1
|
Harris NJ, Pellowe GA, Booth PJ. Cell-free expression tools to study co-translational folding of alpha helical membrane transporters. Sci Rep 2020; 10:9125. [PMID: 32499529 PMCID: PMC7272624 DOI: 10.1038/s41598-020-66097-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/15/2020] [Indexed: 11/28/2022] Open
Abstract
Most helical membrane proteins fold co-translationally during unidirectional polypeptide elongation by the ribosome. Studies thus far, however, have largely focussed on refolding full-length proteins from artificially induced denatured states that are far removed from the natural co-translational process. Cell-free translation offers opportunities to remedy this deficit in folding studies and has previously been used for membrane proteins. We exploit this cell-free approach to develop tools to probe co-translational folding. We show that two transporters from the ubiquitous Major Facilitator Superfamily can successfully insert into a synthetic bilayer without the need for translocon insertase apparatus that is essential in vivo. We also assess the cooperativity of domain insertion, by expressing the individual transporter domains cell-free. Furthermore, we manipulate the cell-free reaction to pause and re-start protein synthesis at specific points in the protein sequence. We find that full-length protein can still be made when stalling after the first N terminal helix has inserted into the bilayer. However, stalling after the first three helices have exited the ribosome cannot be successfully recovered. These three helices cannot insert stably when ribosome-bound during co-translational folding, as they require insertion of downstream helices.
Collapse
Affiliation(s)
- Nicola J Harris
- King's College London, Department of Chemistry, Britannia House, 7 Trinity Street, London, SE1 1DB, UK
| | - Grant A Pellowe
- King's College London, Department of Chemistry, Britannia House, 7 Trinity Street, London, SE1 1DB, UK
| | - Paula J Booth
- King's College London, Department of Chemistry, Britannia House, 7 Trinity Street, London, SE1 1DB, UK.
| |
Collapse
|
2
|
Replacing the eleven native tryptophans by directed evolution produces an active P-glycoprotein with site-specific, non-conservative substitutions. Sci Rep 2020; 10:3224. [PMID: 32081894 PMCID: PMC7035247 DOI: 10.1038/s41598-020-59802-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/28/2020] [Indexed: 11/09/2022] Open
Abstract
P-glycoprotein (Pgp) pumps an array of hydrophobic compounds out of cells, and has major roles in drug pharmacokinetics and cancer multidrug resistance. Yet, polyspecific drug binding and ATP hydrolysis-driven drug export in Pgp are poorly understood. Fluorescence spectroscopy using tryptophans (Trp) inserted at strategic positions is an important tool to study ligand binding. In Pgp, this method will require removal of 11 endogenous Trps, including highly conserved Trps that may be important for function, protein-lipid interactions, and/or protein stability. Here, we developed a directed evolutionary approach to first replace all eight transmembrane Trps and select for transport-active mutants in Saccharomyces cerevisiae. Surprisingly, many Trp positions contained non-conservative substitutions that supported in vivo activity, and were preferred over aromatic amino acids. The most active construct, W(3Cyto), served for directed evolution of the three cytoplasmic Trps, where two positions revealed strong functional bias towards tyrosine. W(3Cyto) and Trp-less Pgp retained wild-type-like protein expression, localization and transport function, and purified proteins retained drug stimulation of ATP hydrolysis and drug binding affinities. The data indicate preferred Trp substitutions specific to the local context, often dictated by protein structural requirements and/or membrane lipid interactions, and these new insights will offer guidance for membrane protein engineering.
Collapse
|
3
|
Harris NJ, Findlay HE, Simms J, Liu X, Booth PJ. Relative domain folding and stability of a membrane transport protein. J Mol Biol 2014; 426:1812-25. [PMID: 24530957 DOI: 10.1016/j.jmb.2014.01.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/30/2014] [Accepted: 01/31/2014] [Indexed: 10/25/2022]
Abstract
There is a limited understanding of the folding of multidomain membrane proteins. Lactose permease (LacY) of Escherichia coli is an archetypal member of the major facilitator superfamily of membrane transport proteins, which contain two domains of six transmembrane helices each. We exploit chemical denaturation to determine the unfolding free energy of LacY and employ Trp residues as site-specific thermodynamic probes. Single Trp LacY mutants are created with the individual Trps situated at mirror image positions on the two LacY domains. The changes in Trp fluorescence induced by urea denaturation are used to construct denaturation curves from which unfolding free energies can be determined. The majority of the single Trp tracers report the same stability and an unfolding free energy of approximately +2 kcal mol(-1). There is one exception; the fluorescence of W33 at the cytoplasmic end of helix I on the N domain is unaffected by urea. In contrast, the equivalent position on the first helix, VII, of the C-terminal domain exhibits wild-type stability, with the single Trp tracer at position 243 on helix VII reporting an unfolding free energy of +2 kcal mol(-1). This indicates that the region of the N domain of LacY at position 33 on helix I has enhanced stability to urea, when compared the corresponding location at the start of the C domain. We also find evidence for a potential network of stabilising interactions across the domain interface, which reduces accessibility to the hydrophilic substrate binding pocket between the two domains.
