1
|
Weisenberger MS, Deans TL. Bottom-up approaches in synthetic biology and biomaterials for tissue engineering applications. J Ind Microbiol Biotechnol 2018; 45:599-614. [PMID: 29552703 PMCID: PMC6041164 DOI: 10.1007/s10295-018-2027-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 03/11/2018] [Indexed: 12/30/2022]
Abstract
Synthetic biologists use engineering principles to design and construct genetic circuits for programming cells with novel functions. A bottom-up approach is commonly used to design and construct genetic circuits by piecing together functional modules that are capable of reprogramming cells with novel behavior. While genetic circuits control cell operations through the tight regulation of gene expression, a diverse array of environmental factors within the extracellular space also has a significant impact on cell behavior. This extracellular space offers an addition route for synthetic biologists to apply their engineering principles to program cell-responsive modules within the extracellular space using biomaterials. In this review, we discuss how taking a bottom-up approach to build genetic circuits using DNA modules can be applied to biomaterials for controlling cell behavior from the extracellular milieu. We suggest that, by collectively controlling intrinsic and extrinsic signals in synthetic biology and biomaterials, tissue engineering outcomes can be improved.
Collapse
Affiliation(s)
| | - Tara L Deans
- Department of Bioengineering, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
2
|
A-ZIP53, a dominant negative reveals the molecular mechanism of heterodimerization between bZIP53, bZIP10 and bZIP25 involved in Arabidopsis seed maturation. Sci Rep 2017; 7:14343. [PMID: 29084982 PMCID: PMC5662769 DOI: 10.1038/s41598-017-14167-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/05/2017] [Indexed: 12/31/2022] Open
Abstract
In Arabidopsis, maturation phase, an intricate process in seed formation is tightly regulated by the DNA binding activity of protagonist basic leucine zipper 53 (bZIP53) transcription factor and its heterodimerizing partners, bZIP10 and bZIP25. Structural determinants responsible for heterodimerization specificity of bZIP53 are poorly understood. Analysis of amino acid sequences of three bZIPs does not identify interactions that may favor heterodimerization. Here, we describe a designed dominant negative termed A-ZIP53 that has a glutamic acid-rich amphipathic peptide sequence attached to N-terminal of bZIP53 leucine zipper. Circular dichroism (CD) and mass spectrometry studies with equimolar mixture of three bZIP proteins in pairs showed no heterodimer formation whereas A-ZIP53 interacted and formed stable heterodimers with bZIP53, bZIP10, and bZIP25. A-ZIP53 electrostatically mimics DNA and can overcome repulsion between basic DNA binding regions of three bZIP proteins. Gel shift experiments showed that A-ZIP53 can inhibit the DNA binding of three proteins. CD studies demonstrated the specificity of A-ZIP53 as it did not interact with bZIP39 and bZIP72. Transient co-transfections in Arabidopsis protoplasts showed that A-ZIP53 inhibited three bZIPs and their putative heterodimers-mediated transactivation of GUS reporter gene. Furthermore, four newly designed acidic extensions were evaluated for their ability to interact with three bZIPs.
