1
|
Puja H, Mislin GLA, Rigouin C. Engineering Siderophore Biosynthesis and Regulation Pathways to Increase Diversity and Availability. Biomolecules 2023; 13:959. [PMID: 37371539 PMCID: PMC10296737 DOI: 10.3390/biom13060959] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Siderophores are small metal chelators synthesized by numerous organisms to access iron. These secondary metabolites are ubiquitously present on Earth, and because their production represents the main strategy to assimilate iron, they play an important role in both positive and negative interactions between organisms. In addition, siderophores are used in biotechnology for diverse applications in medicine, agriculture and the environment. The generation of non-natural siderophore analogs provides a new opportunity to create new-to-nature chelating biomolecules that can offer new properties to expand applications. This review summarizes the main strategies of combinatorial biosynthesis that have been used to generate siderophore analogs. We first provide a brief overview of siderophore biosynthesis, followed by a description of the strategies, namely, precursor-directed biosynthesis, the design of synthetic or heterologous pathways and enzyme engineering, used in siderophore biosynthetic pathways to create diversity. In addition, this review highlights the engineering strategies that have been used to improve the production of siderophores by cells to facilitate their downstream utilization.
Collapse
Affiliation(s)
- Hélène Puja
- CNRS-UMR7242, Biotechnologie et Signalisation Cellulaire, 300 Bld Sébastien Brant, 67412 Illkirch, France (G.L.A.M.)
- Institut de Recherche de l’Ecole de Biotechnologie de Strasbourg (IREBS), Université de Strasbourg, 300 Bld Sébastien Brant, 67412 Illkirch, France
| | - Gaëtan L. A. Mislin
- CNRS-UMR7242, Biotechnologie et Signalisation Cellulaire, 300 Bld Sébastien Brant, 67412 Illkirch, France (G.L.A.M.)
- Institut de Recherche de l’Ecole de Biotechnologie de Strasbourg (IREBS), Université de Strasbourg, 300 Bld Sébastien Brant, 67412 Illkirch, France
| | - Coraline Rigouin
- CNRS-UMR7242, Biotechnologie et Signalisation Cellulaire, 300 Bld Sébastien Brant, 67412 Illkirch, France (G.L.A.M.)
- Institut de Recherche de l’Ecole de Biotechnologie de Strasbourg (IREBS), Université de Strasbourg, 300 Bld Sébastien Brant, 67412 Illkirch, France
| |
Collapse
|
2
|
Kamińska K, Mular A, Olshvang E, Nolte NM, Kozłowski H, Wojaczyńska E, Gumienna-Kontecka E. The diversity and utility of arylthiazoline and aryloxazoline siderophores: challenges of total synthesis. RSC Adv 2022; 12:25284-25322. [PMID: 36199325 PMCID: PMC9450019 DOI: 10.1039/d2ra03841b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
Siderophores are unique ferric ion chelators produced and secreted by some organisms like bacteria, fungi and plants under iron deficiency conditions. These molecules possess immense affinity and specificity for Fe3+ and other metal ions, which attracts great interest due to the numerous possibilities of application, including antibiotics delivery to resistant bacteria strains. Total synthesis of siderophores is a must since the compounds are present in natural sources at extremely small concentrations. These molecules are extremely diverse in terms of molecular structure and physical and chemical properties. This review is focused on achievements and developments in the total synthesis strategies of naturally occurring siderophores bearing arylthiazoline and aryloxazoline units. A review presents advances in total synthesis of thiazoline and oxazoline-bearing siderophores, unique ferric ion chelators found in some bacteria, fungi and plants.![]()
Collapse
Affiliation(s)
- Karolina Kamińska
- Faculty of Chemistry, University of Wrocław, Fryderyka Joliot-Curie 14, 50-383 Wrocław, Poland
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Andrzej Mular
- Faculty of Chemistry, University of Wrocław, Fryderyka Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Evgenia Olshvang
- Inorganic Chemistry I-Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitaetsstrasse, 44801 Bochum, Germany
| | - Nils Metzler Nolte
- Inorganic Chemistry I-Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitaetsstrasse, 44801 Bochum, Germany
| | - Henryk Kozłowski
- Faculty of Chemistry, University of Wrocław, Fryderyka Joliot-Curie 14, 50-383 Wrocław, Poland
- Department of Health Sciences, University of Opole, Katowicka 68, 45-060 Opole, Poland
| | - Elżbieta Wojaczyńska
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | | |
Collapse
|
3
|
Siebert DCB, Sommer R, Pogorevc D, Hoffmann M, Wenzel SC, Müller R, Titz A. Chemical synthesis of tripeptide thioesters for the biotechnological incorporation into the myxobacterial secondary metabolite argyrin via mutasynthesis. Beilstein J Org Chem 2019; 15:2922-2929. [PMID: 31839838 PMCID: PMC6902895 DOI: 10.3762/bjoc.15.286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/20/2019] [Indexed: 11/23/2022] Open
Abstract
The argyrins are secondary metabolites from myxobacteria with antibiotic activity against Pseudomonas aeruginosa. Studying their structure–activity relationship is hampered by the complexity of the chemical total synthesis. Mutasynthesis is a promising approach where simpler and fully synthetic intermediates of the natural product’s biosynthesis can be biotechnologically incorporated. Here, we report the synthesis of a series of tripeptide thioesters as mutasynthons containing the native sequence with a dehydroalanine (Dha) Michael acceptor attached to a sarcosine (Sar) and derivatives. Chemical synthesis of the native sequence ᴅ-Ala-Dha-Sar thioester required revision of the sequential peptide synthesis into a convergent strategy where the thioester with sarcosine was formed before coupling to the Dha-containing dipeptide.
