal DNA (rDNA) template. The rpa49Delta and rpa49-338::HIS3 mutations had a dual effect on the transcription initiation factor Rrn3 (TIF-IA). They partially impaired its recruitment to the rDNA promoter, an effect that was bypassed by an N-terminal deletion of the Rpa43 subunit encoded by rpa43-35,326, and they strongly reduced the release of the Rrn3 initiation factor during elongation. These data suggest a dual role of the Rpa49-Rpa34 dimer during the recruitment of Rrn3 and its subsequent dissociation from the elongating polymerase.
Collapse
|
12
|
Hung NJ, Lo KY, Patel SS, Helmke K, Johnson AW. Arx1 is a nuclear export receptor for the 60S ribosomal subunit in yeast. Mol Biol Cell 2007; 19:735-44. [PMID: 18077551 DOI: 10.1091/mbc.e07-09-0968] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We previously showed that nuclear export of the large (60S) ribosomal subunit relies on Nmd3 in a Crm1-dependent manner. Recently the general mRNA export factor, the Mtr2/Mex67 heterodimer, was shown to act as an export receptor in parallel with Crm1. These observations raise the possibility that nuclear export of the 60S subunit in Saccharomyces cerevisiae requires multiple export receptors. Here, we show that the previously characterized 60S subunit biogenesis factor, Arx1, also acts as an export receptor for the 60S subunit. We found that deletion of ARX1 was synthetic lethal with nmd3 and mtr2 mutants and was synthetic sick with several nucleoporin mutants. Deletion of ARX1 led to accumulation of pre-60S particles in the nucleus that were enriched for Nmd3, Crm1, Mex67, and Mtr2, suggesting that in the absence of Arx1, 60S export is impaired even though the subunit is loaded with export receptors. Finally, Arx1 interacted with several nucleoporins in yeast two-hybrid as well as in vitro assays. These results show that Arx1 can directly bridge the interaction between the pre-60S particle and the NPC and thus is a third export receptor for the 60S subunit in yeast.
Collapse
Affiliation(s)
- Nai-Jung Hung
- Section of Molecular Genetics and Microbiology and the Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | | | |
Collapse
|
13
|
|
14
|
Fish RN, Ammerman ML, Davie JK, Lu BF, Pham C, Howe L, Ponticelli AS, Kane CM. Genetic interactions between TFIIF and TFIIS. Genetics 2006; 173:1871-84. [PMID: 16648643 PMCID: PMC1569716 DOI: 10.1534/genetics.106.058834] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2006] [Accepted: 04/28/2006] [Indexed: 11/18/2022] Open
Abstract
The eukaryotic transcript elongation factor TFIIS is encoded by a nonessential gene, PPR2, in Saccharomyces cerevisiae. Disruptions of PPR2 are lethal in conjunction with a disruption in the nonessential gene TAF14/TFG3. While investigating which of the Taf14p-containing complexes may be responsible for the synthetic lethality between ppr2Delta and taf14Delta, we discovered genetic interactions between PPR2 and both TFG1 and TFG2 encoding the two larger subunits of the TFIIF complex that also contains Taf14p. Mutant alleles of tfg1 or tfg2 that render cells cold sensitive have improved growth at low temperature in the absence of TFIIS. Remarkably, the amino-terminal 130 amino acids of TFIIS, which are dispensable for the known in vitro and in vivo activities of TFIIS, are required to complement the lethality in taf14Delta ppr2Delta cells. Analyses of deletion and chimeric gene constructs of PPR2 implicate contributions by different regions of this N-terminal domain. No strong common phenotypes were identified for the ppr2Delta and taf14Delta strains, implying that the proteins are not functionally redundant. Instead, the absence of Taf14p in the cell appears to create a dependence on an undefined function of TFIIS mediated by its N-terminal region. This region of TFIIS is also at least in part responsible for the deleterious effect of TFIIS on tfg1 or tfg2 cold-sensitive cells. Together, these results suggest a physiologically relevant functional connection between TFIIS and TFIIF.
Collapse
Affiliation(s)
- Rachel N Fish
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3202, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Liu F, Jamieson DJ. Isolation of mutations synthetic-lethal to prohibitin 2 null mutants of Saccharomyces cerevisiae. Antonie van Leeuwenhoek 2006; 89:281-92. [PMID: 16710639 DOI: 10.1007/s10482-005-9029-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Accepted: 12/21/2005] [Indexed: 11/28/2022]
Abstract
Prohibitins are ubiquitous, abundant proteins found in a wide range of organisms and that have a high degree of sequence conservation. In yeast it has previously been demonstrated that prohibitin proteins form a complex and are involved in maintaining the morphological and functional integrity of mitochondria. We have used a colony-sectoring assay as a screen for mutants that are dependent upon the presence of functional Phb2p in the cell. Two classes of prohibitin dependent mutation (pbd1 and pbd2) were isolated and characterised. The effect of these mutations on replicative lifespan was determined, demonstrating that the pbd1 mutant slightly extended lifespan, whereas in contrast, the pbd2 mutation resulted in a shortening in both the mean- and the maximum-lifespan. The pbd1 mutation was also found to reduce chronological lifespan. Reducing the expression of the PHB2 gene in the pbd mutants was found to retard the rate of growth and to affect replicative lifespan. As the two mutants behave in a different manner they probably affect different aspects of prohibitin function.
Collapse
Affiliation(s)
- Feng Liu
- School of Life Sciences, Heriot-Watt University, Riccarton, Edinburgh, EH14 4AS, UK
| | | |
Collapse
|
16
|
Guillet M, Van Der Kemp PA, Boiteux S. dUTPase activity is critical to maintain genetic stability in Saccharomyces cerevisiae. Nucleic Acids Res 2006; 34:2056-66. [PMID: 16617146 PMCID: PMC1440884 DOI: 10.1093/nar/gkl139] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We identified a viable allele (dut1-1) of the DUT1 gene that encodes the dUTPase activity in Saccharomyces cerevisiae. The Dut1-1 protein possesses a single amino acid substitution (Gly82Ser) in a conserved motif nearby the active site and exhibits a greatly reduced dUTPase activity. The dut1-1 single mutant exhibits growth delay and cell cycle abnormalities and shows a strong spontaneous mutator phenotype. All phenotypes of the dut1-1 mutant are suppressed by the simultaneous inactivation of the uracil DNA N-glycosylase, Ung1. However, the ung1 dut1-1 double mutant accumulates uracil in its genomic DNA. The viability of the dut1-1 mutant is greatly impaired by the simultaneous inactivation of AP endonucleases. These data strongly suggest that the phenotypes of the dut1-1 mutant result from the incorporation of dUMPs into DNA subsequently converted into AP sites. The analysis of the dut1-1 strain mutation spectrum showed that cytosines are preferentially incorporated in front of AP sites in a Rev3-dependent manner during translesion synthesis. These results point to a critical role of the Dut1 protein in the maintenance of the genetic stability. Therefore, the normal cellular metabolism, and not only its byproducts, is an important source of endogenous DNA damage and genetic instability in eukaryotic cells.
Collapse
Affiliation(s)
- Marie Guillet
- CEA, DSV Département de Radiobiologie et Radiopathologie, UMR 217 CNRS Radiobiologie Moléculaire et Cellulaire, BP 6, 92265 Fontenay aux Roses, France.
| | | | | |
Collapse
|
17
|
Hayashi M, Fukuzawa T, Sorimachi H, Maeda T. Constitutive activation of the pH-responsive Rim101 pathway in yeast mutants defective in late steps of the MVB/ESCRT pathway. Mol Cell Biol 2005; 25:9478-90. [PMID: 16227598 PMCID: PMC1265799 DOI: 10.1128/mcb.25.21.9478-9490.2005] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In many fungi, transcriptional responses to alkaline pH are mediated by conserved signal transduction machinery. In the homologous system in Saccharomyces cerevisiae, the zinc-finger transcription factor Rim101 is activated under alkaline conditions to regulate transcription of target genes. The activation of Rim101 is exerted through proteolytic processing of its C-terminal inhibitory domain. Regulated processing of Rim101 requires several proteins, including the calpain-like protease Rim13/Cpl1, a putative protease scaffold Rim20, putative transmembrane proteins Rim9, and Rim21/Pal2, and Rim8/Pal3 of unknown biochemical function. To identify new regulatory components and thereby determine the order of action among the components in the pathway, we screened for suppressors of rim9Delta and rim21Delta mutations. Three identified suppressors-did4/vps2, vps24, and vps4-all belonged to "class E" vps mutants, which are commonly defective in multivesicular body sorting. These mutations suppress rim8, rim9, and rim21 but not rim13 or rim20, indicating that Rim8, Rim9, and Rim21 act upstream of Rim13 and Rim20 in the pathway. Disruption of DID4, VPS24, or VPS4, by itself, uncouples pH sensing from Rim101 processing, leading to constitutive Rim101 activation. Based on extensive epistasis analysis between pathway-activating and -inactivating mutations, a model for architecture and regulation of the Rim101 pathway is proposed.