Collapse
|
3
|
Sapir L, Harries D. Revisiting Hydrogen Bond Thermodynamics in Molecular Simulations. J Chem Theory Comput 2017; 13:2851-2857. [DOI: 10.1021/acs.jctc.7b00238] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Liel Sapir
- Institute of Chemistry and The Fritz Haber
Research Center, The Hebrew University, Jerusalem 91904, Israel
| | - Daniel Harries
- Institute of Chemistry and The Fritz Haber
Research Center, The Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
4
|
Pendley SS, Yu YB, Cheatham TE. Molecular dynamics guided study of salt bridge length dependence in both fluorinated and non-fluorinated parallel dimeric coiled-coils. Proteins 2009; 74:612-29. [PMID: 18704948 PMCID: PMC2692595 DOI: 10.1002/prot.22177] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The alpha-helical coiled-coil is one of the most common oligomerization motifs found in both native and engineered proteins. To better understand the stability and dynamics of the coiled-coil motifs, including those modified by fluorination, several fluorinated and nonfluorinated parallel dimeric coiled-coil protein structures were designed and modeled. We also attempt to investigate how changing the length and geometry of the important stabilizing salt bridges influences the coiled-coil protein structure. Molecular dynamics (MD) and free energy simulations with AMBER used a particle mesh Ewald treatment of the electrostatics in explicit TIP3P solvent with balanced force field treatments. Preliminary studies with legacy force fields (ff94, ff96, and ff99) show a profound instability of the coiled-coil structures in short MD simulation. Significantly, better behavior is evident with the more balanced ff99SB and ff03 protein force fields. Overall, the results suggest that the coiled-coil structures can readily accommodate the larger acidic arginine or S-2,7-diaminoheptanedoic acid mutants in the salt bridge, whereas substitution of the smaller L-ornithine residue leads to rapid disruption of the coiled-coil structure on the MD simulation time scale. This structural distortion of the secondary structure allows both the formation of large hydration pockets proximal to the charged groups and within the hydrophobic core. Moreover, the increased structural fluctuations and movement lead to a decrease in the water occupancy lifetimes in the hydration pockets. In contrast, analysis of the hydration in the stable dimeric coiled-coils shows high occupancy water sites along the backbone residues with no water occupancy in the hydrophobic core, although transitory water interactions with the salt bridge residues are evident. The simulations of the fluorinated coiled-coils suggest that in some cases fluorination electrostatically stabilizes the intermolecular coiled-coil salt bridges. Structural analyses also reveal different side chain rotamer preferences for leucine when compared with 5,5,5,5',5',5'-hexafluoroleucine mutants. These observed differences in the side chain rotamer populations suggest differential changes in the side chain conformational entropy upon coiled-coil formation when the protein is fluorinated. The free energy of hydration of the isolated 5,5,5,5',5',5'-hexafluoroleucine amino acid is calculated to be 1.1 kcal/mol less stable than leucine; this hydrophobic penalty in the monomer may provide a driving force for coiled-coil dimer formation. Estimation of the ellipticity at 222 nm from a series of snapshots from the MD simulations with DicroCalc shows distinct increases in the ellipticity when the coiled-coil is fluorinated, which suggests that the helicity in the folded coiled-coils is greater when fluorinated.
Collapse
Affiliation(s)
- Scott S. Pendley
- Departments of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 2000 South 30 East, Skaggs Hall 201, Salt Lake City, UT 84112
| | - Yihua B. Yu
- Departments of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 2000 South 30 East, Skaggs Hall 201, Salt Lake City, UT 84112
- Departments of Pharmaceutical Sciences and Bioengineering, University of Maryland, University of Maryland, 20 Penn Street, Rm. 635, Baltimore, MD 21201
| | - Thomas E. Cheatham
- Departments of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 2000 South 30 East, Skaggs Hall 201, Salt Lake City, UT 84112
- Department of Medicinal Chemistry, University of Utah, 2000 South 30 East, Skaggs Hall 201, Salt Lake City, UT 84112
- Department of Bioengineering, University of Utah, 2000 South 30 East, Skaggs Hall 201, Salt Lake City, UT 84112
| |
Collapse
|
5
|
Kashiwada A, Nakamura Y, Matsuda K. Metal Ion-Induced Hetero-Block α-Helical Coiled Coil. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2005. [DOI: 10.1246/bcsj.78.1291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
6
|
Moore LJ, Kiley PJ. Characterization of the dimerization domain in the FNR transcription factor. J Biol Chem 2001; 276:45744-50. [PMID: 11581261 DOI: 10.1074/jbc.m106569200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The global anaerobic regulator FNR from Escherichia coli is a dimeric Fe-S protein that is inactivated by O(2) through disruption of its [4Fe-4S] cluster and conversion to a monomeric form. As a first step in elucidating the molecular interactions that control FNR dimerization, we have performed alanine-scanning mutagenesis of a potential dimerization domain. Replacement of many hydrophobic residues (Met-143, Met-144, Leu-146, Met-147, Ile-151, Met-157, and Ile-158) and two charged residues (Arg-140 and Arg-145) with Ala decreased FNR activity in vivo. Size exclusion chromatography and Fe-S cluster analysis of three representative mutant proteins, FNR-M147A, FNR-I151A, and FNR-I158A, showed that the Ala substitutions produced specific defects in dimerization. Because hydrophobic side chains are known to stabilize subunit-subunit interactions between alpha-helices, we propose that Met-147, Ile-151, and Ile-158 lie on the same face of an alpha-helix that constitutes a dimerization interface. This alignment would also position Arg-140, Met-144, and Asp-154 on the same helical face. In support of the unusual positioning of a negatively charged residue at the dimer interface, we found that replacing Asp-154 with Ala repaired the defects caused by Ala substitutions of other residues located on the same helical face. These data also suggest that Asp-154 has an inhibitory effect on dimerization, which may be a key element in the control of FNR dimerization by O(2) availability.