Collapse
Affiliation(s)
- Nicola J Harris
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | | | - John Simms
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Xia Liu
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Paula J Booth
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
4
|
Abstract
H(+), a most common ion, is involved in very many biological processes. However, most proteins have distinct ranges of pH for function; when the H(+) concentration in the cells is too high or too low, protons turn into very potent stressors to all cells. Therefore, all living cells are strictly dependent on homeostasis mechanisms that regulate their intracellular pH. Na(+)/H(+) antiporters play primary role in pH homeostatic mechanisms both in prokaryotes and eukaryotes. Regulation by pH is a property common to these antiporters. They are equipped with a pH sensor to perceive the pH signal and a pH transducer to transduce the signal into a change in activity. Determining the crystal structure of NhaA, the Na(+)/H(+) antiporter of Escherichia coli have provided the basis for understanding in a realistic rational way the unique regulation of an antiporter by pH and the mechanism of the antiport activity. The physical separation between the pH sensor/transducer and the active site revealed by the structure entailed long-range pH-induced conformational changes for NhaA pH activation. As yet, it is not possible to decide whether the amino acid participating in the pH sensor and the pH transducer overlap or are separated. The pH sensor/transducer is not a single amino acid but rather a cluster of electrostatically interacting residues. Thus, integrating structural, computational, and experimental approaches are essential to reveal how the pH signal is perceived and transduced to activate the pH regulated protein.
Collapse
Affiliation(s)
- Etana Padan
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
5
|
Wavelength-selective fluorescence as a novel tool to study organization and dynamics in complex biological systems. J Fluoresc 2013; 5:237-46. [PMID: 24226791 DOI: 10.1007/bf00723895] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/1994] [Accepted: 11/02/1994] [Indexed: 10/26/2022]
Abstract
The dynamics exhibited by a given component of a large macromolecule such as a folded globular protein or an organized supramolecular assembly like the biological membrane is a function of its precise localization within the larger system. A set of approaches based on the red edge effect in fluorescence spectroscopy, which can be used to monitordirectly the environment and dynamics around a fluorophore in a complex biological system, is reviewed in this article. A shift in the wavelength of maximum fluorescence emission toward higher wavelengths, caused by a shift in the excitation wavelength toward the red edge of the absorption band, is termed the red edge excitation shift (REES). This effect is mostly observed with polar fluorophores in motionally restricted media such as very viscous solutions or condensed phases. This phenomenon arises from the slow rates of solvent relaxation around an excited-state fluorophore, which is a function of the motional restriction imposed on the solvent molecules in the immediate vicinity of the fluorophore. Utilizing this approach, it becomes possible to probe the mobility parameters of the environment itself (which is represented by the relaxing solvent molecules) using the fluorophore merely as a reporter group. Further, since the ubiquitous solvent for biological systems is water, the information obtained in such cases will come from the otherwise 'optically silent' water molecules. This makes REES and related techniques extremely useful in biology since hydration plays a crucial modulatory role in a large number of important cellular events.
Collapse
|
6
|
Swartz DJ, Weber J, Urbatsch IL. P-glycoprotein is fully active after multiple tryptophan substitutions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:1159-68. [PMID: 23261390 DOI: 10.1016/j.bbamem.2012.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Revised: 11/30/2012] [Accepted: 12/10/2012] [Indexed: 01/24/2023]
Abstract
P-glycoprotein (Pgp) is an important contributor to multidrug resistance of cancer. Pgp contains eleven native tryptophans (Trps) that are highly conserved among orthologs. We replaced each Trp by a conservative substitution to determine which Trps are important for function. Individual Trp mutants W44R, W208Y, W132Y, W704Y and W851Y, situated at the membrane surface, revealed significantly reduced Pgp induced drug resistance against one or more fungicides and/or reduced mating efficiencies in Saccharomyces cerevisiae. W158F and W799F, located in the intracellular coupling helices, abolished mating but retained resistance against most drugs. In contrast, W228F and W311Y, located within the membrane, W694L, at the cytoplasmic membrane interface, and W1104Y in NBD2 retained high levels of drug resistance and mating efficiencies similar to wild-type Pgp. Those were combined into pair (W228F/W311Y and W694L/W1104Y) and quadruple (W228F/W311Y/W694L/W1104Y) mutants that were fully active in yeast, and could be purified to homogeneity. Purified pair and quad mutants exhibited drug-stimulated ATPase activity with binding affinities very similar to wild-type Pgp. The combined mutations reduced Trp fluorescence by 35%, but drug induced fluorescence quenching was unchanged from wild-type Pgp suggesting that several membrane-bound Trps are sensitive to drug binding. Overall, we conclude that Trps at the membrane surface are critical for maintaining the integrity of the drug binding sites, while Trps in the coupling helices are important for proper interdomain communication. We also demonstrate that functional single Trp mutants can be combined to form a fully active Pgp that maintains drug polyspecificity, while significantly reducing intrinsic fluorescence.
