1
|
Bucher E, Reinders J, Mirouze M. Epigenetic control of transposon transcription and mobility in Arabidopsis. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:503-10. [PMID: 22940592 DOI: 10.1016/j.pbi.2012.08.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 08/16/2012] [Indexed: 05/23/2023]
Abstract
The mobility of genetic elements called transposable elements (TEs) was discovered half a century ago by Barbara McClintock. Although she had recognized them as chromosomal controlling elements, for much of the consequent time TEs were primarily considered as parasites of the host genome. However the recent explosion of discoveries in the fields of genomics and epigenetics have unambiguously shown the importance of TEs in genome function and evolution. Bursts of endogenous TEs have been reported in plants with epigenetic misregulation, revealing the molecular mechanisms underlying their control. We review here the different steps in TE invasion of the host genome involving epigenetic control and environmental stress responses. As TEs propagate in plant genomes and attract epigenetic marks, their neo-insertions can lead to the formation of new, heritable epigenetic variants (epialleles) of genes in their vicinity and impact on host gene regulatory networks. The epigenetic interplay between TE and genes thus plays a crucial role in the TE-host co-evolution.
Collapse
Affiliation(s)
- Etienne Bucher
- Botanical Institute, University of Basel, Hebelstrasse 1, 4056 Basel, Switzerland.
| | | | | |
Collapse
|
2
|
Vitte C, Panaud O. LTR retrotransposons and flowering plant genome size: emergence of the increase/decrease model. Cytogenet Genome Res 2005; 110:91-107. [PMID: 16093661 DOI: 10.1159/000084941] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Accepted: 04/14/2004] [Indexed: 12/11/2022] Open
Abstract
Long Terminal Repeat (LTR) retrotransposons are ubiquitous components of plant genomes. Because of their copy-and-paste mode of transposition, these elements tend to increase their copy number while they are active. In addition, it is now well established that the differences in genome size observed in the plant kingdom are accompanied by variations in LTR retrotransposon content, suggesting that LTR retrotransposons might be important players in the evolution of plant genome size, along with polyploidy. The recent availability of large genomic sequences for many crop species has made it possible to examine in detail how LTR retrotransposons actually drive genomic changes in plants. In the present paper, we provide a review of the recent publications that have contributed to the knowledge of plant LTR retrotransposons, as structural components of the genomes, as well as from an evolutionary genomic perspective. These studies have shown that plant genomes undergo genome size increases through bursts of retrotransposition, while there is a counteracting process that tends to eliminate the transposed copies from the genomes. This process involves recombination mechanisms that occur either between the LTRs of the elements, leading to the formation of solo-LTRs, or between direct repeats anywhere in the sequence of the element, leading to internal deletions. All these studies have led to the emergence of a new model for plant genome evolution that takes into account both genome size increases (through retrotransposition) and decreases (through solo-LTR and deletion formation). In the conclusion, we discuss this new model and present the future prospects in the study of plant genome evolution in relation to the activity of transposable elements.
Collapse
Affiliation(s)
- C Vitte
- Laboratoire Ecologie, Systématique et Evolution, Université Paris-Sud, Orsay, France
| | | |
Collapse
|
3
|
Vershinin AV, Druka A, Alkhimova AG, Kleinhofs A, Heslop-Harrison JS. LINEs and gypsy-like retrotransposons in Hordeum species. PLANT MOLECULAR BIOLOGY 2002; 49:1-14. [PMID: 12008894 DOI: 10.1023/a:1014469830680] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
LINE and gypsy-like retroelements were studied in the genome of Hordeum vulgare, and compared with the representatives of the major sections of the genus Hordeum. We isolated reverse transcriptase (RT) genes from four gypsy-like and three LINE families using PCR primers specific for the corresponding conserved domains. A full-length barley LINE of 6295 bp, named BLIN, was isolated from a BAC genomic library. BLIN looks alien in the barley genome because its G+C content is 62% compared to an average of 45%. The BLIN nucleotide sequence showed it was structurally intact with the features typical of non-LTR retrotransposons, including 16 bp target site duplications, two short cysteine motifs, and two degenerate open reading frames (ORFs). The high degeneracy was also found in RT domain of both gypsy-like and, particularly, LINE families. The copy numbers of the gypsy-like families were relatively low compared to well-characterized copia-like element BARE-1. Each gypsy-like family gave unique RFLP patterns when hybridized to genomic DNA from each of the four basic Hordeum genomes. H. vulgare (I genome) had accumulated more copies than the wild Hordeum species (H, X, Y genomes), with the other I genome species, H. bulbosum, being intermediate. Analysis of the BAC library and in situ hybridization with LINE RT domains showed the low copy number of the LINE families, but there was little correlation between hybridization patterns and the division of the genus into four basic genomes. The distribution and content of gypsy retrotransposons in the BAC library indicated that a few copies are nested, although most are present as single, distinct, copies. Our results suggest that the major groups of retroelements make individual contributions to the shape of the plant genome; the factors involved in their amplification and distribution are independent, also varying among species.