Collapse
Affiliation(s)
- L J Moore
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
7
|
Kazmierski WM, McDermed J, Aulabaugh A. A New Experimental Method to Determine the Mutual Orientation of Helices in Coiled-Coil Proteins: Structural Information about the Dimeric Interface ofcJun,cFos, GCN4, and gp41. Chemistry 1996. [DOI: 10.1002/chem.19960020409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Garcia de Viedma D, Giraldo R, Rivas G, Fernández-Tresguerres E, Diaz-Orejas R. A leucine zipper motif determines different functions in a DNA replication protein. EMBO J 1996; 15:925-34. [PMID: 8631313 PMCID: PMC450290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
RepA is the replication initiator protein of the Pseudomonas plasmid pPS10 and is also able to autoregulate its own synthesis. Here we report a genetic and functional analysis of a leucine zipper-like (LZ) motif located at the N-terminus of RepA. It is shown that the LZ motif modulates the equilibrium between monomeric and dimeric forms of the protein and that monomers of RepA interact with sequences at the origin of replication, oriV, while dimers are required for interactions of RepA at the repA promoter. Further, different residues of the LZ motif are seen to have different functional roles. Leucines at the d positions of the putative alpha-helix are relevant in the formation of RepA dimers required for transcriptional autoregulation. They also modulate other RepA-RepA interactions that result in cooperative binding of protein monomers to the origin of replication. The residues at the b/f positions of the putative helix play no relevant role in RepA-RepA interactions. These residues do not affect RepA autoregulation but do influence replication, as demonstrated by mutants that, without affecting binding to oriV, either increase the host range of the plasmid or are inactive in replication. It is proposed that residues in b/f positions play a relevant role in interactions between RepA and host replication factors.
Collapse
Affiliation(s)
- D Garcia de Viedma
- Departamento de Microbiologia Molecular, Centro de Investigaciones Biologicas, Madrid, Spain
| | | | | | | | | |
Collapse
|
9
|
Rozzelle JE, Tropsha A, Erickson BW. Rational design of a three-heptad coiled-coil protein and comparison by molecular dynamics simulation with the GCN4 coiled coil: presence of interior three-center hydrogen bonds. Protein Sci 1994; 3:345-55. [PMID: 8003969 PMCID: PMC2142795 DOI: 10.1002/pro.5560030217] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
alpha-Helical coiled coils have a 7-residue repeating pattern (abcdefg) where a and d are usually hydrophobic. We have designed a 2-stranded 44-residue coiled-coil protein (P44) consisting of 2 22-residue alpha-helices linked by 2 terminal disulfide groups to test whether the disulfide bridges could stabilize a 3-heptad coiled coil. P44 should be stabilized by intrahelical hydrogen bonds, interhelical disulfide and salt bridges, and interior hydrophobic interactions. A computer model of P44 was built and its stability was studied by molecular dynamics simulation with explicit water. This doubly crosslinked 3-heptad coiled coil did not unfold during a 300-ps simulation with explicit water. This doubly crosslinked 3-heptad coiled coil did not unfold during a 300-ps simulation. But reduced P44 with 4 thiol groups did unfold. For comparison, the 62-residue crystal structure of the 4-heptad coiled coil of transcription activator GCN4 did not unfold during a 300-ps simulation. Thus P44 may be a stable folded protein in aqueous solution. These simulations revealed the presence of 2 local hydrogen bond networks involving intra-helical 3-center hydrogen bonds in the hydrophobic interior of the coiled coils of GCN4 and P44. The NH hydrogen at d makes a 3-center hydrogen bond whose major component is to the i - 4 C = O oxygen at g and minor component is to the solvent-inaccessible i - 3 C = O oxygen at a. Likewise, the NH hydrogen at g makes a 3-center hydrogen bond with the i - 4 C = O oxygen at c and the buried i - 3 C = O oxygen at d.