Collapse
Affiliation(s)
- David C B Siebert
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Roman Sommer
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Domen Pogorevc
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany.,Microbial Natural Substances, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany.,Department of Pharmacy, Saarland University, D-66123 Saarbrücken, Germany
| | - Michael Hoffmann
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany.,Microbial Natural Substances, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany.,Department of Pharmacy, Saarland University, D-66123 Saarbrücken, Germany
| | - Silke C Wenzel
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany.,Microbial Natural Substances, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany.,Department of Pharmacy, Saarland University, D-66123 Saarbrücken, Germany
| | - Rolf Müller
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany.,Microbial Natural Substances, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany.,Department of Pharmacy, Saarland University, D-66123 Saarbrücken, Germany
| | - Alexander Titz
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany.,Department of Pharmacy, Saarland University, D-66123 Saarbrücken, Germany
| |
Collapse
|
4
|
Abstract
Siderophores have important functions for bacteria in iron acquisition and as virulence factors. In this chapter we will discuss the engineering of cyclic hydroxamate siderophores by various biochemical approaches based on the example of Shewanella algae. The marine gamma-proteobacterium S. algae produces three different cyclic hydroxamate siderophores as metabolites via a single biosynthetic gene cluster and one of them is an important key player in interspecies competition blocking swarming of Vibrio alginolyticus. AvbD is the key metabolic enzyme assembling the precursors into three different core structures and hence an interesting target for metabolic and biochemical engineering. Synthetic natural and unnatural precursors can be converted in vitro with purified AvbD to generate siderophores with various ring sizes ranging from analytical to milligram scale. These engineered siderophores can be applied, for example, as swarming inhibitors against V. alginolyticus. Here, we describe the synthesis of the natural and unnatural siderophore precursors HS[X]A and provide our detailed protocols for protein expression of AvbD, conversion of HS[X]A with the enzyme to produce ring-size engineered siderophores and secondly for a biosynthetic feeding strategy that allows to extract engineered siderophores in the milligram scale.
Collapse
|
5
|
Comparison between Pseudomonas aeruginosa siderophores and desferrioxamine for iron acquisition from ferritin. ASIAN BIOMED 2018. [DOI: 10.2478/abm-2010-0080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Abstract
Background: Siderophore is an iron chelator produced by microorganism. Pseudomonas aeruginosa produces two siderophores (pyoverdin and pyochelin). Desferrioxamine is a siderophore used in thalassemia patients to treat an iron overload of vital organs. Objective: Compare the ability of pyoverdin, pyochelin, and desferrioxamine for iron mobilization from ferritin. Materials and Methods: In vitro experiment, the ability of P. aeruginosa siderophores and desferrioxamine for iron mobilization from ferritin was compared by using a dialysis membrane assay at pH values of 7.4 and 6.0. Stimulation of P. aeruginosa PAO1 growth by all siderophores was studied in glucose minimum medium. Results: All three compounds were capable of iron mobilization at both pHs. At pH 6.0, the most effectiveness compound was desferrioxamine (31.6%), followed by pyoverdin (21.5%) and pyochelin (13.7%) compared on weight basis, each at 10 μg/mL. At equimolar concentration, their activities were desferrioxamine (38.5±1.2%), followed by pyoverdin (32.0±4.8%) and pyochelin (26.7±1.9%), respectively. Conclusion: The most effective compound in iron mobilization from ferritin was desferrioxamine, followed by pyoverdin and pyochelin respectively.