Collapse
Affiliation(s)
- Michio Hayashi
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | |
Collapse
|
18
|
Lukas L, Kuzminov A. Chromosomal fragmentation is the major consequence of the rdgB defect in Escherichia coli. Genetics 2005; 172:1359-62. [PMID: 16322510 PMCID: PMC1456232 DOI: 10.1534/genetics.105.051144] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The rdgB mutants depend on recombinational repair of double-strand breaks. To assess other consequences of rdgB inactivation in Escherichia coli, we isolated RdgB-dependent mutants. All transposon inserts making cells dependent on RdgB inactivate genes of double-strand break repair, indicating that chromosomal fragmentation is the major consequence of RdgB inactivation.
Collapse
Affiliation(s)
- Lisa Lukas
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801, USA
| | | |
Collapse
|
19
|
Mitochondrial fatty acid synthesis and maintenance of respiratory competent mitochondria in yeast. Biochem Soc Trans 2005. [DOI: 10.1042/bst0331162] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mitochondrial FAS (fatty acid synthesis) of type II is a widely conserved process in eukaryotic organisms, with particular importance for respiratory competence and mitochondrial morphology maintenance in Saccharomyces cerevisiae. The recent characterization of three missing enzymes completes the pathway. Etr1p (enoyl thioester reductase) was identified via purification of the protein followed by molecular cloning. To study the link between FAS and cell respiration further, we also created a yeast strain that has FabI enoyl-ACP (acyl-carrier protein) reductase gene from Escherichia coli engineered to carry a mitochondrial targeting sequence in the genome, replacing the endogenous ETR1 gene. This strain is respiratory competent, but unlike the ETR1 wild-type strain, it is sensitive to triclosan on media containing only non-fermentable carbon source. A colony-colour-sectoring screen was applied for cloning of YHR067w/RMD12, the gene encoding mitochondrial 3-hydroxyacyl-ACP dehydratase (Htd2/Yhr067p), the last missing component of the mitochondrial FAS. Finally, Hfa1p was shown to be the mitochondrial acetyl-CoA carboxylase.
Collapse
|
20
|
Chakhparonian M, Faucher D, Wellinger RJ. A mutation in yeast Tel1p that causes differential effects on the DNA damage checkpoint and telomere maintenance. Curr Genet 2005; 48:310-22. [PMID: 16228207 DOI: 10.1007/s00294-005-0020-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 08/02/2005] [Accepted: 08/17/2005] [Indexed: 11/26/2022]
Abstract
ATM/ATR homologs are the central elements of genome surveillance mechanisms in many organisms, including yeasts, flies, and mammals. In Saccharomyces cerevisiae, most checkpoint responses depend on the ATR ortholog Mec1p. The yeast ATM ortholog, Tel1p, so far has been implicated in a specific DNA damage checkpoint during S-phase as well as in telomere homeostasis. In particular, yeast cells lacking only Tel1p harbor short but stable telomeres, while cells lacking both Tel1p and Mec1p are unable to maintain telomeric repeats and senesce. Here, we present the characterization of a new mutation in the TEL1-gene, called tel1-11, which was isolated by virtue of a synthetic lethal interaction at 37 degrees C with a previously described mec1-ts mutation. Interestingly, telomere and checkpoint functions are differentially affected by the mutant protein Tel1-11p. The Tel1p-dependent checkpoint response is undetectable in cells containing Tel1-11p and incubated at 37 degrees C, but basic telomere function is maintained. Further, when the same cells are incubated at 26 degrees C, Tel1-11p confers full proficiency for all telomere functions analyzed, whereas the function for DNA-damage checkpoint activation is clearly affected. The results thus strongly suggest that the different cellular pathways affected by Tel1p do not require the same level of Tel1p activity to be fully functional.
Collapse
Affiliation(s)
- Mikhail Chakhparonian
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, Université de Sherbrooke, 3001 12e Ave Nord, Sherbrooke, QC, J1H 5N4, Canada
| | | | | |
Collapse
|
21
|
Jandrositz A, Petschnigg J, Zimmermann R, Natter K, Scholze H, Hermetter A, Kohlwein SD, Leber R. The lipid droplet enzyme Tgl1p hydrolyzes both steryl esters and triglycerides in the yeast, Saccharomyces cerevisiae. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1735:50-8. [PMID: 15922657 DOI: 10.1016/j.bbalip.2005.04.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Revised: 04/12/2005] [Accepted: 04/21/2005] [Indexed: 11/22/2022]
Abstract
Based on sequence homology to mammalian acid lipases, yeast reading frame YKL140w was predicted to encode a triacylglycerol (TAG) lipase in yeast and was hence named as TGL1, triglyceride lipase 1. A deletion of TGL1, however, resulted in an increase of the cellular steryl ester content. Fluorescently labeled lipid analogs that become covalently linked to the enzyme active site upon catalysis were used to discriminate between the lipase and esterase activities of Tgl1p. Tgl1p preferred single-chain esterase inhibitors over lipase inhibitors in vitro. Under assay conditions optimal for acid lipases, Tgl1p exhibited steryl esterase activity only and lacked any triglyceride lipase activity. In contrast, at pH 7.4, Tgl1p also exhibited TAG lipase activity; however, steryl ester hydrolase activity was still predominant. Tgl1p localized exclusively to lipid droplets which are the intracellular storage compartment of steryl esters and triacylglycerols in the yeast S. cerevisiae. In a tgl1 deletion mutant, the mobilization of steryl esters in vivo was delayed, but not abolished, suggesting the existence of additional enzymes involved in steryl ester mobilization.
Collapse
Affiliation(s)
- Anita Jandrositz
- Institute of Molecular Biosciences, SFB Biomembrane Research Center, University of Graz, Schubertstr. 1, A8010 Graz, Austria
| | | | | | | | | | | | | | | |
Collapse
|
22
|
West M, Hedges JB, Chen A, Johnson AW. Defining the order in which Nmd3p and Rpl10p load onto nascent 60S ribosomal subunits. Mol Cell Biol 2005; 25:3802-13. [PMID: 15831484 PMCID: PMC1084314 DOI: 10.1128/mcb.25.9.3802-3813.2005] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Revised: 01/20/2005] [Accepted: 01/28/2005] [Indexed: 11/20/2022] Open
Abstract
The large ribosomal subunit protein Rpl10p is required for subunit joining and 60S export in yeast. We have recently shown that Rpl10p as well as the cytoplasmic GTPase Lsg1p are required for releasing the 60S nuclear export adapter Nmd3p from subunits in the cytoplasm. Here, we more directly address the order of Nmd3p and Rpl10p recruitment to the subunit. We show that Nmd3p can bind subunits in the absence of Rpl10p. In addition, we examined the basis of the previously reported dominant negative growth phenotype caused by overexpression of C-terminally truncated Rpl10p and found that these Rpl10p fragments are not incorporated into subunits in the nucleus but instead sequester the WD-repeat protein Sqt1p. Sqt1p is an Rpl10p binding protein that is proposed to facilitate loading of Rpl10p into the 60S subunit. Although Sqt1p normally only transiently binds 60S subunits, the levels of Sqt1p that can be coimmunoprecipitated by the 60S-associated GTPase Lsg1p are significantly increased by a dominant mutation in the Walker A motif of Lsg1p. This mutant Lsg1 protein also leads to increased levels of Sqt1p in complexes that are coimmunoprecipitated with Nmd3p. Furthermore, the dominant LSG1 mutant also traps a mutant Rpl10 protein that does not normally bind stably to the subunit. These results support the idea that Sqt1p loads Rpl10p onto the Nmd3p-bound subunit after export to the cytoplasm and that Rpl10p loading involves the GTPase Lsg1p.