Collapse
|
4
|
Terol J, Castillo MC, Bargues M, Pérez-Alonso M, de Frutos R. Structural and evolutionary analysis of the copia-like elements in the Arabidopsis thaliana genome. Mol Biol Evol 2001; 18:882-92. [PMID: 11319272 DOI: 10.1093/oxfordjournals.molbev.a003870] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The analysis of 460 kb of genomic sequence of Arabidopsis thaliana chromosome III allowed us to identify two new transposable elements named AtC1 and AtC2. AtC1 shows identical long terminal repeats (LTRs) and all the structural features characteristic of the copia-like active elements. AtC2 is also a full copia-like element, but a putative stop codon in the open reading frame (ORF) would produce a truncated protein. In order to identify the copia-like fraction of the A. thaliana genome, a careful computer-based analysis of the available sequences (which correspond to 92% of the genome) was performed. Approximately 300 nonredundant copia-like sequences homologous to AtC1 and AtC2 were detected, which showed an extreme heterogeneity in size and degree of conservation. This number of copies would correspond to approximately 1% of the A. thaliana genome. Seventy-one sequences were selected for further analysis, with 23 of them being full complete elements. Five corresponded to previously described ones, and the remaining ones, named AtC3 to AtC18 are new elements described in this work. Most of these elements presented a putative functional ORF, nearly identical LTRs, and the other elements necessary for retrotransposon activity. Phylogenetic trees, supported by high bootstrap values, indicated that these 23 elements could be considered separate families. In turn, these 23 families could be clustered into six major lineages, named copia I-VI. Most of the 71 analyzed sequences clustered into these six main clades. The widespread presence of these copia-like superfamilies throughout plant genomes is discussed.
Collapse
Affiliation(s)
- J Terol
- Departamento de Genética, Facultad de Ciencias Biológicas, Universitat de València, Valencia, Spain
| | | | | | | | | |
Collapse
|
5
|
Steimer A, Amedeo P, Afsar K, Fransz P, Mittelsten Scheid O, Paszkowski J. Endogenous targets of transcriptional gene silencing in Arabidopsis. THE PLANT CELL 2000; 12:1165-78. [PMID: 10899982 PMCID: PMC149057 DOI: 10.1105/tpc.12.7.1165] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2000] [Accepted: 05/18/2000] [Indexed: 05/18/2023]
Abstract
Transcriptional gene silencing (TGS) frequently inactivates foreign genes integrated into plant genomes but very likely also suppresses an unknown subset of chromosomal information. Accordingly, RNA analysis of mutants impaired in silencing should uncover endogenous targets of this epigenetic regulation. We compared transcripts from wild-type Arabidopsis carrying a silent transgene with RNA from an isogenic transgene-expressing TGS mutant. Two cDNA clones were identified representing endogenous RNA expressed only in the mutant. The synthesis of these RNAs was found to be released in several mutants affected in TGS, implying that TGS in general and not a particular mutation controls the transcriptional activity of their templates. Detailed analysis revealed that the two clones are part of longer transcripts termed TSI (for transcriptionally silent information). Two major classes of related TSI transcripts were found in a mutant cDNA library. They are synthesized from repeats present in heterochromatic pericentromeric regions of Arabidopsis chromosomes. These repeats share sequence homology with the 3' terminal part of the putative retrotransposon Athila. However, the transcriptional activation does not include the transposon itself and does not promote its movement. There is no evidence for a general release of silencing from retroelements. Thus, foreign genes in plants encounter the epigenetic control normally directed, at least in part, toward a subset of pericentromeric repeats.