Collapse
Affiliation(s)
- Douglas J Swartz
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | | | | |
Collapse
|
7
|
|
8
|
Site-directed tryptophan fluorescence reveals two essential conformational changes in the Na+/H+ antiporter NhaA. Proc Natl Acad Sci U S A 2011; 108:15769-74. [PMID: 21873214 DOI: 10.1073/pnas.1109256108] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
NhaA, a Na(+)/H(+) antiporter critical for pH and Na(+) homeostasis in Escherichia coli, as well as other enterobacteria and possibly Homo sapiens, was modified for fluorescence spectroscopy by constructing a functional Trp-less NhaA mutant. Purified Trp-less NhaA lacks the Trp fluorescence emission characteristic of the wild type, thereby providing a background for studying structure-function relationships in NhaA by site-directed Trp fluorescence. Two single-Trp variants in the Trp-less background (F136W and F339W) were constructed. The mutants grow on selective media, have antiport activities that are similar to Trp-less NhaA, and exhibit Trp fluorescence with three different reversible responses to Li(+), Na(+), and/or pH. With single Trp/F136W, a pH shift from pH 6.0 to 8.5 induces a red shift and dramatically increases fluorescence in a reversible fashion; no effect is observed when either Na(+) or Li(+) is added. In marked contrast, with single Trp/F339W, changes in pH do not alter fluorescence, but addition of either Na(+) or Li(+) drastically quenches fluorescence at alkaline pH. Therefore, a Trp at position 136 specifically monitors a pH-induced conformational change that activates NhaA, whereas a Trp at position 339 senses a ligand-induced conformational change that does not occur until NhaA is activated at alkaline pH.
Collapse
|
9
|
Sugama J, Ohkubo S, Atsumi M, Nakahata N. Mastoparan changes the cellular localization of Galphaq/11 and Gbeta through its binding to ganglioside in lipid rafts. Mol Pharmacol 2005; 68:1466-74. [PMID: 16118364 DOI: 10.1124/mol.105.013524] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although it is known that mastoparan, a wasp venom toxin, directly activates Gi/o, mastoparan-induced biological responses are not always explained by this mechanism. For instance, we have demonstrated previously that mastoparan suppressed phosphoinositide hydrolysis induced by carbachol in human astrocytoma cells (FEBS Lett 206:91-94, 1990). In the present study, we examined whether mastoparan affected phosphoinositide hydrolysis by interacting with lipid rafts in PC-12 cells. Mastoparan inhibited UTP-induced increase in [Ca2+]i and phosphoinositide hydrolysis in a concentration-dependent manner. UTP-induced phosphoinositide hydrolysis occurred in lipid rafts, because methyl-beta-cyclodextrin, a disrupting regent of lipid rafts, inhibited the hydrolysis. Mastoparan changed the localization of Galphaq/11 and Gbeta together with cholesterol from lipid rafts to nonraft fractions or cytosol. These changes were inhibited by ganglioside mixtures, suggesting that mastoparan interacts with gangliosides in lipid rafts. In fact, ganglioside mixtures and neuraminidase, but not sialic acid, attenuated the inhibitory effect of mastoparan on phosphoinositide hydrolysis. Furthermore, fluorescence intensity of tyrosine residue of [Tyr3]mastoparan was potentiated by ganglioside mixtures, suggesting the direct binding of mastoparan to gangliosides. Mastoparan caused cytotoxicity of PC-12 cells in a concentration-dependent manner, determined by LDH release. The mastoparan-induced cytotoxicity was significantly inhibited by neuraminidase or gangliosides. The order of inhibitory potency of gangliosides was GT1b approximately GD1b > GD1a > GM1 >> GQ1b, but asialo-GM1 and sialic acid were inactive. These results suggest that mastoparan initially binds to gangliosides in lipid rafts and then it inhibits phosphoinositide hydrolysis by changing the localization of Galphaq/11 and Gbeta in lipid rafts.
Collapse
Affiliation(s)
- Jun Sugama
- Department of Cellular Signaling, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai, Japan 980-8578
| | | | | | | |
Collapse
|
10
|
Apuzzo S, Abdelhakim A, Fortin AS, Gros P. Cross-talk between the paired domain and the homeodomain of Pax3: DNA binding by each domain causes a structural change in the other domain, supporting interdependence for DNA Binding. J Biol Chem 2004; 279:33601-12. [PMID: 15148315 DOI: 10.1074/jbc.m402949200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Pax3 protein has two DNA binding domains, a Paired domain (PD) and a paired-type Homeo domain (HD). Although the PD and HD can bind to cognate DNA sequences when expressed individually, genetic and biochemical data indicate that the two domains are functionally interdependent in intact Pax3. The mechanistic basis of this functional interdependence is unknown and was studied by protease sensitivity. Pax3 was modified by the creation of Factor Xa cleavage sites at discrete locations in the PD, the HD, and in the linker segment joining the PD and the HD (Xa172, Xa189, and Xa216) in individual Pax3 mutants. The effect of Factor Xa insertions on protein stability and on DNA binding by the PD and the HD was measured using specific target site sequences. Independent insertions at position 100 in the linker separating the first from the second helix-turn-helix motif of the PD and at position 216 immediately upstream of the HD were found to be readily accessible to Factor Xa cleavage. The effect of DNA binding by the PD or the HD on accessibility of Factor Xa sites inserted in the same or in the other domain was monitored and quantitated for multiple mutants bearing different numbers of Xa sites at each position. In general, DNA binding reduced accessibility of all sites, suggesting a more compact and less solvent-exposed structure of DNA-bound versus DNA-free Pax3. Results of dose response and time course experiments were consistent and showed that DNA binding by the PD not only caused a local structural change in the PD but also caused a conformational change in the HD (P3OPT binding to Xa216 mutants); similarly, DNA binding by the HD also caused a conformational change in the PD (P2 binding to Xa100 mutants). These results provide a structural basis for the functional interdependence of the two DNA binding domains of Pax3.