Collapse
|
6
|
Süssmuth RD, Mainz A. Nonribosomal Peptide Synthesis-Principles and Prospects. Angew Chem Int Ed Engl 2017; 56:3770-3821. [PMID: 28323366 DOI: 10.1002/anie.201609079] [Citation(s) in RCA: 615] [Impact Index Per Article: 76.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Indexed: 01/05/2023]
Abstract
Nonribosomal peptide synthetases (NRPSs) are large multienzyme machineries that assemble numerous peptides with large structural and functional diversity. These peptides include more than 20 marketed drugs, such as antibacterials (penicillin, vancomycin), antitumor compounds (bleomycin), and immunosuppressants (cyclosporine). Over the past few decades biochemical and structural biology studies have gained mechanistic insights into the highly complex assembly line of nonribosomal peptides. This Review provides state-of-the-art knowledge on the underlying mechanisms of NRPSs and the variety of their products along with detailed analysis of the challenges for future reprogrammed biosynthesis. Such a reprogramming of NRPSs would immediately spur chances to generate analogues of existing drugs or new compound libraries of otherwise nearly inaccessible compound structures.
Collapse
Affiliation(s)
- Roderich D Süssmuth
- Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124, 10623, Berlin, Germany
| | - Andi Mainz
- Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124, 10623, Berlin, Germany
| |
Collapse
|
7
|
Süssmuth RD, Mainz A. Nicht-ribosomale Peptidsynthese - Prinzipien und Perspektiven. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201609079] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Roderich D. Süssmuth
- Technische Universität Berlin; Institut für Chemie; Straße des 17. Juni 124 10623 Berlin Deutschland
| | - Andi Mainz
- Technische Universität Berlin; Institut für Chemie; Straße des 17. Juni 124 10623 Berlin Deutschland
| |
Collapse
|
8
|
Shapiro JA, Wencewicz TA. Structure–function studies of acinetobactin analogs. Metallomics 2017; 9:463-470. [DOI: 10.1039/c7mt00064b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
9
|
|
10
|
Xie P, Ma M, Rateb ME, Shaaban K, Yu Z, Huang SX, Zhao LX, Zhu X, Yan Y, Peterson R, Lohman JR, Yang D, Yin M, Rudolf JD, Jiang Y, Duan Y, Shen B. Biosynthetic potential-based strain prioritization for natural product discovery: a showcase for diterpenoid-producing actinomycetes. JOURNAL OF NATURAL PRODUCTS 2014; 77:377-87. [PMID: 24484381 PMCID: PMC3963700 DOI: 10.1021/np401063s] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Indexed: 05/09/2023]
Abstract
Natural products remain the best sources of drugs and drug leads and serve as outstanding small-molecule probes to dissect fundamental biological processes. A great challenge for the natural product community is to discover novel natural products efficiently and cost effectively. Here we report the development of a practical method to survey biosynthetic potential in microorganisms, thereby identifying the most promising strains and prioritizing them for natural product discovery. Central to our approach is the innovative preparation, by a two-tiered PCR method, of a pool of pathway-specific probes, thereby allowing the survey of all variants of the biosynthetic machineries for the targeted class of natural products. The utility of the method was demonstrated by surveying 100 strains, randomly selected from our actinomycete collection, for their biosynthetic potential of four classes of natural products, aromatic polyketides, reduced polyketides, nonribosomal peptides, and diterpenoids, identifying 16 talented strains. One of the talented strains, Streptomyces griseus CB00830, was finally chosen to showcase the discovery of the targeted classes of natural products, resulting in the isolation of three diterpenoids, six nonribosomal peptides and related metabolites, and three polyketides. Variations of this method should be applicable to the discovery of other classes of natural products.