Collapse
Affiliation(s)
- A Steimer
- Friedrich Miescher Institute, Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
6
|
Marín I, Lloréns C. Ty3/Gypsy retrotransposons: description of new Arabidopsis thaliana elements and evolutionary perspectives derived from comparative genomic data. Mol Biol Evol 2000; 17:1040-9. [PMID: 10889217 DOI: 10.1093/oxfordjournals.molbev.a026385] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We performed a comprehensive analysis of the evolution of the Ty3/GYPSY: group of long-terminal-repeat retrotransposons (also known as METAVIRIDAE:). Exhaustive database searches allowed us to detect novel elements of this group. In particular, the Arabidopsis thaliana and Drosophila melanogaster genome sequencing projects have recently disclosed a large number of new Ty3/GYPSY: sequences. So far, elements of three different Ty3/GYPSY: lineages had been described for A. thaliana. Here, we describe six new lineages, which we have called Tit-for-tat1, Tit-for-tat2, Gimli, Gloin, Legolas, and Little Athila. We confirm that plant Ty3/GYPSY: elements form two main monophyletic groups. Moreover, our results suggest that at least four independent ancestral lineages existed before the monocot-dicot split, about 200 MYA. Twelve sequences from D. melanogaster that may correspond to new elements are also described. Some of these sequences are similar to those of OSVALDO: and Ulysses, two elements of the OSVALDO: clade that had never before been described for D. melanogaster. Comparative analyses of multiple organisms, some of them with completely sequenced genomes, show that the number of lineages of Ty3/GYPSY: elements is very variable. Thus, while only 1 lineage is present in Saccharomyces cerevisiae, at least 6 exist in Caenorhabditis elegans, at least 9 are present in the A. thaliana, and perhaps 20 are present in D. melanogaster. Finally, we suggest that the presence of a chromodomain-containing integrase, a feature of some closely related Ty3/GYPSY: elements of fungi, plants, and animals, may be used to define a new METAVIRIDAE: genus.
Collapse
Affiliation(s)
- I Marín
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva and Departamento de Genética, Universidad de Valencia, Spain.
| | | |
Collapse
|
7
|
Dodeweerd AMV, Hall CR, Bent EG, Johnson SJ, Bevan MW, Bancroft I. Identification and analysis of homoeologous segments of the genomes of rice and Arabidopsis thaliana. Genome 1999. [DOI: 10.1139/g99-033] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using contiguous genomic DNA sequences of Arabidopsis thaliana, we were able to identify a region of conserved structure in the genome of rice. The conserved, and presumptive homoeologous segments, are 194 kb and 219-300 kb in size in Arabidopsis and rice, respectively. They contain five homologous genes, distinguished in order by a single inversion. These represent the first homoeologous segments identified in the genomes of a dicot and a monocot, demonstrating that fine-scale conservation of genome structure exists and is detectable across this major divide in the angiosperms. The conserved framework of genes identified is interspersed with non-conserved genes, indicating that mechanisms beyond segmental inversions and translocations need to be invoked to fully explain plant genome evolution, and that the benefits of comparative genomics over such large taxonomic distances may be limited.Key words: plant genomics, comparative mapping.
Collapse
|
8
|
Adé J, Belzile FJ. Hairpin elements, the first family of foldback transposons (FTs) in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 19:591-597. [PMID: 10504580 DOI: 10.1046/j.1365-313x.1999.00567.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We report here on the identification in Arabidopsis thaliana of a new family of transposable elements named Hairpin. These elements are related to foldback transposons (FTs), a large and heterogeneous group of transposable elements first described in Drosophila and recently in Solanaceae. Hairpin elements are the first family of FTs reported in Arabidopsis thaliana and the first family of FTs of type 3 to be described in the plant kingdom. In contrast to previous FTs described, Hairpin appears to be a homogeneous family in size (238 +/- 7 bp) as well as in structure. Hairpin elements are dispersed in the Arabidopsis genome and Southern hybridization revealed that they are present in relatively low copy numbers. Finally, we discuss the potential usefulness of these elements in studying the phylogenetic relationship between Arabidopsis ecotypes.
Collapse
Affiliation(s)
- J Adé
- Département de phytologie, Pavillon C.-E. Marchand, Université Laval, Ste-Foy, Canada
| | | |
Collapse
|
9
|
Casacuberta E, Casacuberta JM, Puigdomènech P, Monfort A. Presence of miniature inverted-repeat transposable elements (MITEs) in the genome of Arabidopsis thaliana: characterisation of the Emigrant family of elements. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 16:79-85. [PMID: 9807830 DOI: 10.1046/j.1365-313x.1998.00267.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Although the genome of Arabidopsis thaliana has a small amount of repetitive DNA, it contains representatives of most classes of mobile elements. However, to date, no miniature inverted-repeat transposable element (MITE) has been described in this plant. Here, we describe a new family of repeated sequences that we have named Emigrant, which are dispersed in the genome of Arabidopsis and fulfil all the requirements of MITEs. These sequences are short, AT-rich, have terminal inverted repeats (TIRs), and do not seem to have any coding capacity. Evidence for the mobility of Emigrant elements has been obtained from the absence of one of these elements in a specific Arabidopsis ecotype. Emigrant is also present in the genome of different Brassicae and its TIRs are 74% identical to those of Wujin elements, a recently described family of MITEs from the yellow fever mosquito Aedes aegypti.