Collapse
Affiliation(s)
- Matthew West
- Section of Molecular Genetics and Microbiology, ESB 325, The University of Texas at Austin, Austin, TX 78712-1095, USA
| | | | | | | |
Collapse
|
23
|
Kastaniotis AJ, Autio KJ, Sormunen RT, Hiltunen JK. Htd2p/Yhr067p is a yeast 3-hydroxyacyl-ACP dehydratase essential for mitochondrial function and morphology. Mol Microbiol 2005; 53:1407-21. [PMID: 15387819 DOI: 10.1111/j.1365-2958.2004.04191.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Among the recently recognized aspects of mitochondrial functions, in yeast as well as humans, is their ability to synthesize fatty acids in a malonyl-CoA dependent manner. We describe here the identification of the 3-hydroxyacyl-ACP dehydratase involved in mitochondrial fatty acid synthesis. A colony-colour-sectoring screen was applied in Saccharomyces cerevisiae in a search for mutants that, when grown on a non-fermentable carbon source, were unable to lose a plasmid that carried a chimeric construct coding for mitochondrially localized bacterial analogue. Our mutants, which are respiratory deficient, lack cytochromes and display abnormal mitochondrial morphology, were found to have a lesion in the yeast YHR067w/RMD12 gene. The Yhr067p is predicted to be a member of the thioesterase/thioester dehydratase-isomerase superfamily enzymes. Hydratase 2 activity in mitochondrial extracts from cells overexpressing YHR067w was increased. These overexpressing cells also display a striking mitochondrial enlargement phenotype. We conclude that YHR067w encodes a novel mitochondrial 3-hydroxyacyl-thioester dehydratase 2 and suggest renaming it HTD2. The mitochondrial phenotypes of the null and overexpression mutants suggest a crucial role of YHR067w in maintenance of mitochondrial respiratory competence and morphology in yeast.
Collapse
|
24
|
Kouzminova EA, Rotman E, Macomber L, Zhang J, Kuzminov A. RecA-dependent mutants in Escherichia coli reveal strategies to avoid chromosomal fragmentation. Proc Natl Acad Sci U S A 2004; 101:16262-7. [PMID: 15531636 PMCID: PMC528955 DOI: 10.1073/pnas.0405943101] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RecA- and RecBC-catalyzed repair in eubacteria assembles chromosomes fragmented by double-strand breaks. We propose that recA mutants, being unable to repair fragmented chromosomes, depend on various strategies designed to avoid chromosomal fragmentation. To identify chromosomal fragmentation-avoidance strategies, we screened for Escherichia coli mutants synthetically inhibited in combination with recA inactivation by identifying clones unable to lose a plasmid carrying the recA(+) gene. Using this screen, we have isolated several RecA-dependent mutants and assigned them to three distinct areas of metabolism. The tdk and rdgB mutants affect synthesis of DNA precursors. The fur, ubiE, and ubiH mutants are likely to have increased levels of reactive oxygen species. The seqA, topA mutants and an insertion in smtA perturbing the downstream mukFEB genes affect nucleoid administration. All isolated mutants show varying degree of SOS induction, indicating elevated levels of chromosomal lesions. As predicted, mutants in rdgB, seqA, smtA, topA, and fur show increased levels of chromosomal fragmentation in recBC mutant conditions. Future characterization of these RecA-dependent mutants will define mechanisms of chromosomal fragmentation avoidance.
Collapse
Affiliation(s)
- Elena A Kouzminova
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801-3709, USA.
| | | | | | | | | |
Collapse
|
25
|
Johansson MJO, Byström AS. The Saccharomyces cerevisiae TAN1 gene is required for N4-acetylcytidine formation in tRNA. RNA (NEW YORK, N.Y.) 2004; 10:712-9. [PMID: 15037780 PMCID: PMC1370561 DOI: 10.1261/rna.5198204] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The biogenesis of transfer RNA is a process that requires many different factors. In this study, we describe a genetic screen aimed to identify gene products participating in this process. By screening for mutations lethal in combination with a sup61-T47:2C allele, coding for a mutant form of, the nonessential TAN1 gene was identified. We show that the TAN1 gene product is required for formation of the modified nucleoside N(4)-acetylcytidine (ac(4)C) in tRNA. In Saccharomyces cerevisiae, ac(4)C is present at position 12 in tRNAs specific for leucine and serine as well as in 18S ribosomal RNA. Analysis of RNA isolated from a tan1-null mutant revealed that ac(4)C was absent in tRNA, but not rRNA. Although no tRNA acetyltransferase activity by a GST-Tan1 fusion protein was detected, a gel-shift assay revealed that Tan1p binds tRNA, suggesting a direct role in synthesis of ac(4)C(12). The absence of the TAN1 gene in the sup61-T47:2C mutant caused a decreased level of mature, indicating that ac(4)C(12) and/or Tan1p is important for tRNA stability.
Collapse
|
26
|
Vincent K, Wang Q, Jay S, Hobbs K, Rymond BC. Genetic interactions with CLF1 identify additional pre-mRNA splicing factors and a link between activators of yeast vesicular transport and splicing. Genetics 2003; 164:895-907. [PMID: 12871902 PMCID: PMC1462608 DOI: 10.1093/genetics/164.3.895] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Clf1 is a conserved spliceosome assembly factor composed predominately of TPR repeats. Here we show that the TPR elements are not functionally equivalent, with the amino terminus of Clf1 being especially sensitive to change. Deletion and add-back experiments reveal that the splicing defect associated with TPR removal results from the loss of TPR-specific sequence information. Twelve mutants were found that show synthetic growth defects when combined with an allele that lacks TPR2 (i.e., clf1Delta2). The identified genes encode the Mud2, Ntc20, Prp16, Prp17, Prp19, Prp22, and Syf2 splicing factors and four proteins without established contribution to splicing (Bud13, Cet1, Cwc2, and Rds3). Each synthetic lethal with clf1Delta2 (slc) mutant is splicing defective in a wild-type CLF1 background. In addition to the splicing factors, SSD1, BTS1, and BET4 were identified as dosage suppressors of clf1Delta2 or selected slc mutants. These results support Clf1 function through multiple stages of the spliceosome cycle, identify additional genes that promote cellular mRNA maturation, and reveal a link between Rab/Ras GTPase activation and the process of pre-mRNA splicing.
Collapse
Affiliation(s)
- Kevin Vincent
- Department of Biology, University of Kentucky, Lexington, Kentucky 40506-0225, USA
| | | | | | | | | |
Collapse
|
27
|
Tomishige N, Noda Y, Adachi H, Shimoi H, Takatsuki A, Yoda K. Mutations that are synthetically lethal with a gas1Delta allele cause defects in the cell wall of Saccharomyces cerevisiae. Mol Genet Genomics 2003; 269:562-73. [PMID: 12827498 DOI: 10.1007/s00438-003-0864-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2002] [Accepted: 05/02/2003] [Indexed: 10/26/2022]
Abstract
The GAS1-related genes of fungi encode GPI-anchored proteins with beta-1,3-glucanosyltransferase activity. Loss of this activity results in defects in the assembly of the cell wall. We isolated mutants that show a synthetic defect when combined with a gas1Delta allele in Saccharomyces cerevisiae, and identified nine wild-type genes that rescue this defect. The indispensability of BIG1 and KRE6 for the viability of gas1Delta cells confirmed the important role of beta-1,6-glucan in cells that are defective in the processing of beta-1,3-glucan. The identification of the Wsc1p hypo-osmotic stress sensor and components of the PKC signal transduction pathway in our screen also confirmed that the cell wall integrity response attenuates the otherwise lethal gas1Delta defect. Unexpectedly, we found that the KEX2 gene is also required for the viability of the gas1Delta mutant. Kex2p is a Golgi/endosome-membrane-anchored protease that processes secretory preproteins. A cell wall defect was also found in the kex2Delta mutant, which was suppressible by multiple copies of the MKC7 or YAP3 gene, both of which encode other GPI-anchored proteases. Therefore, normal cell wall assembly requires proteolytic processing of secretory preproteins. Furthermore, the genes CSG2 and IPT1 were found to be required for normal growth of gas1Delta cells in the presence of 1 M sorbitol. This finding suggests that complex sphingolipids play a role in the hyper-osmotic response.