Collapse
Affiliation(s)
- Pengfei Xie
- Department
of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Ming Ma
- Department
of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Mostafa E. Rateb
- Department
of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Khaled
A. Shaaban
- Department
of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Zhiguo Yu
- Department
of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Sheng-Xiong Huang
- Department
of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Li-Xing Zhao
- Yunnan
Institute of Microbiology, Yunnan University, Kunming, Yunnan 650091, People’s Republic
of China
| | - Xiangcheng Zhu
- Hunan
Engineering Research Center of Combinatorial Biosynthesis and Natural
Product Drug Discovery, Changsha, Hunan 410329, People’s Republic of China
- Xiangya
International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, People’s Republic of China
| | - Yijun Yan
- Department
of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Ryan
M. Peterson
- Department
of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
- Division
of Pharmaceutical Sciences, University of
Wisconsin−Madison, Madison, Wisconsin 53705, United States
| | - Jeremy R. Lohman
- Department
of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Dong Yang
- Department
of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Min Yin
- Department
of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Jeffrey D. Rudolf
- Department
of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Yi Jiang
- Yunnan
Institute of Microbiology, Yunnan University, Kunming, Yunnan 650091, People’s Republic
of China
| | - Yanwen Duan
- Hunan
Engineering Research Center of Combinatorial Biosynthesis and Natural
Product Drug Discovery, Changsha, Hunan 410329, People’s Republic of China
- Xiangya
International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, People’s Republic of China
| | - Ben Shen
- Hunan
Engineering Research Center of Combinatorial Biosynthesis and Natural
Product Drug Discovery, Changsha, Hunan 410329, People’s Republic of China
- Division
of Pharmaceutical Sciences, University of
Wisconsin−Madison, Madison, Wisconsin 53705, United States
- Department
of Molecular Therapeutics, The Scripps Research
Institute, Jupiter, Florida 33458, United
States
- Natural Products
Library Initiative, The Scripps Research
Institute, Jupiter, Florida 33458, United
States
| |
Collapse
|
11
|
Soe CZ, Pakchung AAH, Codd R. Directing the Biosynthesis of Putrebactin or Desferrioxamine B in Shewanella putrefaciens through the Upstream Inhibition of Ornithine Decarboxylase. Chem Biodivers 2012; 9:1880-90. [DOI: 10.1002/cbdv.201200014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Ghosh P, Rathinasabapathi B, Ma LQ. Arsenic-resistant bacteria solubilized arsenic in the growth media and increased growth of arsenic hyperaccumulator Pteris vittata L. BIORESOURCE TECHNOLOGY 2011; 102:8756-8761. [PMID: 21840210 DOI: 10.1016/j.biortech.2011.07.064] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 07/14/2011] [Accepted: 07/19/2011] [Indexed: 05/31/2023]
Abstract
The role of arsenic-resistant bacteria (ARB) in arsenic solubilization from growth media and growth enhancement of arsenic-hyperaccumulator Pteris vittata L. was examined. Seven ARB (tolerant to 10 mM arsenate) were isolated from the P. vittata rhizosphere and identified by 16S rRNA sequencing as Pseudomonas sp., Comamonas sp. and Stenotrophomonas sp. During 7-d hydroponic experiments, these bacteria effectively solubilized arsenic from the growth media spiked with insoluble FeAsO₄ and AlAsO₄ minerals (from < 5 μg L⁻¹ to 5.04-7.37 mg L⁻¹ As) and enhanced plant arsenic uptake (from 18.1-21.9 to 35.3-236 mg kg⁻¹ As in the fronds). Production of (1) pyochelin-type siderophores by ARB (fluorescent under ultraviolet illumination and characterized with thin layer chromatography) and (2) root exudate (dissolved organic C) by P. vittata may be responsible for As solubilization. Increase in P. vittata root biomass from 1.5-2.2 to 3.4-4.2 g/plant dw by ARB and by arsenic was associated with arsenic-induced plant P uptake. Arsenic resistant bacteria may have potential to enhance phytoremediation of arsenic-contaminated soils by P. vittata.
Collapse
Affiliation(s)
- Piyasa Ghosh
- Soil and Water Science Department, University of Florida, Gainesville, FL 32611, USA
| | | | | |
Collapse
|
13
|
Metabolism of fluoroorganic compounds in microorganisms: impacts for the environment and the production of fine chemicals. Appl Microbiol Biotechnol 2009; 84:617-29. [PMID: 19629474 DOI: 10.1007/s00253-009-2127-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 07/02/2009] [Accepted: 07/02/2009] [Indexed: 10/20/2022]
Abstract
Incorporation of fluorine into an organic compound can favourably alter its physicochemical properties with respect to biological activity, stability and lipophilicity. Accordingly, this element is found in many pharmaceutical and industrial chemicals. Organofluorine compounds are accepted as substrates by many enzymes, and the interactions of microorganisms with these compounds are of relevance to the environment and the fine chemicals industry. On the one hand, the microbial transformation of organofluorines can lead to the generation of toxic compounds that are of environmental concern, yet similar biotransformations can yield difficult-to-synthesise products and intermediates, in particular derivatives of biologically active secondary metabolites. In this paper, we review the historical and recent developments of organofluorine biotransformation in microorganisms and highlight the possibility of using microbes as models of fluorinated drug metabolism in mammals.