Collapse
Affiliation(s)
- E Casacuberta
- Departament de Genètica Molecular, Centre d'Investigació i Desenvolupament (CSIC), Barcelona, Spain
| | | | | | | |
Collapse
|
10
|
Wright DA, Voytas DF. Potential retroviruses in plants: Tat1 is related to a group of Arabidopsis thaliana Ty3/gypsy retrotransposons that encode envelope-like proteins. Genetics 1998; 149:703-15. [PMID: 9611185 PMCID: PMC1460185 DOI: 10.1093/genetics/149.2.703] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tat1 was originally identified as an insertion near the Arabidopsis thaliana SAM1 gene. We provide evidence that Tat1 is a retrotransposon and that previously described insertions are solo long terminal repeats (LTRs) left behind after the deletion of coding regions of full-length elements. Three Tat1 insertions were characterized that have retrotransposon features, including a primer binding site complementary to an A. thaliana asparagine tRNA and an open reading frame (ORF) with approximately 44% amino acid sequence similarity to the gag protein of the Zea mays retrotransposon Zeon-1. Tat1 elements have large, polymorphic 3' noncoding regions that may contain transduced DNA sequences; a 477-base insertion in the 3' noncoding region of the Tat1-3 element contains part of a related retrotransposon and sequences similar to the nontranslated leader sequence of AT-P5C1, a gene for pyrroline-5-carboxylate reductase. Analysis of DNA sequences generated by the A. thaliana genome project identified 10 families of Ty3/gypsy retrotransposons, which share up to 51 and 62% amino-acid similarity to the ORFs of Tat1 and the A. thaliana Athila element, respectively. Phylogenetic analyses resolved the plant Ty3/gypsy elements into two lineages, one of which includes homologs of Tat1 and Athila. Four families of A. thaliana elements within the Tat/Athila lineage encode a conserved ORF after integrase at a position occupied by the envelope gene in retroviruses and in some insect Ty3/gypsy retrotransposons. Like retroviral envelope genes, this ORF encodes a transmembrane domain and, in some insertions, a putative secretory signal sequence. This suggests that Tat/Athila retrotransposons may produce enveloped virions and may be infectious.
Collapse
Affiliation(s)
- D A Wright
- Department of Zoology and Genetics, Iowa State University, Ames, Iowa 50011, USA
| | | |
Collapse
|
11
|
Bhatt AM, Lister C, Crawford N, Dean C. The transposition frequency of Tag1 elements is increased in transgenic Arabidopsis lines. THE PLANT CELL 1998; 10:427-434. [PMID: 9501115 PMCID: PMC143992 DOI: 10.1105/tpc.10.3.427] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Tag1 was identified as a highly active endogenous transposable element in transgenic Arabidopsis thaliana Landsberg erecta plants carrying the maize transposable element Activator (Ac). Here, we describe experiments designed to determine the basis for the high activity of Tag1. The frequency of transposition of Tag1 elements was compared in lines containing or lacking Ac transposase to assess the effect of Ac transposase on Tag1 activity. Three populations of nontransgenic plants, including nontransformed regenerants, were also analyzed. The high level of activity of Tag1 did not correlate with the presence or absence of Ac transposase but was significantly higher in transgenic lines. This result was maintained through at least six generations after transformation. These data suggest that Tag1 transposition is stimulated by processes that occur during the Agrobacterium transformation and that thereafter remain active. Two Tag1 elements are tightly linked in the Landsberg erecta genome and map to the lower arm of chromosome 1. Tag1 elements were found in only a few A. thaliana ecotypes but were present in four other Arabidopsis species.