Collapse
Affiliation(s)
- Sergio Apuzzo
- Department of Biochemistry and McGill Cancer Center, McGill University, Quebec H1E 1S9, Canada.
| | | | | | | |
Collapse
|
11
|
Vázquez-Ibar JL, Guan L, Svrakic M, Kaback HR. Exploiting luminescence spectroscopy to elucidate the interaction between sugar and a tryptophan residue in the lactose permease of Escherichia coli. Proc Natl Acad Sci U S A 2003; 100:12706-11. [PMID: 14566061 PMCID: PMC240682 DOI: 10.1073/pnas.1835645100] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The crystal structure of the Escherichia coli lactose permease at 3.5 A with a bound substrate has been reported recently. The structure reveals the sugar-protein contacts, which include hydrophobic stacking between the galactopyranosyl ring of substrate and the indole side chain of Trp-151, as proposed previously. The nature of this interaction is studied here by exploiting the luminescence properties of Trp-151 in a mutant devoid of other tryptophan residues. The following phenomena are observed. (i) The fluorescence emission spectrum of Trp-151 and fluorescence-quenching experiments with water-soluble quenchers demonstrate that Trp-151 is in a hydrophilic environment. (ii) Substrate binding leads to a blue shift in the emission spectrum and reduction in accessibility to polar quenchers, indicating that Trp-151 becomes less exposed to aqueous solvent. (iii) The phosphorescence spectrum of Trp-151 is red-shifted in the presence of substrate, indicating charge separation of the triplet state due to a direct stacking interaction between the galactopyranosyl and indole rings. The spectroscopic data fully complement the x-ray structure and demonstrate the feasibility of fluorescence spectroscopy for studying sugar-protein interactions.
Collapse
Affiliation(s)
| | | | | | - H. Ronald Kaback
- To whom correspondence should be addressed at: 5-748 MacDonald Research Laboratories, Box 951662, Los Angeles, CA 90095-1662. E-mail:
| |
Collapse
|
12
|
Iwaki S, Tamura N, Kimura-Someya T, Nada S, Yamaguchi A. Cysteine-scanning mutagenesis of transmembrane segments 4 and 5 of the Tn10-encoded metal-tetracycline/H+ antiporter reveals a permeability barrier in the middle of a transmembrane water-filled channel. J Biol Chem 2000; 275:22704-12. [PMID: 10930423 DOI: 10.1074/jbc.m910354199] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cysteine-scanning mutants as to putative transmembrane segments 4 and 5 and the flanking regions of Tn10-encoded metal-tetracycline/H(+) antiporter (TetA(B)) were constructed. All mutants were normally expressed. Among the 57 mutants (L99C to I155C), nine conserved arginine-, aspartate-, and glycine-replaced ones exhibited greatly reduced tetracycline resistance and almost no transport activity, and five conserved glycine- and proline-replaced mutants exhibited greatly reduced tetracycline transport activity in inverted membrane vesicles despite their high or moderate drug resistance. All other cysteine-scanning mutants retained normal drug resistance and normal tetracycline transport activity except for the L142C and I143C mutants. The transmembrane (TM) regions TM4 and TM5 were determined to comprise 20 amino acid residues, Leu-99 to Ile-118, and 17 amino acid residues, Ala-136 to Ala-152, respectively, on the basis of N-[(14)C]ethylmaleimide ([(14)C]NEM) reactivity. The NEM reactivity patterns of the TM4 and TM5 mutants were quite different from each other. TM4 could be divided into two halves, that is, a NEM nonreactive periplasmic half and a periodically reactive cytoplasmic half, indicating that TM4 is tilted toward a water-filled transmembrane channel and that only its cytoplasmic half faces the channel. On the other hand, NEM-reactive mutations were observed periodically (every two residues) along the whole length of TM5. A permeability barrier for a membrane-impermeable sulfhydryl reagent, 4-acetamido-4'-maleimidylstilbene-2,2'-disulfonic acid, was present in the middle of TM5 between Leu-142 and Gly-145, whereas all the NEM-reactive mutants as to TM4 were not accessible to 4-acetamido-4'-maleimidylstilbene-2,2'-disulfonic acid, indicating that the channel-facing side of TM4 is located inside the permeability barrier. Tetracycline protected the G141C mutant from the NEM binding, whereas the other mutants in TM4 and TM5 were not protected by tetracycline.