Collapse
Affiliation(s)
- N Tomishige
- Department of Biotechnology, University of Tokyo, Bunkyo-ku, 113-8657 Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Cohen M, Stutz F, Belgareh N, Haguenauer-Tsapis R, Dargemont C. Ubp3 requires a cofactor, Bre5, to specifically de-ubiquitinate the COPII protein, Sec23. Nat Cell Biol 2003; 5:661-7. [PMID: 12778054 DOI: 10.1038/ncb1003] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2003] [Accepted: 05/15/2003] [Indexed: 11/08/2022]
Abstract
Ubiquitination is important for a broad array of cellular functions. Although reversal of this process, de-ubiquitination, most probably represents an important regulatory step contributing to cellular homeostasis, the specificity and properties of de-ubiquitination enzymes remain poorly understood. Here, we show that the Saccharomyces cerevisiae ubiquitin protease Ubp3 requires an additional protein, Bre5, to form an active de-ubiquitination complex that cleaves ubiquitin from specific substrates. In particular, this complex rescues Sec23p, a COPII subunit essential for the transport between the endoplasmic reticulum and the Golgi apparatus, from degradation by the proteasome. This probably contributes to maintaining and adapting a Sec23 expression level that is compatible with an efficient secretion pathway, and consequently with cell growth and viability.
Collapse
Affiliation(s)
- Mickaël Cohen
- Nucleocytoplasmic transport group, Institut Jacques Monod., Unité Mixte de Recherche 7592, CNRS, Universités Paris VI and VII, 2 Place Jussieu. Tour 43. 75251, Paris, Cedex 05, France
| | | | | | | | | |
Collapse
|
29
|
Lu YM, Lin YR, Tsai A, Hsao YS, Li CC, Cheng MY. Dissecting the pet18 mutation in Saccharomyces cerevisiae: HTL1 encodes a 7-kDa polypeptide that interacts with components of the RSC complex. Mol Genet Genomics 2003; 269:321-30. [PMID: 12684875 DOI: 10.1007/s00438-003-0835-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2002] [Accepted: 02/28/2003] [Indexed: 11/28/2022]
Abstract
The yeast pet18 mutant exhibits three distinct phenotypes: temperature-sensitive lethality, failure to maintain a dsRNA virus, and respiration deficiency. We have isolated a yeast mutant, H53, with phenotypes identical to those of pet18. Based on PCR and Southern hybridization analysis, H53 was found to result from a large chromosomal deletion extending from YCR019w to YCR028c on chromosome III. Genetic analysis was carried out on H53 to correlate individual loci with each of the observed phenotypes. Disruption of YCR020c-a/MAK31 brought about a loss of dsRNA without affecting the temperature sensitive phenotype. The loss of YCR020w-b/HTL1, which encodes a hypothetical protein of 78 amino acids in length, was shown to be responsible for the temperature-sensitive lethality of the H53 mutant. Using immunoblotting, we demonstrated that a 7-kDa protein was indeed expressed in wild-type yeast, but not in a HTL1 deletion mutant. Moreover, the significance of HTL1 was investigated by isolating genes that are functionally associated with HTL1. We demonstrated that Rsc8p interacts physically with Htl1p, and that the genes RSC3, STH1 and RSC30 interact with HTL1. Thus, HTL1 may play a role in the function of the RSC complex.
Collapse
Affiliation(s)
- Y-M Lu
- Institute of Genetics, School of Life Sciences, National Yang-Ming University, 155 Li-nung St. Sec2, 112, Taipei, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Bacterial RecA protein is required for repair of two-strand DNA lesions that disable whole chromosomes. recA mutants are viable, suggesting a considerable cellular capacity to avoid these chromosome-disabling lesions. recA-dependent mutants reveal chromosomal lesion avoidance pathways. Here we characterize one such mutant, rdgB/yggV, deficient in a putative inosine/xanthosine triphosphatase, conserved throughout kingdoms of life. The rdgB recA lethality is suppressed by inactivation of endonuclease V (gpnfi) specific for DNA-hypoxanthines/xanthines, suggesting that RdgB either intercepts improper DNA precursors dITP/dXTP or works downstream of EndoV in excision repair of incorporated hypoxathines/xanthines. We find that DNA isolated from rdgB mutants contains EndoV-recognizable modifications, whereas DNA from nfi mutants does not, substantiating the dITP/dXTP interception by RdgB. rdgB recBC cells are inviable, whereas rdgB recF cells are healthy, suggesting that chromosomes in rdgB mutants suffer double-strand breaks. Chromosomal fragmentation is indeed observed in rdgB recBC mutants and is suppressed in rdgB recBC nfi mutants. Thus, one way to avoid chromosomal lesions is to prevent hypoxanthine/xanthine incorporation into DNA via interception of dITP/dXTP.
Collapse
Affiliation(s)
- Jill S Bradshaw
- Department of Microbiology, University of Illinois at Urbana-Champaign, B103 C&LSL, 601 South Goodwin Ave., 61801-3709, USA
| | | |
Collapse
|
31
|
Kallstrom G, Hedges J, Johnson A. The putative GTPases Nog1p and Lsg1p are required for 60S ribosomal subunit biogenesis and are localized to the nucleus and cytoplasm, respectively. Mol Cell Biol 2003; 23:4344-55. [PMID: 12773575 PMCID: PMC156149 DOI: 10.1128/mcb.23.12.4344-4355.2003] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2002] [Revised: 02/03/2003] [Accepted: 03/21/2003] [Indexed: 11/20/2022] Open
Abstract
We characterized two essential putative GTPases, Nog1p and Lsg1p, that are found associated with free 60S ribosomal subunits affinity purified with the nuclear export adapter Nmd3p. Nog1p and Lsg1p are nucleolar and cytoplasmic, respectively, and are not simultaneously on the same particle, reflecting the path of Nmd3p shuttling in and out of the nucleus. Conditional mutants of both NOG1 and LSG1 are defective in 60S subunit biogenesis and display diminished levels of 60S subunits at restrictive temperature. Mutants of both genes also accumulate the 60S ribosomal reporter Rpl25-eGFP in the nucleolus, suggesting that both proteins are needed for subunit export from the nucleolus. Since Lsg1p is cytoplasmic, its role in nuclear export is likely to be indirect. We suggest that Lsg1p is needed to recycle an export factor(s) that shuttles from the nucleus associated with the nascent 60S subunit.
Collapse
Affiliation(s)
- George Kallstrom
- Section of Molecular Genetics and Microbiology and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | | | | |
Collapse
|
32
|
Koren A, Ben-Aroya S, Steinlauf R, Kupiec M. Pitfalls of the synthetic lethality screen in Saccharomyces cerevisiae: an improved design. Curr Genet 2003; 43:62-9. [PMID: 12684846 DOI: 10.1007/s00294-003-0373-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2002] [Revised: 12/19/2002] [Accepted: 12/19/2002] [Indexed: 10/25/2022]
Abstract
The colony color assay in yeast enables the visual identification of plasmid-loss events. In combination with a plasmid-dependence assay, it is commonly used to identify synthetic interactions between functionally related genes. Frequently, the plasmid carries the ADE3 gene and mutants are recognized as red colonies that fail to produce sectors. In these assays, a high percentage of false-positives is obtained, most of which result from synthetic lethality with the ade3 mutation. Here, we study the nature of these mutants. We report that mutations in the HIP1 and SHM1 genes exhibit synthetic lethality with ade3 deletions. A similar interaction is found between the fur1 and ura3 mutations. Lethality in the absence of the mitochondrial Shm1 and the cytoplasmic Ade3 enzymes indicates that, under certain circumstances, these cellular compartments cooperate in carrying out essential metabolic processes. In addition, we report the identification of a truncated ADE3 allele with a unique coloration phenotype and show that it can be used to improve synthetic lethal screens.