Collapse
Affiliation(s)
- A M Bhatt
- Department of Molecular Genetics, John Innes Centre, Colney Lane, Norwich NR4 7UH, United Kingdom
| | | | | | | |
Collapse
|
12
|
Choi JY, Lee TW, Jeon KW, Ahn TI. Evidence for symbiont-induced alteration of a host's gene expression: irreversible loss of SAM synthetase from Amoeba proteus. J Eukaryot Microbiol 1997; 44:412-9. [PMID: 9304810 DOI: 10.1111/j.1550-7408.1997.tb05717.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Symbiont-bearing xD amoebae no longer produce a 45-kDa cytoplasmic protein that functions as S-adenosylmethionine synthetase in symbiont-free D amoebae. The absence of the protein in xD amoebae is attributable to xD amoeba's failure to transcribe the corresponding gene as a result of harboring bacterial symbionts. However, xD amoebae have about half the level of enzyme activity found in D amoebae, indicating that they use an alternative source for the enzyme. xD amoebae originated from D amoebae by bacterial infection and now depend on their symbionts for survival. xD amoebae exhibit irreversible nucleolar abnormalities when their symbionts are removed, suggesting that X-bacteria supply the needed enzyme. A monoclonal antibody against the 45-kDa protein was produced and used as a probe in cloning its corresponding cDNA. The product of the cDNA was found to have S-adenosylmethionine synthetase activity. These results show how symbiotic X-bacteria may become essential cellular components of amoeba by supplementing a genetic defect for an amoeba's house-keeping gene that is brought about by an action of X-bacteria themselves. This is the first reported example in which symbionts alter the host's gene expression to block the production of an essential protein.
Collapse
MESH Headings
- Amino Acid Sequence
- Amoeba/enzymology
- Amoeba/genetics
- Amoeba/microbiology
- Animals
- Antibodies, Monoclonal
- Antibodies, Protozoan
- Bacteria/enzymology
- Bacterial Physiological Phenomena
- Base Sequence
- Cloning, Molecular
- DNA, Complementary/analysis
- DNA, Protozoan/analysis
- Gene Expression Regulation, Enzymologic
- Methionine Adenosyltransferase/chemistry
- Methionine Adenosyltransferase/genetics
- Methionine Adenosyltransferase/metabolism
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Molecular Weight
- RNA, Messenger/analysis
- RNA, Protozoan/analysis
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Symbiosis
Collapse
Affiliation(s)
- J Y Choi
- Department of Biology Education, Seoul National University, Korea
| | | | | | | |
Collapse
|
13
|
Abstract
The maize Ac/Ds transposable elements are thought to transpose via a cut-and-paste mechanism, but the intermediates formed during transposition are still unknown. In this work we present evidence that circular Ac molecules are formed in plants containing actively transposing elements. In these circles, transposon ends are joined head-to-head. The sequence at the ends' junction is variable, containing small deletions or insertions. Circles containing deleted Ac ends are probably unable to successfully reintegrate. To test the ability of circles with intact transposon ends to integrate into the genome, an artificial Ds circle was constructed by cloning the joined ends of Ac into a plasmid carrying a plant selectable marker. When such a circular Ds was introduced into tobacco protoplasts in the presence of Ac-transposase, no efficient transposase-mediated integration was observed. Although a circular transposition intermediate cannot be ruled out, the findings of circles with deleted transposon ends and the absence of transposase-mediated integration of the circular Ds suggest that some of the joined-ends-carrying elements are not transposition intermediates, but rather abortive excision products. The formation of Ac circles might account for the previously described phenomenon of Ac-loss. The origin of Ac circles and the implications for models of Ac transposition are discussed.
Collapse
MESH Headings
- Chromosomes/metabolism
- DNA Nucleotidyltransferases/metabolism
- DNA Transposable Elements/genetics
- DNA, Circular/genetics
- DNA, Circular/metabolism
- DNA, Plant/genetics
- DNA, Plant/metabolism
- DNA, Recombinant/genetics
- DNA, Recombinant/metabolism
- Genes, Reporter
- Mutagenesis, Insertional
- Plant Proteins/metabolism
- Plants, Genetically Modified
- Plants, Toxic
- Plasmids
- Sequence Deletion
- Nicotiana/genetics
- Transposases
Collapse
Affiliation(s)
- V Gorbunova
- Plant Genetics Department, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
14
|
Abstract
Arabidopsis thaliana
(Arabidopsis) has been adopted by a large number of plant biologists as the model organism in which to use a molecular genetic approach to dissect many plant processes. The small genome size of Arabidopsis and the concentration of effort on this plant species has led to an international collaboration to construct a physical map of the genome. The physical map will greatly facilitate gene isolation without the need for each laboratory to initiate chromosome walks. This, in combination with the development of efficient insertional mutagenesis systems, will mean that in the next few years the number of genes cloned from Arabidopsis will increase enormously.