Collapse
|
14
|
Liyanage W, Weerasinghe L, Strong RK, Del Valle JR. Synthesis of carbapyochelins via diastereoselective azidation of 5-(ethoxycarbonyl)methylproline derivatives. J Org Chem 2008; 73:7420-3. [PMID: 18698823 PMCID: PMC2802343 DOI: 10.1021/jo801294p] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two configurationally stable carbon-based analogues of pyochelin have been prepared from Boc-pyroglutamic acid-tert-butyl ester in 11 and 13 steps. Introduction of the amino group was achieved by a highly diastereoselective electrophilic azidation reaction to afford novel bis-alpha-amino acid proline derivatives.
Collapse
|
15
|
Weissman KJ. Mutasynthesis – uniting chemistry and genetics for drug discovery. Trends Biotechnol 2007; 25:139-42. [PMID: 17306390 DOI: 10.1016/j.tibtech.2007.02.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 01/05/2007] [Accepted: 02/06/2007] [Indexed: 11/28/2022]
Abstract
Mutasynthesis couples the power of chemical synthesis with molecular biology to generate derivatives of medicinally valuable, natural products. Recently, this technique has been exploited by Cambridge-based biotech company Biotica Technology Ltd, and their collaborators, to generate promising new variants of the polyketide anti-cancer compounds rapamycin and borrelidin.
Collapse
Affiliation(s)
- Kira J Weissman
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK.
| |
Collapse
|
16
|
Kirschning A, Taft F, Knobloch T. Total synthesis approaches to natural product derivatives based on the combination of chemical synthesis and metabolic engineering. Org Biomol Chem 2007; 5:3245-59. [PMID: 17912378 DOI: 10.1039/b709549j] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Secondary metabolites are an extremely diverse and important group of natural products with industrial and biomedical implications. Advances in metabolic engineering of both native and heterologous secondary metabolite producing organisms have allowed the directed synthesis of desired novel products by exploiting their biosynthetic potentials. Metabolic engineering utilises knowledge of cellular metabolism to alter biosynthetic pathways. An important technique that combines chemical synthesis with metabolic engineering is mutasynthesis (mutational biosynthesis; MBS), which advanced from precursor-directed biosynthesis (PDB). Both techniques are based on the cellular uptake of modified biosynthetic intermediates and their incorporation into complex secondary metabolites. Mutasynthesis utilises genetically engineered organisms in conjunction with feeding of chemically modified intermediates. From a synthetic chemist's point of view the concept of mutasynthesis is highly attractive, as the method combines chemical expertise with Nature's synthetic machinery and thus can be exploited to rapidly create small libraries of secondary metabolites. However, in each case, the method has to be critically compared with semi- and total synthesis in terms of practicability and efficiency. Recent developments in metabolic engineering promise to further broaden the scope of outsourcing chemically demanding steps to biological systems.
Collapse
Affiliation(s)
- Andreas Kirschning
- Institute of Organic Chemistry, Leibniz University Hannover, and Center of Biomolecular Drug Research (BMWZ), Schneiderberg 1b, 30167 Hannover, Germany.
| | | | | |
Collapse
|
17
|
Weist S, Süssmuth RD. Mutational biosynthesis—a tool for the generation of structural diversity in the biosynthesis of antibiotics. Appl Microbiol Biotechnol 2005; 68:141-50. [PMID: 15702315 DOI: 10.1007/s00253-005-1891-8] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2004] [Revised: 12/17/2004] [Accepted: 12/19/2004] [Indexed: 10/25/2022]
Abstract
Natural products represent an important source of drugs in a number of therapeutic fields, e.g. antiinfectives and cancer therapy. Natural products are considered as biologically validated lead structures, and evolution of compounds with novel or enhanced biological properties is expected from the generation of structural diversity in natural product libraries. However, natural products are often structurally complex, thus precluding reasonable synthetic access for further structure-activity relationship studies. As a consequence, natural product research involves semisynthetic or biotechnological approaches. Among the latter are mutasynthesis (also known as mutational biosynthesis) and precursor-directed biosynthesis, which are based on the cellular uptake and incorporation into complex antibiotics of relatively simple biosynthetic building blocks. This appealing idea, which has been applied almost exclusively to bacteria and fungi as producing organisms, elegantly circumvents labourious total chemical synthesis approaches and exploits the biosynthetic machinery of the microorganism. The recent revitalization of mutasynthesis is based on advancements in both chemical syntheses and molecular biology, which have provided a broader available substrate range combined with the generation of directed biosynthesis mutants. As an important tool in supporting combinatorial biosynthesis, mutasynthesis will further impact the future development of novel secondary metabolite structures.