Collapse
Affiliation(s)
- J E Rozzelle
- Department of Chemistry, University of North Carolina at Chapel HIll 27599
| | | | | |
Collapse
|
10
|
Scharf KD, Materna T, Treuter E, Nover L. Heat stress promoters and transcription factors. Results Probl Cell Differ 1994; 20:125-62. [PMID: 8036313 DOI: 10.1007/978-3-540-48037-2_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- K D Scharf
- Lehrstuhl Zellbiologie, Biozentrum, Goethe-Universität, Frankfurt, FRG
| | | | | | | |
Collapse
|
11
|
Abstract
This paper employs methods used earlier to study helix propensity in a model alpha-helix. The methods are extended to simulations of a motif structure of the alpha-helical coiled coil, i.e., a structure with a simple amino acid sequence, containing only alanine, leucine, and valine, with leucine and valine forming hydrophobic contacts in the helix interface (positions "d" and "a"). Dynamic simulations of the model coiled-coil structure reproduce characteristic features of the coiled-coil motif seen in experimental studies. Free energy simulations were used to assess the change in stability of the model when a leucine pair or a valine pair in the helix interface was replaced with an alanine pair. A leucine pair at position d was found to contribute 3.4 kcal/mol to the stability of the coiled coil relative to an alanine pair, and a valine pair at position a was found to contribute 0.8 kcal/mol relative to an alanine pair. The value for the leucine pair agrees with reports in two experimental studies with molecules having different amino sequence. The value for the valine pair is reasonable given the smaller size of the valine side chain and the intrinsic low helix propensity of valine. No experimental value was available for comparison.
Collapse
Affiliation(s)
- L Zhang
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill 27599-7260
| | | |
Collapse
|
12
|
Hemmerich P, von Mikecz A, Neumann F, Sözeri O, Wolff-Vorbeck G, Zoebelein R, Krawinkel U. Structural and functional properties of ribosomal protein L7 from humans and rodents. Nucleic Acids Res 1993; 21:223-31. [PMID: 8441630 PMCID: PMC309096 DOI: 10.1093/nar/21.2.223] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
By subtractive screening of a library made from mRNA of lipopolysaccharide (LPS)-stimulated mouse B lymphocytes we isolated cDNA-clones encoding the ribosomal protein L7. Human L7 mRNA was cloned from activated T-lymphocytes. Although no specific function of L7 in the translation apparatus is known as yet, it should be a critical one as indicated by its high degree of structural conservation during evolution and its regulated expression in lymphoid cells. Human and rodent L7 proteins carry sequences similar to the basic-region-leucine-zipper(BZIP)-motif of DNA-binding eucaryotic transcription factors. We show here that the region of L7 carrying the latter motif mediates L7-dimerization and stable binding to DNA and RNA. A preferential binding to RNA-structures is demonstrated.