Collapse
|
15
|
Wang L, Heinlein M, Kunze R. Methylation pattern of Activator transposase binding sites in maize endosperm. THE PLANT CELL 1996; 8:747-58. [PMID: 8624445 PMCID: PMC161134 DOI: 10.1105/tpc.8.4.747] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The maize transposable element Activator (Ac) transposes after replication from only one of the two daughter chromatids. It has been suggested that DNA methylation in conjunction with methylation-sensitive transposase binding to DNA may control the association of Ac transposition and replication. We present here a detailed genomic sequencing analysis of the cytosine methylation patterns of the transposase binding sites within both Ac ends in the wx-m9::Ac allele, where Ac is inserted into the tenth exon of the Waxy gene. The Ac elements in wx-m9::Ac kernels exhibit intriguing methylation patterns and fall into two distinct groups. Approximately 50% of the elements are fully unmethylated at cytosine residues through the 256 nucleotides at the 5' end (the promoter end). The other half is partially methylated between Ac residues 27 and 92. In contrast, at the 3' end, all Ac molecules are heavily methylated between residues 4372 and 4554. The more internally located Ac sequences and the flanking Waxy DNA are unmethylated. Although most methylated cytosines in Ac are in the symmetrical CpG and CpNpG arrangements, nonsymmetrical cytosine methylation is also common in the hypermethylated regions of Ac. These results suggest a model in which differential activation of transposon ends by hemimethylation controls the chromatid selectivity of transposition and the association with replication.
Collapse
Affiliation(s)
- L Wang
- Institut für Genetik und Mikrobiologie, Universität München, Germany
| | | | | |
Collapse
|
16
|
Pélissier T, Tutois S, Tourmente S, Deragon JM, Picard G. DNA regions flanking the major Arabidopsis thaliana satellite are principally enriched in Athila retroelement sequences. Genetica 1996; 97:141-51. [PMID: 8984010 DOI: 10.1007/bf00054621] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
An analysis of Arabidopsis thaliana heterochromatic regions revealed that genomic sequences immediately flanking the major 180 bp satellite are essentially made of middle repetitive sequences and that most of these sequences correspond to defective Athila retroelements. Using YAC and lambda clones, we evaluated the distribution of Athila elements in the Arabidopsis genome and showed that, despite the presence of numerous euchromatic copies, these elements are especially concentrated in or near heterochromatic regions. Sequencing of the various DNA transitions between satellite and Athila repeats provides strong evidence that most of the heterochromatic elements retrotransposed directly into 180 bp satellite clusters.
Collapse
Affiliation(s)
- T Pélissier
- URA CNRS 1940 BIOMOVE, Université Blaise Pascal, Aubiere, France
| | | | | | | | | |
Collapse
|
17
|
Affiliation(s)
- R Kunze
- Institut für Genetik, Universitat zu Köln, Germany
| |
Collapse
|
18
|
Topping JF, Lindsey K. Insertional mutagenesis and promoter trapping in plants for the isolation of genes and the study of development. Transgenic Res 1995. [DOI: 10.1007/bf01972526] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
|
20
|
Young RJ, Francis DM, St Clair DA, Taylor BH. A dispersed family of repetitive DNA sequences exhibits characteristics of a transposable element in the genus Lycopersicon. Genetics 1994; 137:581-8. [PMID: 7503823 PMCID: PMC1205980 DOI: 10.1093/genetics/137.2.581] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A segment of DNA 5' to the transcribed region of an auxin-regulated gene, ARPI, from Lycopersicon esculentum Mill. cv. VFN8 contains a sequence with the structural characteristics of a transposable element. The putative element (Lyt1) is 1340 bp long, has terminal inverted repeats of approximately 235 bp and is flanked by 9-bp direct repeats. Lyt1 has a structure similar to the Robertson's Mutator (Mu) family from maize. The terminal inverted repeats are 80% AT-rich, are 96.6% identical, and define a larger family of repetitive elements. Southern analysis and genomic dot-blot reconstructions detected at least 41 copies of Lyt1-hybridizing sequences in red-fruited Lycopersicon spp. (L. esculentum, L. pimpinellifolium and L. cheesmanii), and 2-8 copies in the green-fruited species (L. hirsutum, L. pennellii, L. peruvianum, L. chilense and L. chmielewskii). There were two to four copies in the Solanum spp. closely allied with the genus Lycopersicon (S. lycopersicoides, S. ochranthum and S. juglandifolium), while the more distantly related Solanum spp. showed little (one to two copies in S. tuberosum) to no (S. quitoense) detectable hybridization under stringent conditions. Linkage analysis in the F2 progeny of a cross between L. esculentum and L. cheesmanii indicated that at least six loci that hybridize to the Lyt1 sequence are dispersed in the genome. Polymerase chain reaction and Southern analyses revealed that some red-fruited accessions and L. chmielewskii lacked Lyt1 5' to the transcribed region of ARPI. Subsequent sequence analysis indicated that only one copy of the 9-bp direct repeat (target site) was present, suggesting that transposition of the element into the ARPI gene occurred after the divergence of the red-fruited and green-fruited Lycopersicon species.