Collapse
Affiliation(s)
- S Iwaki
- Department of Cell Membrane Biology, Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | | | | | | | | |
Collapse
|
13
|
Chapter 10 The lactose permease of Escherichia coli: Past, present and future. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1383-8121(96)80051-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
14
|
Weitzman C, Consler TG, Kaback HR. Fluorescence of native single-Trp mutants in the lactose permease from Escherichia coli: structural properties and evidence for a substrate-induced conformational change. Protein Sci 1995; 4:2310-8. [PMID: 8563627 PMCID: PMC2143026 DOI: 10.1002/pro.5560041108] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Six single-Trp mutants were engineered by individually reintroducing each of the native Trp residues into a functional lactose permease mutant devoid of Trp (Trp-less permease; Menezes ME, Roepe PD, Kaback HR, 1990, Proc Natl Acad Sci USA 87:1638-1642), and fluorescent properties were studied with respect to solvent accessibility, as well as alterations produced by ligand binding. The emission of Trp 33, Trp 78, Trp 171, and Trp 233 is strongly quenched by both acrylamide and iodide, whereas Trp 151 and Trp 10 display a decrease in fluorescence in the presence of acrylamide only and no quenching by iodide. Of the six single-Trp mutants, only Trp 33 exhibits a significant change in fluorescence (ca. 30% enhancement) in the presence of the substrate analog beta,D-galactopyranosyl 1-thio-beta,D-galactopyranoside (TDG). This effect was further characterized by site-directed fluorescent studies with purified single-Cys W33-->C permease labeled with 2-(4'-maleimidylanilino)-naphthalene-6-sulfonic acid (MIANS). Titration of the change in the fluorescence spectrum reveals a 30% enhancement accompanied with a 5-nm blue shift in the emission maximum, and single exponential behavior with an apparent KD of 71 microM. The effect of substrate binding on the rate of MIANS labeling of single-Cys 33 permease was measured in addition to iodide and acrylamide quenching of the MIANS-labeled protein. Complete blockade of labeling is observed in the presence of TDG, as well as a 30% decrease in accessibility to iodide with no change in acrylamide quenching. Overall, the findings are consistent with the proposal (Wu J, Frillingos S, Kaback HR, 1995a, Biochemistry 34:8257-8263) that ligand binding induces a conformational change at the C-terminus of helix I such that Pro 28 and Pro 31, which are on one face, become more accessible to solvent, whereas Trp 33, which is on the opposite face, becomes less accessible to the aqueous phase. The findings regarding accessibility to collisional quenchers are also consistent with the predicted topology of the six native Trp residues in the permease.
Collapse
Affiliation(s)
- C Weitzman
- Howard Hughes Medical Institute, Department of Physiology, University of California, Los Angeles 90095-1662, USA
| | | | | |
Collapse
|
15
|
Weitzman C, Kaback HR. Cysteine scanning mutagenesis of helix V in the lactose permease of Escherichia coli. Biochemistry 1995; 34:9374-9. [PMID: 7626607 DOI: 10.1021/bi00029a013] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Using a functional lactose permease mutant devoid of Cys (C-less permease), each amino acid residue in putative transmembrane helix V was replaced individually with Cys (from Met145 to Thr163). Of the 19 mutants, 13 are highly functional (60-125% of C-less permease activity), and 4 exhibit lower but significant lactose accumulation (15-45% of C-less permease). Cys replacement of Gly147 or Trp151 essentially inactivates the permease (< 10% of C-less); however, previous studies [Menezes, M. E., Roepe, P. D., & Kaback, H. R. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 1638; Jung, K., Jung, H., et al. (1995) Biochemistry 34, 1030] demonstrate that neither of these residues is important for activity. Immunoblots reveal that all of the mutant proteins are present in the membrane in amounts comparable to C-less permease with the exception of Trp151-->Cys and single Cys154 permeases which are present in reduced amounts. Finally, only three of the single-Cys mutants are inactivated significantly by N-ethylmaleimide (Met145-->Cys, native Cys148, and Gly159-->Cys), and the positions of the three mutants fall on the same face of helix V.
Collapse
Affiliation(s)
- C Weitzman
- Howard Hughes Medical Institute, Department of Physiology, University of California, Los Angeles 90095-1662, USA
| | | |
Collapse
|
16
|
Sahin-Tóth M, Frillingos S, Bibi E, Gonzalez A, Kaback HR. The role of transmembrane domain III in the lactose permease of Escherichia coli. Protein Sci 1994; 3:2302-10. [PMID: 7756986 PMCID: PMC2142773 DOI: 10.1002/pro.5560031215] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Deletion of putative transmembrane helix III from the lactose permease of Escherichia coli results in complete loss of transport activity. Similarly, replacement of this region en bloc with 23 contiguous Ala, Leu, or Phe residues abolishes active lactose transport. The observations suggest that helix III may contain functionally important residues; therefore, this region was subjected to Cys-scanning mutagenesis. Using a functional mutant devoid of Cys residues (C-less permease) each residue from Tyr 75 to Leu 99 was individually replaced with Cys. Twenty-one of the 25 mutants accumulate lactose to > 70% of the steady-state exhibited by C-less permease, and an additional 3 mutants transport to lower, but significant levels (40-60% of C-less). Cys replacement for Leu 76 results in low transport activity (18% of C-less). However, when placed in the wild-type background, mutant Leu 76-->Cys exhibits highly significant rates of transport (55% of wild type) and steady-state levels of lactose accumulation (65% of wild type). Immunoblots reveal that the mutants are inserted into the membrane at concentrations comparable to wild type. Studies with N-ethylmaleimide show that mutant Gly 96-->Cys is rapidly inactivated, whereas the other single-Cys mutants are not altered significantly by the alkylating agent. Moreover, the rate of inactivation of Gly 96-->Cys permease is enhanced at least 2-fold in the presence of beta-galactopyranosyl 1-thio-beta, D-galactopyranoside. The observations demonstrate that although no residue per se appears to be essential, structural properties of helix III are important for active lactose transport.