Collapse
Affiliation(s)
- S Weist
- Biologische Chemie/Institut für Chemie, Technische Universität Berlin, 10623 Berlin, Germany
| | | |
Collapse
|
18
|
Galm U, Dessoy MA, Schmidt J, Wessjohann LA, Heide L. In vitro and in vivo production of new aminocoumarins by a combined biochemical, genetic, and synthetic approach. ACTA ACUST UNITED AC 2004; 11:173-83. [PMID: 15123279 DOI: 10.1016/j.chembiol.2004.01.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2003] [Revised: 11/07/2003] [Accepted: 11/10/2003] [Indexed: 11/21/2022]
Abstract
The aminocoumarin antibiotics clorobiocin, novobiocin, and coumermycin A(1) are inhibitors of bacterial gyrase. Their chemical structures contain amide bonds, formed between an aminocoumarin ring and an aromatic acyl component, which is 3-dimethylallyl-4-hydroxybenzoate in the case of novobiocin and clorobiocin. These amide bonds are formed under catalysis of the gene products of cloL, novL, and couL, respectively. We first examined the substrate specificity of the purified amide synthetases CloL, NovL, and CouL for the various analogs of the prenylated benzoate moiety. We then generated new aminocoumarin antibiotics by feeding synthetic analogs of the 3-dimethylallyl-4-hydroxybenzoate moiety to a mutant strain defective in the biosynthesis of the prenylated benzoate moiety. This resulted in the formation of 32 new aminocoumarin compounds. The structures of these compounds were elucidated using FAB-MS and (1)H-NMR spectroscopy.
Collapse
Affiliation(s)
- Ute Galm
- Pharmazeutische Biologie, Pharmazeutisches Institut, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
19
|
Huston WM, Potter AJ, Jennings MP, Rello J, Hauser AR, McEwan AG. Survey of ferroxidase expression and siderophore production in clinical isolates of Pseudomonas aeruginosa. J Clin Microbiol 2004; 42:2806-9. [PMID: 15184477 PMCID: PMC427835 DOI: 10.1128/jcm.42.6.2806-2809.2004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ferroxidase (encoded by the mco gene), a component of a ferrous iron uptake pathway in Pseudomonas aeruginosa, was detected in all of the 35 respiratory clinical isolates surveyed; in contrast, considerable variation in siderophore expression was observed. The ubiquitous expression of this periplasmic ferroxidase suggests that it plays a key role in iron uptake in this opportunistic pathogen.
Collapse
Affiliation(s)
- Wilhelmina M Huston
- Centre for Metals in Biology, Department of Microbiology and Parasitology, School of Molecular and Microbial Sciences, University of Queensland, St Lucia, 4072, Queensland, Australia
| | | | | | | | | | | |
Collapse
|
20
|
Budzikiewicz H. Siderophores of the Pseudomonadaceae sensu stricto (fluorescent and non-fluorescent Pseudomonas spp.). FORTSCHRITTE DER CHEMIE ORGANISCHER NATURSTOFFE = PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS. PROGRES DANS LA CHIMIE DES SUBSTANCES ORGANIQUES NATURELLES 2004; 87:81-237. [PMID: 15079896 DOI: 10.1007/978-3-7091-0581-8_2] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- H Budzikiewicz
- Institut für Organische Chemie, Universität zu Köln, Germany
| |
Collapse
|
21
|
Hojati Z, Milne C, Harvey B, Gordon L, Borg M, Flett F, Wilkinson B, Sidebottom PJ, Rudd BAM, Hayes MA, Smith CP, Micklefield J. Structure, biosynthetic origin, and engineered biosynthesis of calcium-dependent antibiotics from Streptomyces coelicolor. CHEMISTRY & BIOLOGY 2002; 9:1175-87. [PMID: 12445768 DOI: 10.1016/s1074-5521(02)00252-1] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The calcium-dependent antibiotic (CDA), from Streptomyces coelicolor, is an acidic lipopeptide comprising an N-terminal 2,3-epoxyhexanoyl fatty acid side chain and several nonproteinogenic amino acid residues. S. coelicolor grown on solid media was shown to produce several previously uncharacterized peptides with C-terminal Z-dehydrotryptophan residues. The CDA biosynthetic gene cluster contains open reading frames encoding nonribosomal peptide synthetases, fatty acid synthases, and enzymes involved in precursor supply and tailoring of the nascent peptide. On the basis of protein sequence similarity and chemical reasoning, the biosynthesis of CDA is rationalized. Deletion of SCO3229 (hmaS), a putative 4-hydroxymandelic acid synthase-encoding gene, abolishes CDA production. The exogenous supply of 4-hydroxymandelate, 4-hydroxyphenylglyoxylate, or 4-hydroxyphenylglycine re-establishes CDA production by the DeltahmaS mutant. Feeding analogs of these precursors to the mutant resulted in the directed biosynthesis of novel lipopeptides with modified arylglycine residues.