Collapse
Affiliation(s)
- R J Young
- Department of Biology, Texas A & M University, College Station 77843-3258
| | | | | | | |
Collapse
|
21
|
Meyer C, Pouteau S, Rouzé P, Caboche M. Isolation and molecular characterization of dTnp1, a mobile and defective transposable element of Nicotiana plumbaginifolia. MOLECULAR & GENERAL GENETICS : MGG 1994; 242:194-200. [PMID: 8159170 DOI: 10.1007/bf00391013] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
By Northern blot analysis of nitrate reductase-deficient mutants of Nicotiana plumbaginifolia, we identified a mutant (mutant D65), obtained after gamma-ray irradiation of protoplasts, which contained an insertion sequence in the nitrate reductase (NR) mRNA. This insertion sequence was localized by polymerase chain reaction (PCR) in the first exon of NR and was also shown to be present in the NR gene. The mutant gene contained a 565 bp insertion sequence that exhibits the sequence characteristics of a transposable element, which was thus named dTnp1. The dTnp1 element has 14 bp terminal inverted repeats and is flanked by an 8-bp target site duplication generated upon transposition. These inverted repeats have significant sequence homology with those of other transposable elements. Judging by its size and the absence of a long open reading frame, dTnp1 appears to represent a defective, although mobile, transposable element. The octamer motif TTTAGGCC was found several times in direct orientation near the 5' and 3' ends of dTnp1 together with a perfect palindrome located after the 5' inverted repeat. Southern blot analysis using an internal probe of dTnp1 suggested that this element occurs as a single copy in the genome of N. plumbaginifolia. It is also present in N. tabacum, but absent in tomato or petunia. The dTnp1 element is therefore of potential use for gene tagging in Nicotiana species.
Collapse
Affiliation(s)
- C Meyer
- Laboratoire de Biologie Cellulaire, INRA, Versailles, France
| | | | | | | |
Collapse
|
22
|
Kovtun YV, Komarnitsky IK, Gleba YYu. A new middle repetitive sequence of Nicotiana plumbaginifolia genome. PLANT MOLECULAR BIOLOGY 1993; 23:435-8. [PMID: 8219078 DOI: 10.1007/bf00029020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A middle repetitive sequence NPR18 was isolated from Nicotiana plumbaginifolia nuclear genome [8]. Sequences homologous to the repeat are dispersed through genomes of several Nicotiana species. Computer-assisted data analysis of NPR18 primary sequence reveals several features attributed to mobile genetic elements: an AT content higher than average for nuclear DNA of genus Nicotiana plants; a number of direct and inverted repeats. Some of the repeats displayed homology to the terminal and subterminal repeats of Ac/Ds-like plant elements.
Collapse
Affiliation(s)
- Y V Kovtun
- Institute of Cell Biology and Genetic Engineering, Kiev, Ukraine
| | | | | |
Collapse
|
23
|
Cardon GH, Frey M, Saedler H, Gierl A. Definition and characterization of an artificial En/Spm-based transposon tagging system in transgenic tobacco. PLANT MOLECULAR BIOLOGY 1993; 23:157-78. [PMID: 8219047 DOI: 10.1007/bf00021428] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A transposon tagging system for heterologous hosts, based on the maize En/Spm transposable element, was developed in transgenic tobacco. In this system, the two En-encoded trans-acting factors necessary for excision are expressed by fusing their cDNAs to the CaMV 35S promoter. The dSpm receptor component is inserted in the 5'-untranslated leader of the bar gene. Germinal revertants can therefore be selected by seed germination on L-PPT-containing medium or by spraying seedlings with the herbicide Basta. Using this bar-based excision reporter construct, an average frequency of germinal excision of 10.1% was estimated for dSpm-S, an En/Spm native internal deletion derivative. Insertion of En-foreign sequences in a receptor, such as a DHFR selectable marker gene in dSpm-DHFR, does not abolish its capacity to transpose. However, dSpm-DHFR has a lower frequency of somatic and germinal excision than dSpm-S. Revertants carrying a transposed dSpm-DHFR element can be selected with methotrexate. Germinal excision is frequently associated with reinsertion but, as in maize, dSpm has a tendency to integrate at chromosomal locations linked to the donor site. Concerning the timing of excision, independent germinal transpositions are often found within a single seed capsule. All activity parameters analysed suggest that transposon tagging with this system in heterologous hosts should be feasible.