Collapse
Affiliation(s)
- M Sahin-Tóth
- Howard Hughes Medical Institute, Department of Physiology, University of California, Los Angeles 90024-1662, USA
| | | | | | | | | |
Collapse
|
17
|
Sahin-Tóth M, Persson B, Schwieger J, Cohan P, Kaback HR. Cysteine scanning mutagenesis of the N-terminal 32 amino acid residues in the lactose permease of Escherichia coli. Protein Sci 1994; 3:240-7. [PMID: 8003960 PMCID: PMC2142801 DOI: 10.1002/pro.5560030208] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Using a functional lactose permease mutant devoid of Cys residues (C-less permease), each amino acid residue in the hydrophilic N-terminus and the first putative transmembrane helix was systematically replaced with Cys (from Tyr-2 to Trp-33). Twenty-three of 32 mutants exhibit high lactose accumulation (70-100% or more of C-less), and an additional 8 mutants accumulate to lower but highly significant levels. Surprisingly, Cys replacement for Gly-24 or Tyr-26 yields fully active permease molecules, and permease with Cys in place of Pro-28 also exhibits significant transport activity, although previous mutagenesis studies on these residues suggested that they may be required for lactose transport. As expected, Cys replacement for Pro-31 completely inactivates, in agreement with previous findings indicating that "helix-breaking" propensity at this position is necessary for full activity (Consler TG, Tsolas O, Kaback HR, 1991, Biochemistry 30:1291-1297). Twenty-nine mutants are present in the membrane in amounts comparable to C-less permease, whereas membrane levels of mutants Tyr-3-->Cys and Phe-12-->Cys are slightly reduced, as judged by immunological techniques. Dramatically, mutant Phe-9-->Cys is hardly detectable when expressed from the lac promoter/operator at a relatively low rate, but is present in the membrane in a stable form when expressed at a high rate from the T7 promoter. Finally, studies with N-ethylmalemide show that 6 Cys-replacement mutants that cluster at the C-terminal end of putative helix I are inactivated significantly.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Sahin-Tóth
- Howard Hughes Medical Institute, Department of Physiology, University of California at Los Angeles 90024-1662
| | | | | | | | | |
Collapse
|
18
|
Ujwal ML, Sahin-Tóth M, Persson B, Kaback HR. Role of glutamate-269 in the lactose permease of Escherichia coli. Mol Membr Biol 1994; 11:9-16. [PMID: 7912610 DOI: 10.3109/09687689409161024] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Glu-269, which is located on the hydrophilic face of putative helix VIII in the lactose permease of Escherichia coli, has been replaced with Asp, Gln or Cys by oligonucleotide-directed, site specific mutagenesis. Cells expressing Asp-269 permease exhibit no lactose accumulation or lactose-induced H+ translocation, but retain some ability to mediate lactose influx down a concentration gradient at high substrate concentrations. Furthermore, right-side-out membrane vesicles containing Asp-269 permease do not catalyse active lactose transport, facilitated lactose efflux or equilibrium exchange. Remarkably, however, Asp-269 permease accumulates beta, D-galactopyranosyl 1-thio-beta,D-galactopyranoside in a partially uncoupled fashion, whereas no transport of methyl-beta,D-thiogalactopyranoside, sucrose or maltose is detectable. Mutant permeases containing neutral replacements (Gln or Cys) or Glu-269 are completely devoid of activity, although the proteins are present in the membrane at concentrations comparable with wild-type or Asp-269 permease. The observations demonstrate that a carboxylate at position 269 is essential for transport activity, and Glu-269 is important for substrate binding and/or recognition.
Collapse
Affiliation(s)
- M L Ujwal
- Howard Hughes Medical Institute, Department of Physiology, University of California at Los Angeles 90024
| | | | | | | |
Collapse
|
19
|
Consler TG, Persson BL, Jung H, Zen KH, Jung K, Privé GG, Verner GE, Kaback HR. Properties and purification of an active biotinylated lactose permease from Escherichia coli. Proc Natl Acad Sci U S A 1993; 90:6934-8. [PMID: 8346199 PMCID: PMC47049 DOI: 10.1073/pnas.90.15.6934] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A simplified approach for purification of functional lactose permease from Escherichia coli is described that is based on the construction of chimeras between the permease and a 100-amino acid residue polypeptide containing the biotin acceptor domain from the oxaloacetate decarboxylase of Klebsiella pneumoniae [Cronan, J. E., Jr. (1990) J. Biol. Chem. 265, 10327-10333]. Chimeras were constructed with a factor Xa protease site and the biotin acceptor domain in the middle cytoplasmic loop (loop 6) or at the C terminus of the permease. Each construct catalyzes active lactose transport in cells and right-side-out membrane vesicles. Moreover, the constructs are biotinylated in vivo, and in both chimeras, the factor Xa protease site is accessible from the cytoplasmic surface of the membrane. Both biotinylated permeases bind selectively to immobilized monomeric avidin and are eluted with free biotin in a high state of purity, and the loop 6 chimera catalyzes active transport after reconstitution into proteoliposomes. The methodology described should be applicable to other membrane proteins.