Collapse
Affiliation(s)
- Amnon Koren
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, 69978 Ramat Aviv, Israel
| | | | | | | |
Collapse
|
33
|
Goehring AS, Mitchell DA, Tong AHY, Keniry ME, Boone C, Sprague GF. Synthetic lethal analysis implicates Ste20p, a p21-activated potein kinase, in polarisome activation. Mol Biol Cell 2003; 14:1501-16. [PMID: 12686605 PMCID: PMC153118 DOI: 10.1091/mbc.e02-06-0348] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The p21-activated kinases Ste20p and Cla4p carry out undefined functions that are essential for viability during budding in Saccharomyces cerevisiae. To gain insight into the roles of Ste20p, we have used a synthetic lethal mutant screen to identify additional genes that are required in the absence of Cla4p. Altogether, we identified 65 genes, including genes with roles in cell polarity, mitosis, and cell wall maintenance. Herein, we focus on a set that defines a function carried out by Bni1p and several of its interacting proteins. We found that Bni1p and a group of proteins that complex with Bni1p (Bud6p, Spa2p, and Pea2p) are essential in a cla4delta mutant background. Bni1p, Bud6p, Spa2, and Pea2p are members of a group of polarity determining proteins referred to as the polarisome. Loss of polarisome proteins from a cla4delta strain causes cells to form elongated buds that have mislocalized septin rings. In contrast, other proteins that interact with or functionally associate with Bni1p and have roles in nuclear migration and cytokinesis, including Num1p and Hof1p, are not essential in the absence of Cla4p. Finally, we have found that Bni1p is phosphorylated in vivo, and a substantial portion of this phosphorylation is dependent on STE20. Together, these results suggest that one function of Ste20p may be to activate the polarisome complex by phosphorylation of Bni1p.
Collapse
Affiliation(s)
- April S Goehring
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229, USA
| | | | | | | | | | | |
Collapse
|
34
|
Sydorskyy Y, Dilworth DJ, Yi EC, Goodlett DR, Wozniak RW, Aitchison JD. Intersection of the Kap123p-mediated nuclear import and ribosome export pathways. Mol Cell Biol 2003; 23:2042-54. [PMID: 12612077 PMCID: PMC149464 DOI: 10.1128/mcb.23.6.2042-2054.2003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2002] [Revised: 08/28/2002] [Accepted: 12/13/2002] [Indexed: 11/20/2022] Open
Abstract
Kap123p is a yeast beta-karyopherin that imports ribosomal proteins into the nucleus prior to their assembly into preribosomal particles. Surprisingly, Kap123p is not essential for growth, under normal conditions. To further explore the role of Kap123p in nucleocytoplasmic transport and ribosome biogenesis, we performed a synthetic fitness screen designed to identify genes that interact with KAP123. Through this analysis we have identified three other karyopherins, Pse1p/Kap121p, Sxm1p/Kap108p, and Nmd5p/Kap119p. We propose that, in the absence of Kap123p, these karyopherins are able to supplant Kap123p's role in import. In addition to the karyopherins, we identified Rai1p, a protein previously implicated in rRNA processing. Rai1p is also not essential, but deletion of the RAI1 gene is deleterious to cell growth and causes defects in rRNA processing, which leads to an imbalance of the 60S/40S ratio and the accumulation of halfmers, 40S subunits assembled on polysomes that are unable to form functional ribosomes. Rai1p localizes predominantly to the nucleus, where it physically interacts with Rat1p and pre-60S ribosomal subunits. Analysis of the rai1/kap123 double mutant strain suggests that the observed genetic interaction results from an inability to efficiently export pre-60S subunits from the nucleus, which arises from a combination of compromised Kap123p-mediated nuclear import of the essential 60S ribosomal subunit export factor, Nmd3p, and a DeltaRAI1-induced decrease in the overall biogenesis efficiency.
Collapse
Affiliation(s)
- Y Sydorskyy
- Institute for Systems Biology, 1441 N 34th Street, Seattle, Washington 98105, USA
| | | | | | | | | | | |
Collapse
|
35
|
Kobayashi A, Miyake T, Kawaichi M, Kokubo T. Mutations in the histone fold domain of the TAF12 gene show synthetic lethality with the TAF1 gene lacking the TAF N-terminal domain (TAND) by different mechanisms from those in the SPT15 gene encoding the TATA box-binding protein (TBP). Nucleic Acids Res 2003; 31:1261-74. [PMID: 12582246 PMCID: PMC150217 DOI: 10.1093/nar/gkg180] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The general transcription factor TFIID, composed of the TATA box-binding protein (TBP) and 14 TBP-associated factors (TAFs), is important for both basal and regulated transcription by RNA polymerase II. Although it is well known that the TAF N-terminal domain (TAND) at the amino-terminus of the TAF1 protein binds to TBP and thereby inhibits TBP function in vitro, the physiological role of this domain remains obscure. In our previous study, we screened for mutations that cause lethality when co-expressed with the TAF1 gene lacking TAND (taf1-DeltaTAND) and identified two DeltaTAND synthetic lethal (nsl) mutations as those in the SPT15 gene encoding TBP. In this study we isolated another nsl mutation in the same screen and identified it to be a mutation in the histone fold domain (HFD) of the TAF12 gene. Several other HFD mutations of this gene also exhibit nsl phenotypes, and all of them are more or less impaired in transcriptional activation in vivo. Interestingly, a set of genes affected in the taf1-DeltaTAND mutant is similarly affected in the taf12 HFD mutants but not in the nsl mutants of TBP. Therefore, we discovered that the nsl mutations of these two genes cause lethality in the taf1-DeltaTAND mutant by different mechanisms.
Collapse
Affiliation(s)
- Akiko Kobayashi
- Division of Gene Function in Animals, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | | | | | | |
Collapse
|
36
|
Birner R, Nebauer R, Schneiter R, Daum G. Synthetic lethal interaction of the mitochondrial phosphatidylethanolamine biosynthetic machinery with the prohibitin complex of Saccharomyces cerevisiae. Mol Biol Cell 2003; 14:370-83. [PMID: 12589040 PMCID: PMC149978 DOI: 10.1091/mbc.e02-05-0263] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The majority of mitochondrial phosphatidylethanolamine (PtdEtn), a phospholipid essential for aerobic growth of yeast cells, is synthesized by phosphatidylserine decarboxylase 1 (Psd1p) in the inner mitochondrial membrane (IMM). To identify components that become essential when the level of mitochondrial PtdEtn is decreased, we screened for mutants that are synthetically lethal with a temperature-sensitive (ts) allele of PSD1. This screen unveiled mutations in PHB1 and PHB2 encoding the two subunits of the prohibitin complex, which is located to the IMM and required for the stability of mitochondrially encoded proteins. Deletion of PHB1 and PHB2 resulted in an increase of mitochondrial PtdEtn at 30 degrees C. On glucose media, phb1Delta psd1Delta and phb2Delta psd1Delta double mutants were rescued only for a limited number of generations by exogenous ethanolamine, indicating that a decrease of the PtdEtn level is detrimental for prohibitin mutants. Similar to phb mutants, deletion of PSD1 destabilizes polypeptides encoded by the mitochondrial genome. In a phb1Delta phb2Delta psd1(ts) strain the destabilizing effect is dramatically enhanced. In addition, the mitochondrial genome is lost in this triple mutant, and nuclear-encoded proteins of the IMM are assembled at a very low rate. At the nonpermissive temperature mitochondria of phb1Delta phb2Delta psd1(ts) were fragmented and aggregated. In conclusion, destabilizing effects triggered by low levels of mitochondrial PtdEtn seem to account for synthetic lethality of psd1Delta with phb mutants.