Collapse
Affiliation(s)
- P Hemmerich
- Klinische Forschergruppe für Rheumatologie, Universitätsklinikum Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
13
|
Guzman LM, Barondess JJ, Beckwith J. FtsL, an essential cytoplasmic membrane protein involved in cell division in Escherichia coli. J Bacteriol 1992; 174:7716-28. [PMID: 1332942 PMCID: PMC207486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have identified a gene involved in bacterial cell division, located immediately upstream of the ftsI gene in the min 2 region of the Escherichia coli chromosome. This gene, which we named ftsL, was detected through characterization of TnphoA insertions in a plasmid containing this chromosomal region. TnphoA topological analysis and fractionation of alkaline phosphatase fusion proteins indicated that the ftsL gene product is a 13.6-kDa cytoplasmic membrane protein with a cytoplasmic amino terminus, a single membrane-spanning segment, and a periplasmic carboxy terminus. The ftsL gene is essential for cell growth and division. A null mutation in ftsL resulted in inhibition of cell division, formation of long, nonseptate filaments, ultimate cessation of growth, and lysis. Under certain growth conditions, depletion of FtsL or expression of the largest ftsL-phoA fusion produced a variety of cell morphologies, including Y-shaped bacteria, indicating a possible general weakening of the cell wall. The FtsL protein is estimated to be present at about 20 to 40 copies per cell. The periplasmic domain of the protein displays a sequence with features characteristic of leucine zippers, which are involved in protein dimerization.
Collapse
Affiliation(s)
- L M Guzman
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | | | |
Collapse
|
14
|
Abstract
We have identified a gene involved in bacterial cell division, located immediately upstream of the
ftsI
gene in the min 2 region of the
Escherichia coli
chromosome. This gene, which we named
ftsL
, was detected through characterization of Tn
phoA
insertions in a plasmid containing this chromosomal region. Tn
phoA
topological analysis and fractionation of alkaline phosphatase fusion proteins indicated that the
ftsL
gene product is a 13.6-kDa cytoplasmic membrane protein with a cytoplasmic amino terminus, a single membrane-spanning segment, and a periplasmic carboxy terminus. The
ftsL
gene is essential for cell growth and division. A null mutation in
ftsL
resulted in inhibition of cell division, formation of long, nonseptate filaments, ultimate cessation of growth, and lysis. Under certain growth conditions, depletion of FtsL or expression of the largest
ftsL-phoA
fusion produced a variety of cell morphologies, including Y-shaped bacteria, indicating a possible general weakening of the cell wall. The FtsL protein is estimated to be present at about 20 to 40 copies per cell. The periplasmic domain of the protein displays a sequence with features characteristic of leucine zippers, which are involved in protein dimerization.
Collapse
|
15
|
Tropsha A, Kizer JS, Chaiken IM. Making sense from antisense: a review of experimental data and developing ideas on sense--antisense peptide recognition. J Mol Recognit 1992; 5:43-54. [PMID: 1472380 DOI: 10.1002/jmr.300050202] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Peptides encoded in the antisense strand of DNA have been predicted and found experimentally to bind to sense peptides and proteins with significant selectivity and affinity. Such sense--antisense peptide recognition has been observed in many systems, most often by detecting binding between immobilized and soluble interaction partners. Data obtained so far on sequence and solvent dependence of interaction support a hydrophobic-hydrophilic (amphipathic) model of peptide recognition. Nonetheless, the mechanistic understanding of this type of molecular recognition remains incomplete. Improving this understanding likely will require expanding the types of characteristics measured for sense--antisense peptide complexes and hence the types of analytical methods applied to such interactions. Understanding the mechanism of sense--antisense peptide recognition also may provide insights into mechanisms of native (sense) peptide and protein interactions and protein folding. Such insight may be helpful to learn how to design macromolecular recognition agents in technology for separation, diagnostics and therapeutics.
Collapse
Affiliation(s)
- A Tropsha
- Brain and Development Research Center, University of North Carolina, Chapel Hill 27599-7250
| | | | | |
Collapse
|