Collapse
Affiliation(s)
- T G Consler
- Howard Hughes Medical Institute, Department of Physiology, University of California, Los Angeles 90024-1662
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Li SC, Deber CM. Influence of glycine residues on peptide conformation in membrane environments. INTERNATIONAL JOURNAL OF PEPTIDE AND PROTEIN RESEARCH 1992; 40:243-8. [PMID: 1478781 DOI: 10.1111/j.1399-3011.1992.tb00297.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transmembrane (TM) segments of integral membrane proteins are putatively alpha-helical in conformation, yet their primary sequences are rich in residues known in globular proteins as helix-breakers (Gly) and beta-sheet promoters (Ile, Val, Thr). To examine the specific 2 degrees structure propensities of such residues in membrane environments, we have now designed and synthesized a series of model 20-residue peptides with "guest" hydrophobia segments embedded in "host" N- and C-terminal hydrophilic matrices. Molecular design was based on the prototypical sequence NH2-(Ser-Lys)2-Ala5-Leu6-x7-Ala8-Leu9-y10-Trp 11-Ala12-Leu13-z14-(Lys-Ser)3-OH. The 10-residue hydrophobic mid-segment 5-14 is expected to act as ca. three turns of an alpha-helix. In the present work, we compare the 20-residue peptide having three "helix-forming" Ala residues [x = y = z = Ala (peptide 3A)] to the corresponding peptide 3G (x = y = z = Gly) which contains three "helix-breaking" Gly residues. Trp was inserted to provide a measure of aromatic character typical of TM segments; Ser and Lys enhanced solubility in aqueous media. Circular dichroism studies in water, in a membrane-mimetic [sodium dodecylsulfate (SDS)], medium, and in methanol solutions, demonstrated the exquisite sensitivity of the conformations of these peptides to environment, and proved that despite its backbone flexibility, Gly can be accommodated as readily as Ala into a hydrophobic alpha-helix in a membrane. Nevertheless, the relative stability of Ala- vs. Gly-containing helices emerged in methanol solvent titration and temperature dependence experiments in SDS.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S C Li
- Division of Biochemistry Research, Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
21
|
Huang AM, Lee JI, King SC, Wilson TH. Amino acid substitution in the lactose carrier protein with the use of amber suppressors. J Bacteriol 1992; 174:5436-41. [PMID: 1644770 PMCID: PMC206383 DOI: 10.1128/jb.174.16.5436-5441.1992] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Five lacY mutants with amber stop codons at known positions were each placed into 12 different suppressor strains. The 60 amino acid substitutions obtained in this manner were tested for growth on lactose-minimal medium plates and for transport of lactose, melibiose, and thiomethylgalactoside. Most of the amino acid substitutions in the regions of the putative loops (between transmembrane alpha helices) resulted in a reasonable growth rate on lactose with moderate-to-good transport activity. In one strain (glycine substituted for Trp-10), abnormal sugar recognition was found. The substitution of proline for Trp-33 (in the region of the first alpha helix) showed no activity, while four additional substitutions (lysine, leucine, cysteine, and glutamic acid) showed low activity. Altered sugar specificity was observed when Trp-33 was replaced by serine, glutamine, tyrosine, alanine, histidine, or phenylalanine. It is concluded that Trp-33 may be involved directly or indirectly in sugar recognition.
Collapse
Affiliation(s)
- A M Huang
- Department of Cellular and Molecular Physiology, Harvard Medical School, Boston, Massachusetts 02215
| | | | | | | |
Collapse
|
22
|
Abrams FS, London E. Calibration of the parallax fluorescence quenching method for determination of membrane penetration depth: refinement and comparison of quenching by spin-labeled and brominated lipids. Biochemistry 1992; 31:5312-22. [PMID: 1606155 DOI: 10.1021/bi00138a010] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We previously introduced the "parallax" method, which uses fluorescence quenching by spin-labeled lipids in order to measure the depth of molecules within a membrane [Chattopadhyay, A., & London, E. (1987) Biochemistry 26, 39-45]. In this report the accuracy of this method is established by comparison of spin-label quenching to that obtained using brominated lipids. To accomplish this, the fluorescent molecules used were a fatty acid labeled with a carbazole buried deeply within the acyl chain region of the membrane, an acyl-Trp with the Trp residue residing near the polar membrane region, and cytochrome b5, which has Trp residues in its membrane-inserted region. The depths calculated from the amount of bromine quenching agreed with those determined using parallax analysis. This indicates that the depth reported by parallax analysis is accurate and that the spin labels residue very close to their predicted locations in the membrane. Furthermore, there was good agreement when parallax analysis was applied both to quenching by brominated and spin-labeled molecules, suggesting that the analysis is valid in both cases. The effect that different distributions and motions of fluorophores and quenchers would have on parallax analysis was also examined. For uniform distributions of quenchers or fluorophores over a range of depths, it was found that the analysis reports the average fluorophore depth. In addition, experimental data suggest that motional effects do not significantly alter the measured depths. This is consistent with the motions during the short excited state lifetime of the fluorophores being relatively small and/or relatively isotropic.