Collapse
Affiliation(s)
- Ruth Birner
- Institut für Biochemie, Technische Universität Graz, Austria
| | | | | | | |
Collapse
|
37
|
Eisenkolb M, Zenzmaier C, Leitner E, Schneiter R. A specific structural requirement for ergosterol in long-chain fatty acid synthesis mutants important for maintaining raft domains in yeast. Mol Biol Cell 2002; 13:4414-28. [PMID: 12475962 PMCID: PMC138643 DOI: 10.1091/mbc.e02-02-0116] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Fungal sphingolipids contain ceramide with a very-long-chain fatty acid (C26). To investigate the physiological significance of the C26-substitution on this lipid, we performed a screen for mutants that are synthetically lethal with ELO3. Elo3p is a component of the ER-associated fatty acid elongase and is required for the final elongation cycle to produce C26 from C22/C24 fatty acids. elo3delta mutant cells thus contain C22/C24- instead of the natural C26-substituted ceramide. We now report that under these conditions, an otherwise nonessential, but also fungal-specific, structural modification of the major sterol of yeast, ergosterol, becomes essential, because mutations in ELO3 are synthetically lethal with mutations in ERG6. Erg6p catalyzes the methylation of carbon atom 24 in the aliphatic side chain of sterol. The lethality of an elo3delta erg6delta double mutant is rescued by supplementation with ergosterol but not with cholesterol, indicating a vital structural requirement for the ergosterol-specific methyl group. To characterize this structural requirement in more detail, we generated a strain that is temperature sensitive for the function of Erg6p in an elo3delta mutant background. Examination of raft association of the GPI-anchored Gas1p and plasma membrane ATPase, Pma1p, in the conditional elo3delta erg6(ts) double mutant, revealed a specific defect of the mutant to maintain raft association of preexisting Pma1p. Interestingly, in an elo3delta mutant at 37 degrees C, newly synthesized Pma1p failed to enter raft domains early in the biosynthetic pathway, and upon arrival at the plasma membrane was rerouted to the vacuole for degradation. These observations indicate that the C26 fatty acid substitution on lipids is important for establishing raft association of Pma1p and stabilizing the protein at the cell surface. Analysis of raft lipids in the conditional mutant strain revealed a selective enrichment of ergosterol in detergent-resistant membrane domains, indicating that specific structural determinants on both sterols and sphingolipids are required for their association into raft domains.
Collapse
Affiliation(s)
- Marlis Eisenkolb
- Institute of Biochemistry, Graz University of Technology, A-8010 Graz, Austria
| | | | | | | |
Collapse
|
38
|
Nigavekar SS, Tan YSH, Cannon JF. Glc8 is a glucose-repressible activator of Glc7 protein phosphatase-1. Arch Biochem Biophys 2002; 404:71-9. [PMID: 12127071 DOI: 10.1016/s0003-9861(02)00231-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regulation of Glc7 type 1 protein phosphatase stability and activity was studied in budding yeast. We found that the Glc7 protein has a half-life of over 180min, which is sufficient for several generations. Glc7 protein stability was constant during the cell cycle and in batch culture growth. Furthermore, deletion of regulatory subunit Gac1, Reg1, Reg2, Sds22, or Glc8 had no influence on Glc7 protein half-life. The activity of Glc7 assayed as okadaic acid-resistant phosphorylase phosphatase activity was constant during the cell cycle. Deletion of the aforementioned regulatory subunits revealed that only Glc8 deletion had a significant effect in reducing Glc7 activity. Glc7 activity was induced during stationary phase in a Glc8-dependent manner. In addition, extracellular glucose repressed the induction of Glc7 activity. These results are consistent with glucose repression of Glc8 expression and favor the role of Glc8 as a major Glc7 activator.
Collapse
Affiliation(s)
- Shraddha S Nigavekar
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia 65212, USA
| | | | | |
Collapse
|
39
|
Euskirchen GM. Nnf1p, Dsn1p, Mtw1p, and Nsl1p: a new group of proteins important for chromosome segregation in Saccharomyces cerevisiae. EUKARYOTIC CELL 2002; 1:229-40. [PMID: 12455957 PMCID: PMC118027 DOI: 10.1128/ec.1.2.229-240.2002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previously, antibodies were raised against a nuclear envelope-enriched fraction of yeast, and the essential gene NNF1 was cloned by reverse genetics. Here it is shown that the conditional nnf1-17 mutant has decreased stability of a minichromosome in addition to mitotic spindle defects. I have identified the novel essential genes DSN1, DSN3, and NSL1 through genetic interactions with nnf1-17. Dsn3p was found to be equivalent to the kinetochore protein Mtw1p. By indirect immunofluorescence, all four proteins, Nnf1p, Mtw1p, Dsn1p, and Nsl1p, colocalize and are found in the region of the spindle poles. Based on the colocalization of these four proteins, the minichromosome instability and the spindle defects seen in nnf1 mutants, I propose that Nnf1p is part of a new group of proteins necessary for chromosome segregation.
Collapse
Affiliation(s)
- Ghia M Euskirchen
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA.
| |
Collapse
|
40
|
Johansson MJO, Byström AS. Dual function of the tRNA(m(5)U54)methyltransferase in tRNA maturation. RNA (NEW YORK, N.Y.) 2002; 8:324-35. [PMID: 12003492 PMCID: PMC1370254 DOI: 10.1017/s1355838202027851] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A 5-methyluridine (m(5)U) residue at position 54 is a conserved feature of bacterial and eukaryotic tRNAs. The methylation of U54 is catalyzed by the tRNA(m5U54)methyltransferase, which in Saccharomyces cerevisiae is encoded by the nonessential TRM2 gene. In this study, we identified four different strains with mutant forms of tRNA(Ser)CGA. The absence of the TRM2 gene in these strains decreased the stability of tRNA(Ser)CGA and induced lethality. Two alleles of TRM2 encoding catalytically inactive tRNA(m5U54)methyltransferases were able to stabilize tRNA(Ser)CGA in one of the mutants, revealing a role for the Trm2 protein per se in tRNA maturation. Other tRNA modification enzymes interacting with tRNA(Ser)CGA in the maturation process, such as Pus4p, Trm1 p, and Trm3p were essential or important for growth of the tRNA(Ser)CGA mutants. Moreover, Lhp1p, a protein binding RNA polymerase III transcripts, was required to stabilize the mutant tRNAs. Based on our results, we suggest that tRNA modification enzymes might have a role in tRNA maturation not necessarily linked to their known catalytic activity.
Collapse
|
41
|
Nigavekar SS, Cannon JF. Characterization of genes that are synthetically lethal with ade3 or leu2 in Saccharomyces cerevisiae. Yeast 2002; 19:115-22. [PMID: 11788966 DOI: 10.1002/yea.807] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Combinations of two non-lethal mutations that result in cell death are synthetically lethal. Such a genetic relationship suggests a functional interaction between the corresponding gene products. Frequently, an ade2 ade3 colony-sectoring assay is used to screen for synthetic lethal mutants. In these screens, mutants are sought that fail to lose a plasmid that bears a gene of interest. However, a subset of mutants is often found that is dependent on plasmid components other than the target gene. To understand the mechanism of this dependence, we characterized those mutants that, although prevalent in most mutant hunts, are usually discarded. Using a LEU2-ADE3 plasmid, plasmid-dependent mutations were found in the SHM2, PTR3, BAP2 and SSY1 genes. Double shm2 ade3 mutants are non-viable because the two pathways for tetrahydrofolate synthesis are blocked. Mutations in PTR3, BAP2 and SSY1 disrupt sensing and transport of extracellular leucine. Therefore, ptr3, bap2 or ssy1 mutants must be leucine prototrophs to grow on rich media. In light of these findings, we propose modifications that should improve the efficiency of synthetic lethal screening procedures.