Collapse
Affiliation(s)
- Zohreh Hojati
- Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology (UMIST), Sackville Street, PO Box 88, Manchester M60 1QD, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
DeWitte JJ, Cox CD, Rasmussen GT, Britigan BE. Assessment of structural features of the pseudomonas siderophore pyochelin required for its ability to promote oxidant-mediated endothelial cell injury. Arch Biochem Biophys 2001; 393:236-44. [PMID: 11556810 DOI: 10.1006/abbi.2001.2517] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously showed that iron chelated to the Pseudomonas aeruginosa siderophore pyochelin enhances oxidant-mediated injury to pulmonary artery endothelial cells by catalyzing hydroxyl radical (HO(*)) formation. Therefore, we examined pyochelin structural/chemical features that may be important in this process. Five pyochelin analogues were examined for (i) capacity to accentuate oxidant-mediated endothelial cell injury, (ii) HO(*) catalytic ability, (iii) iron transfer to endothelial cells, and (iv) hydrophobicity. All compounds catalyzed similar HO(*) production, but only the hydrophobic ones containing a thiazolidine ring enhanced cell injury. Transfer of iron to endothelial cells did not correlate with cytotoxicity. Finally, binding of Fe(3+) by pyochelin led to Fe(2+) formation, perhaps explaining how Fe(3+)-pyochelin augments H(2)O(2)-mediated cell injury via HO(*) formation. The ability to bind iron in a catalytic form and the molecule's thiazolidine ring, which increases its hydrophobicity, are key to pyochelin's cytotoxicity. Reduction of Fe(3+) to Fe(2+) may also be important.
Collapse
Affiliation(s)
- J J DeWitte
- Department of Internal Medicine and Research Service, VA Medical Center-Iowa City, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
23
|
An Improved Stereocontrolled Synthesis of Pyochelin, Siderophore of Pseudomonas aeruginosa and Burkholderia cepacia. Tetrahedron 2000. [DOI: 10.1016/s0040-4020(99)00946-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
|
25
|
|
26
|
Abstract
Siderophores are low molecular weight iron chelators, produced by virtually all bacteria, fungi and some plants. They serve to deliver the essential element iron, barely soluble under aerobic conditions, into microbial cells. Siderophores are therefore important secondary metabolites which are very often based on amino acids and their derivatives. Biosynthesis, transport, regulation and chemical synthesis of natural siderophores and their analogues is of considerable interest for the protein and peptide chemist. This review gives an overview of the structural classes of peptidic siderophores, along with data on their biosynthesis. On a number of representative examples, strategies and schemes of their chemical synthesis are described.
Collapse
Affiliation(s)
- H Drechsel
- Universität Tübingen, Institut für Organische Chemie, Germany
| | | |
Collapse
|
27
|
Hutchinson C. Antibiotics from Genetically Engineered Microorganisms. DRUGS AND THE PHARMACEUTICAL SCIENCES 1997. [DOI: 10.1201/b14856-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
28
|
Hassett DJ, Sokol PA, Howell ML, Ma JF, Schweizer HT, Ochsner U, Vasil ML. Ferric uptake regulator (Fur) mutants of Pseudomonas aeruginosa demonstrate defective siderophore-mediated iron uptake, altered aerobic growth, and decreased superoxide dismutase and catalase activities. J Bacteriol 1996; 178:3996-4003. [PMID: 8763923 PMCID: PMC178152 DOI: 10.1128/jb.178.14.3996-4003.1996] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Pseudomonas aeruginosa is considered a strict aerobe that possesses several enzymes important in the disposal of toxic oxygen reduction products including iron- and manganese-cofactored superoxide dismutase and catalase. At present, the nature of the regulation of these enzymes in P. aeruginosa Is not understood. To address these issues, we used two mutants called A4 and C6 which express altered Fur (named for ferric uptake regulation) proteins and constitutively produce the siderophores pyochelin and pyoverdin. Both mutants required a significant lag phase prior to log-phase aerobic growth, but this lag was not as apparent when the organisms were grown under microaerobic conditions. The addition of iron salts to mutant A4 and, to a greater extent, C6 cultures allowed for an increased growth rate under both conditions relative to that of bacteria without added iron. Increased manganese superoxide dismutase (Mn-SOD) and decreased catalase activities were also apparent in the mutants, although the second catalase, KatB, was detected in cell extracts of each fur mutant. Iron deprivation by the addition of the iron chelator 2,2'-dipyridyl to wild-type bacteria produced an increase in Mn-SOD activity and a decrease in total catalase activity, similar to the fur mutant phenotype. Purified wild-type Fur bound more avidly than mutant Fur to a PCR product containing two palindromic 19-bp "iron box" regions controlling expression of an operon containing the sodA gene that encodes Mn-SOD. All mutants were defective in both ferripyochelin- and ferripyoverdin-mediated iron uptake. Two mutants of strain PAO1, defective in pyoverdin but not pyochelin biosynthesis, produced increased Mn-SOD activity. Sensitivity to both the redox-cycling agent paraquat and hydrogen peroxide was greater in each mutant than in the wild-type strain. In summary, the results indicate that mutations in the P. aeruginosa fur locus affect aerobic growth and SOD and catalase activities in P. aeruginosa. We postulate that reduced siderophore-mediated iron uptake, especially that by pyoverdin, may be one possible mechanism contributing to such effect.