Collapse
Affiliation(s)
- F S Abrams
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook 11794-5215
| | | |
Collapse
|
23
|
Affiliation(s)
- H R Kaback
- Howard Hughes Medical Institute, Department of Physiology and Microbiology, University of California, Los Angeles 90024
| |
Collapse
|
24
|
Abstract
There is a symbiotic relationship between the evolution of fundamental theory and the winning of experimentally-based knowledge. The impact of the General Chemiosmotic Theory on our understanding of the nature of membrane transport processes is described and discussed. The history of experimental studies on transport catalysed by ionophore antibiotics and the membrane proteins of mitochondria and bacteria are used to illustrate the evolution of knowledge and theory. Recent experimental approaches to understanding the lactose-H+ symport protein of Escherichia coli and other sugar porters are described to show that the lack of experimental knowledge of the three-dimensional structures of the proteins currently limits the development of theories about their molecular mechanism of translocation catalysis.
Collapse
|
25
|
van Iwaarden PR, Pastore JC, Konings WN, Kaback HR. Construction of a functional lactose permease devoid of cysteine residues. Biochemistry 1991; 30:9595-600. [PMID: 1911745 DOI: 10.1021/bi00104a005] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
By use of oligonucleotide-directed, site-specific mutagenesis, a lactose (lac) permease molecule was constructed in which all eight cysteinyl residues were simultaneously mutagenized (C-less permease). Cys154 was replaced with valine, and Cys117, -148, -176, -234, -333, -353, and -355 were replaced with serine. Remarkably, C-less permease catalyzes lactose accumulation in the presence of a transmembrane proton electrochemical gradient (interior negative and alkaline). Thus, in intact cells and right-side-out membrane vesicles containing comparable amounts of wild-type and Cys-less permease, the mutant protein catalyzes lactose transport at a maximum velocity and to a steady-state level of accumulation of about 35% and 55%, respectively, of wild-type with a similar apparent Km (ca. 0.3 mM). As anticipated, moreover, active lactose transport via C-less permease is completely resistant to inactivation by N-ethylmaleimide. Finally, C-less permease also catalyzes efflux and equilibrium exchange at about 35% of wild-type activity. The results provide definitive evidence that sulfhydryl groups do not play an essential role in the mechanism of lactose/H+ symport. Potential applications of the C-less mutant to studies of static and dynamic aspects of permease structure/function are discussed.
Collapse
Affiliation(s)
- P R van Iwaarden
- Howard Hughes Medical Institute, Department of Physiology, Los Angeles, California 90024-1570
| | | | | | | |
Collapse
|
26
|
Seol W, Shatkin AJ. Escherichia coli kgtP encodes an alpha-ketoglutarate transporter. Proc Natl Acad Sci U S A 1991; 88:3802-6. [PMID: 2053984 PMCID: PMC51541 DOI: 10.1073/pnas.88.9.3802] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The witA gene located between pss and rrnG on the Escherichia coli chromosome encodes a 432-amino acid protein. It is homologous to a human hepatoma glucose transporter and to E. coli membrane proteins that transport citrate (CitA), arabinose (AraE), and xylose (XylE), and, like these carrier proteins, WitA also contains 12 highly hydrophobic putative membrane-spanning regions. Gene disruption mutants constructed in two E. coli strains grew slowly or not at all, depending on genetic background, in M9 minimal medium containing alpha-ketoglutarate. Growth on alpha-ketoglutarate and uptake of alpha-[14C]ketoglutarate were restored by transformation with plasmids containing witA. These complementation studies indicate that WitA is an alpha-ketoglutarate transporter and should be renamed kgtP(alpha-ketoglutarate permease).
Collapse
Affiliation(s)
- W Seol
- Center for Advanced Biotechnology and Medicine, Piscataway, NJ 08854-5638
| | | |
Collapse
|
27
|
Hinkle PC, Hinkle PV, Kaback HR. Information content of amino acid residues in putative helix VIII of the lac permease from Escherichia coli. Biochemistry 1990; 29:10989-94. [PMID: 2271693 DOI: 10.1021/bi00501a017] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mutants in putative helix VIII of lactose permease that retain the ability to accumulate lactose were created by cassette mutagenesis. A mutagenic insert encoding amino acid residues 259-278 was synthesized chemically by using reagents contaminated with 1% each of the other three bases and ligated into a KpnI/BclI site in the lacY gene in plasmid pGEM-4. Mutants that retain transport activity were selected by transforming a strain of Escherichia coli containing a wild-type lacZ gene, but deleted in lacY, with the mutant library and identifying colonies that transport lactose on indicator plates. Sequencing of the mutated region in lacY in 129 positive colonies reveals 43 single amino acid mutations at 26 sites and 26 multiple mutations. The variable amino acid positions are largely on one side of the putative alpha-helix, a stripe opposite Glu269. This mutable stripe of low information content is probably in contact with the membrane phospholipids.
Collapse
Affiliation(s)
- P C Hinkle
- Roche Institute of Molecular Biology, Roche Research Center, Nutley, New Jersey 07110
| | | | | |
Collapse
|