Collapse
Affiliation(s)
- Shraddha S Nigavekar
- Department of Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, MO 65212, USA
| | | |
Collapse
|
42
|
Grosshans H, Lecointe F, Grosjean H, Hurt E, Simos G. Pus1p-dependent tRNA pseudouridinylation becomes essential when tRNA biogenesis is compromised in yeast. J Biol Chem 2001; 276:46333-9. [PMID: 11571299 DOI: 10.1074/jbc.m107141200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yeast Pus1p catalyzes the formation of pseudouridine (psi) at specific sites of several tRNAs, but its function is not essential for cell viability. We show here that Pus1p becomes essential when another tRNA:pseudouridine synthase, Pus4p, or the essential minor tRNA for glutamine are mutated. Strikingly, this mutant tRNA, which carries a mismatch in the T psi C arm, displays a nuclear export defect. Furthermore, nuclear export of at least one wild-type tRNA species becomes defective in the absence of Pus1p. Our data, thus, show that the modifications formed by Pus1p are essential when other aspects of tRNA biogenesis or function are compromised and suggest that impairment of nuclear tRNA export in the absence of Pus1p might contribute to this phenotype.
Collapse
Affiliation(s)
- H Grosshans
- Biochemie-Zentrum Heidelberg, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
43
|
Giorgi C, Fatica A, Nagel R, Bozzoni I. Release of U18 snoRNA from its host intron requires interaction of Nop1p with the Rnt1p endonuclease. EMBO J 2001; 20:6856-65. [PMID: 11726521 PMCID: PMC125767 DOI: 10.1093/emboj/20.23.6856] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
An external stem, essential for the release of small nucleolar RNAs (snoRNAs) from their pre-mRNAs, flanks the majority of yeast intron-encoded snoRNAs. Even if this stem is not a canonical Rnt1p substrate, several experiments have indicated that the Rnt1p endonuclease is required for snoRNA processing. To identify the factors necessary for processing of intron-encoded snoRNAs, we have raised in vitro extracts able to reproduce such activity. We found that snoRNP factors are associated with the snoRNA- coding region throughout all the processing steps, and that mutants unable to assemble snoRNPs have a processing-deficient phenotype. Specific depletion of Nop1p completely prevents U18 snoRNA synthesis, but does not affect processing of a dicistronic snoRNA-coding unit that has a canonical Rnt1p site. Correct cleavage of intron-encoded U18 and snR38 snoRNAs can be reproduced in vitro by incubating together purified Nop1p and Rnt1p. Pull-down experiments showed that the two proteins interact physically. These data indicate that cleavage of U18, snR38 and possibly other intron-encoded snoRNAs is a regulated process, since the stem is cleaved by the Rnt1p endonuclease only when snoRNP assembly has occurred.
Collapse
Affiliation(s)
| | - Alessandro Fatica
- Institute Pasteur Fondazione Cenci-Bolognetti, Department of Genetics and Molecular Biology, University ‘La Sapienza’, P. le A. Moro 5, 00185 Rome, Italy and
Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064, USA Present address: Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh, UK Corresponding author e-mail:
| | - Roland Nagel
- Institute Pasteur Fondazione Cenci-Bolognetti, Department of Genetics and Molecular Biology, University ‘La Sapienza’, P. le A. Moro 5, 00185 Rome, Italy and
Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064, USA Present address: Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh, UK Corresponding author e-mail:
| | - Irene Bozzoni
- Institute Pasteur Fondazione Cenci-Bolognetti, Department of Genetics and Molecular Biology, University ‘La Sapienza’, P. le A. Moro 5, 00185 Rome, Italy and
Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064, USA Present address: Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh, UK Corresponding author e-mail:
| |
Collapse
|
44
|
Dagher SF, Fu XD. Evidence for a role of Sky1p-mediated phosphorylation in 3' splice site recognition involving both Prp8 and Prp17/Slu4. RNA (NEW YORK, N.Y.) 2001; 7:1284-97. [PMID: 11565750 PMCID: PMC1370172 DOI: 10.1017/s1355838201016077] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The SRPK family of kinases is specific for RS domain-containing splicing factors and known to play a critical role in protein-protein interaction and intracellular distribution of their substrates in both yeast and mammalian cells. However, the function of these kinases in pre-mRNA splicing remains unclear. Here we report that SKY1, a SRPK family member in Saccharomyces cerevisiae, genetically interacts with PRP8 and PRP17/SLU4, both of which are involved in splice site selection during pre-mRNA splicing. Prp8 is essential for splicing and is known to interact with both 5' and 3' splice sites in the spliceosomal catalytic center, whereas Prp17/Slu4 is nonessential and is required only for efficient recognition of the 3' splice site. Interestingly, deletion of SKY1 was synthetically lethal with all prp17 mutants tested, but only with specific prp8 alleles in a domain implicated in governing fidelity of 3'AG recognition. Indeed, deletion of SKY1 specifically suppressed 3'AG mutations in ACT1-CUP1 splicing reporters. These results suggest for the first time that 3' AG recognition may be subject to phosphorylation regulation by Sky1p during pre-mRNA splicing.
Collapse
Affiliation(s)
- S F Dagher
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla 92093-0651, USA
| | | |
Collapse
|
45
|
Vanrobays E, Gleizes PE, Bousquet-Antonelli C, Noaillac-Depeyre J, Caizergues-Ferrer M, Gélugne JP. Processing of 20S pre-rRNA to 18S ribosomal RNA in yeast requires Rrp10p, an essential non-ribosomal cytoplasmic protein. EMBO J 2001; 20:4204-13. [PMID: 11483523 PMCID: PMC149176 DOI: 10.1093/emboj/20.15.4204] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Numerous non-ribosomal trans-acting factors involved in pre-ribosomal RNA processing have been characterized, but none of them is specifically required for the last cytoplasmic steps of 18S rRNA maturation. Here we demonstrate that Rio1p/Rrp10p is such a factor. Previous studies showed that the RIO1 gene is essential for cell viability and conserved from archaebacteria to man. We isolated a RIO1 mutant in a screen for mutations synthetically lethal with a mutant allele of GAR1, an essential gene required for 18S rRNA production and rRNA pseudouridylation. We show that RIO1 encodes a cytoplasmic non-ribosomal protein, and that depletion of Rio1p blocks 18S rRNA production leading to 20S pre-rRNA accumulation. In situ hybridization reveals that, in Rio1p depleted cells, 20S pre-rRNA localizes in the cytoplasm, demonstrating that its accumulation is not due to an export defect. This strongly suggests that Rio1p is involved in the cytoplasmic cleavage of 20S pre-rRNA at site D, producing mature 18S rRNA. Thus, Rio1p has been renamed Rrp10p (ribosomal RNA processing #10). Rio1p/Rrp10p is the first non-ribosomal factor characterized specifically required for 20S pre-rRNA processing.
Collapse
Affiliation(s)
| | | | - Cécile Bousquet-Antonelli
- LBME du CNRS, 118 route de Narbonne, 31062 Toulouse cedex 04, France
Present address: Institute of Cell and Molecular Biology, University of Edinburgh, King’s Buildings, Edinburgh EH9 3JR, UK Corresponding author e-mail:
| | | | | | - Jean-Paul Gélugne
- LBME du CNRS, 118 route de Narbonne, 31062 Toulouse cedex 04, France
Present address: Institute of Cell and Molecular Biology, University of Edinburgh, King’s Buildings, Edinburgh EH9 3JR, UK Corresponding author e-mail:
| |
Collapse
|
46
|
Meier B, Driller L, Jaklin S, Feldmann HM. New function of CDC13 in positive telomere length regulation. Mol Cell Biol 2001; 21:4233-45. [PMID: 11390652 PMCID: PMC87084 DOI: 10.1128/mcb.21.13.4233-4245.2001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Two roles for the Saccharomyces cerevisiae Cdc13 protein at the telomere have previously been characterized: it recruits telomerase to the telomere and protects chromosome ends from degradation. In a synthetic lethality screen with YKU70, the 70-kDa subunit of the telomere-associated Yku heterodimer, we identified a new mutation in CDC13, cdc13-4, that points toward an additional regulatory function of CDC13. Although CDC13 is an essential telomerase component in vivo, no replicative senescence can be observed in cdc13-4 cells. Telomeres of cdc13-4 mutants shorten for about 150 generations until they reach a stable level. Thus, in cdc13-4 mutants, telomerase seems to be inhibited at normal telomere length but fully active at short telomeres. Furthermore, chromosome end structure remains protected in cdc13-4 mutants. Progressive telomere shortening to a steady-state level has also been described for mutants of the positive telomere length regulator TEL1. Strikingly, cdc13-4/tel1Delta double mutants display shorter telomeres than either single mutant after 125 generations and a significant amplification of Y' elements after 225 generations. Therefore CDC13, TEL1, and the Yku heterodimer seem to represent distinct pathways in telomere length maintenance. Whereas several CDC13 mutants have been reported to display elongated telomeres indicating that Cdc13p functions in negative telomere length control, we report a new mutation leading to shortened and eventually stable telomeres. Therefore we discuss a key role of CDC13 not only in telomerase recruitment but also in regulating telomerase access, which might be modulated by protein-protein interactions acting as inhibitors or activators of telomerase activity.