Collapse
Affiliation(s)
- D J Hassett
- Department of Molecular Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0524, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Siderophores from fluorescent pseudomonas. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1572-5995(96)80019-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
30
|
Abstract
If we include beta-lactam antibiotics on the grounds that they have the same biosynthetic origin, peptides remain commercially the most important group of pharmaceuticals. However, our increasing knowledge of the genetic and enzymic background to biosynthesis, and of the regulation of metabolite production, will eventually bring a more unified approach to bioactive compounds. Mixing of structural types will become important, and we will be able to use our knowledge of biosynthetic genes and their regulatory networks. We will also benefit from an appreciation of the modular organization of catalytic functions, substrate transfer mechanisms and signalling between interacting enzymes. Since all of this is, in fact, the basis for enzymic synthesis of complex natural products in vivo, the exploitation of living cells requires mastery of a formidable network of cellular controls and compartments. For the present we are able to see fascinating connections emerging between genes in a variety of reaction sequences, not only in biosynthetic but also in degradative pathways. Peptide synthetases show surprising similarities to acylcoenzyme A synthetases, which are key enzymes in forming polyketides as well as in generating the CoA-derivatives that serve as substrates in degradative pathways. 4'-Phosphopantetheine, the functional half of CoA, plays a key role as the intrinsic transfer cofactor in various multienzyme systems. The comparatively small catalogue of reactions modifying natural products, notably epimerization, methylation, hydroxylation, decarboxylation (of peptides) and reduction/dehydration (of polyketides) can be found within or amongst biosynthetic proteins, generally as modules and organized in a specified order. The biochemist is coming close to the synthetic chemist's recipes, and may soon be recruiting proteins to carry them out.
Collapse
Affiliation(s)
- H von Döhren
- Institut für Biochemie und Molekulare Biologie Technische Universitt Berlin, Germany
| |
Collapse
|
31
|
Visca P, Colotti G, Serino L, Verzili D, Orsi N, Chiancone E. Metal regulation of siderophore synthesis in Pseudomonas aeruginosa and functional effects of siderophore-metal complexes. Appl Environ Microbiol 1992; 58:2886-93. [PMID: 1444402 PMCID: PMC183023 DOI: 10.1128/aem.58.9.2886-2893.1992] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Pseudomonas aeruginosa synthesizes two siderophores, pyochelin and pyoverdin, characterized by widely different structures, physicochemical properties, and affinities for Fe(III). Titration experiments showed that pyochelin, which is endowed with a relatively low affinity for Fe(III), binds other transition metals, such as Cu(II), Co(II), Mo(VI), and Ni(II), with appreciable affinity. In line with these observations, Fe(III) and Co(II) at 10 microM or Mo(VI), Ni(II), and Cu(II) at 100 microM repressed pyochelin synthesis and reduced expression of iron-regulated outer membrane proteins of 75, 68, and 14 kDa. In contrast, pyoverdin synthesis and expression of the 80-kDa receptor protein were affected only by Fe(III). All of the metals tested, except Mo(VI), significantly promoted P. aeruginosa growth in metal-poor medium; Mo(VI), Ni(II), and Co(II) were more efficient as pyochelin complexes than the free metal ions and the siderophore. The observed correlation between the affinity of pyochelin for Fe(III), Co(II), and Mo(VI) and the functional effects of these metals indicates that pyochelin may play a role in their delivery to P. aeruginosa.
Collapse
Affiliation(s)
- P Visca
- Institute of Microbiology, University La Sapienza, Rome, Italy
| | | | | | | | | | | |
Collapse
|