Collapse
Affiliation(s)
- B Meier
- Institute for Biochemistry, University of Munich (LMU), D-81377 Munich, Germany
| | | | | | | |
Collapse
|
47
|
Kobayashi A, Miyake T, Ohyama Y, Kawaichi M, Kokubo T. Mutations in the TATA-binding protein, affecting transcriptional activation, show synthetic lethality with the TAF145 gene lacking the TAF N-terminal domain in Saccharomyces cerevisiae. J Biol Chem 2001; 276:395-405. [PMID: 11035037 DOI: 10.1074/jbc.m008208200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The general transcription factor TFIID, which is composed of the TATA box-binding protein (TBP) and a set of TBP-associated factors (TAFs), is crucial for both basal and regulated transcription by RNA polymerase II. The N-terminal small segment of yeast TAF145 (yTAF145) binds to TBP and thereby inhibits TBP function. To understand the physiological role of this inhibitory domain, which is designated as TAND (TAF N-terminal domain), we screened mutations, synthetically lethal with the TAF145 gene lacking TAND (taf145 Delta TAND), in Saccharomyces cerevisiae by exploiting a red/white colony-sectoring assay. Our screen yielded several recessive nsl (Delta TAND synthetic lethal) mutations, two of which, nsl1-1 and nsl1-2, define the same complementation group. The NSL1 gene was found to be identical to the SPT15 gene encoding TBP. Interestingly, both temperature-sensitive nsl1/spt15 alleles, which harbor the single amino acid substitutions, S118L and P65S, respectively, were defective in transcriptional activation in vivo. Several other previously characterized activation-deficient spt15 alleles also displayed synthetic lethal interactions with taf145 Delta TAND, indicating that TAND and TBP carry an overlapping but as yet unidentified function that is specifically required for transcriptional regulation.
Collapse
Affiliation(s)
- A Kobayashi
- Division of Gene Function in Animals, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | | | | | | | | |
Collapse
|
48
|
Mitchell DA, Sprague GF. The phosphotyrosyl phosphatase activator, Ncs1p (Rrd1p), functions with Cla4p to regulate the G(2)/M transition in Saccharomyces cerevisiae. Mol Cell Biol 2001; 21:488-500. [PMID: 11134337 PMCID: PMC86606 DOI: 10.1128/mcb.21.2.488-500.2001] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Saccharomyces cerevisiae p21-activated kinases, Ste20p and Cla4p, have individual functions but appear to share an essential function(s) as well because a strain lacking both kinases is inviable. To learn more about the shared function, we sought new mutations that were lethal in the absence of CLA4. This approach led to the identification of at least 10 complementation groups designated NCS (need CLA4 to survive). As for ste20 cla4-75 mutants, most ncs cla4-75 double mutants were defective for septin localization during budding. One group, NCS1/RRD1 (YIL153w), did not confer this defect, however, and we investigated its function further. ncs1Delta cla4Delta cells arrested with elongated buds and short mitotic spindles. The morphological defects and lethality were suppressed by mutations that abrogate the cell cycle morphogenetic checkpoint, CDC28Y19F or swe1Delta. The connection to the cell cycle may be direct, as we detected a Cla4p-Cdc28p complex. NCS1 encodes a protein with significant similarity to a mammalian phosphotyrosyl phosphatase activator (PTPA) regulatory subunit for type 2A protein phosphatases (PP2As). Genetic and biochemical evidence suggested that the phosphatase Sit4p is a target for Ncs1p. First, CLA4 and SIT4 were synthetically lethal. Second, Ncs1p and its yeast paralog, Noh1p (Rrd2p), bound to the catalytic domain of Sit4p in vitro, and Ncs1p could be immunoprecipitated with Sit4p but not with another PP2A (Pph21p) from yeast cell extracts. Strains lacking both NCS1 and NOH1 were inviable and arrested as unbudded cells, implying that PTPA function is required for proper G(1) progression.
Collapse
Affiliation(s)
- D A Mitchell
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229, USA
| | | |
Collapse
|
49
|
Tinkelenberg AH, Liu Y, Alcantara F, Khan S, Guo Z, Bard M, Sturley SL. Mutations in yeast ARV1 alter intracellular sterol distribution and are complemented by human ARV1. J Biol Chem 2000; 275:40667-70. [PMID: 11063737 DOI: 10.1074/jbc.c000710200] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intracellular cholesterol redistribution between membranes and its subsequent esterification are critical aspects of lipid homeostasis that prevent free sterol toxicity. To identify genes that mediate sterol trafficking, we screened for yeast mutants that were inviable in the absence of sterol esterification. Mutations in the novel gene, ARV1, render cells dependent on sterol esterification for growth, nystatin-sensitive, temperature-sensitive, and anaerobically inviable. Cells lacking Arv1p display altered intracellular sterol distribution and are defective in sterol uptake, consistent with a role for Arv1p in trafficking sterol into the plasma membrane. Human ARV1, a predicted sequence ortholog of yeast ARV1, complements the defects associated with deletion of the yeast gene. The genes are predicted to encode transmembrane proteins with potential zinc-binding motifs. We propose that ARV1 is a novel mediator of eukaryotic sterol homeostasis.
Collapse
Affiliation(s)
- A H Tinkelenberg
- Institute of Human Nutrition and Departments of Pediatrics and Physiology and Cellular Biophysics, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Ho JH, Kallstrom G, Johnson AW. Nmd3p is a Crm1p-dependent adapter protein for nuclear export of the large ribosomal subunit. J Cell Biol 2000; 151:1057-66. [PMID: 11086007 PMCID: PMC2174350 DOI: 10.1083/jcb.151.5.1057] [Citation(s) in RCA: 225] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2000] [Accepted: 10/13/2000] [Indexed: 11/22/2022] Open
Abstract
In eukaryotic cells, nuclear export of nascent ribosomal subunits through the nuclear pore complex depends on the small GTPase Ran. However, neither the nuclear export signals (NESs) for the ribosomal subunits nor the receptor proteins, which recognize the NESs and mediate export of the subunits, have been identified. We showed previously that Nmd3p is an essential protein from yeast that is required for a late step in biogenesis of the large (60S) ribosomal subunit. Here, we show that Nmd3p shuttles and that deletion of the NES from Nmd3p leads to nuclear accumulation of the mutant protein, inhibition of the 60S subunit biogenesis, and inhibition of the nuclear export of 60S subunits. Moreover, the 60S subunits that accumulate in the nucleus can be coimmunoprecipitated with the NES-deficient Nmd3p. 60S subunit biogenesis and export of truncated Nmd3p were restored by the addition of an exogenous NES. To identify the export receptor for Nmd3p we show that Nmd3p shuttling and 60S export is blocked by the Crm1p-specific inhibitor leptomycin B. These results identify Crm1p as the receptor for Nmd3p export. Thus, export of the 60S subunit is mediated by the adapter protein Nmd3p in a Crm1p-dependent pathway.
Collapse
Affiliation(s)
- J H Ho
- Section of Molecular Genetics and Microbiology and the Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | | | | |
Collapse
|