Collapse
Affiliation(s)
- G H Cardon
- Max-Planck-Institut für Züchtungsforschung, Abteilung Molekulare Pflanzengenetik, Köln, Germany
| | | | | | | |
Collapse
|
24
|
Abstract
As part of establishing an efficient transposon tagging system in Arabidopsis using the maize elements Ac and Ds, we have analyzed the inheritance and pattern of Ds transposition in four independent Arabidopsis transformants. A low proportion (33%) of plants inheriting the marker used to monitor excision contained a transposed Ds. Selection for the transposed Ds increased this to at least 49%. Overall, 68% of Ds transpositions inherited with the excision marker were to genetically linked sites; however, the distribution of transposed elements varied around the different donor sites. Mapping of transposed Ds elements that were genetically unlinked to the donor site showed that a proportion (3 of 11 tested) integrated into sites which were still physically linked.
Collapse
Affiliation(s)
- I Bancroft
- AFRC Institute of Plant Science Research, Cambridge Laboratory, John Innes Centre, Colney, Norwich, England
| | | |
Collapse
|
25
|
Honma MA, Baker BJ, Waddell CS. High-frequency germinal transposition of DsALS in Arabidopsis. Proc Natl Acad Sci U S A 1993; 90:6242-6. [PMID: 8392193 PMCID: PMC46904 DOI: 10.1073/pnas.90.13.6242] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We have established an efficient transposontagging system in Arabidopsis thaliana using the Activator/Dissociation (Ac/Ds) elements from maize. This system consists of two components, a stable trans-activator, Acst, that supplies transposase, and a cis-responsive Ds element. Ds and Acst were constructed with different selectable and screenable markers to facilitate monitoring of Ds excisions and insertions as well as segregation of Ds and Acst. Fusions of the 35S, rbcS, or CHS promoters to Ac transposase were used to trans-activate DsALS, a Ds element carrying an herbicide-resistance gene. The ALS gene encoding acetolactase synthase, which confers resistance to chlorsulfuron, functioned as a versatile marker for selection of plants grown in tissue culture as well as in soil. Thirty-five Acst lines were crossed to two DsALS lines, and the resulting progeny were assayed for germinal transposition of DsALS. Trans-activation of DsALS by Acst resulted in germinal excision frequencies of up to 64% when using 35S promoter-Ac transposase fusions, up to 67% when using rbcS-transposase fusions, and up to 1% when using CHS-transposase fusions. Amongst progeny bearing terminal excisions, Southern analysis revealed that 45% from 35S-Acst crosses and 29% from rbcS-Acst crosses carried reintegrated DsALS elements. The Ac/Ds system we have developed should prove to be an effective tool for stable gene tagging in Arabidopsis.
Collapse
Affiliation(s)
- M A Honma
- Department of Plant Biology, University of California, Berkeley 94720
| | | | | |
Collapse
|
26
|
Bancroft I, Dean C. Factors affecting the excision frequency of the maize transposable element Ds in Arabidopsis thaliana. MOLECULAR & GENERAL GENETICS : MGG 1993; 240:65-72. [PMID: 8393513 DOI: 10.1007/bf00276885] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A two-element transposon system based on the maize elements Ac and Ds is currently being used for insertional mutagenesis in Arabidopsis. With the aim of making this system as efficient as possible we have continued to analyse several parameters which affect Ds activity in Arabidopsis. The influence of genomic position on Ds excision has been analysed in five lines carrying Ds integrated in different genomic locations. Differences in both somatic and germinal excision were observed between the different lines. The relationship between somatic and germinal excision, the timing of excision events and environmental influences on transposition frequency have been investigated. The effect of varying dosage of the different elements was also analysed. A strong positive dosage effect was observed for the transposase source, but not for the Ds element. Analysis of germinal excision events showed that the majority of them occurred very late in the development of the plant, resulting in the majority of Ds transpositions being independent events.
Collapse
Affiliation(s)
- I Bancroft
- AFRC, IPSR, Cambridge Laboratory, John Innes Centre, Colney, Norwich, UK
| | | |
Collapse
|
27
|
Bancroft I, Jones JD, Dean C. Heterologous transposon tagging of the DRL1 locus in Arabidopsis. THE PLANT CELL 1993; 5:631-8. [PMID: 8392411 PMCID: PMC160301 DOI: 10.1105/tpc.5.6.631] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The development of heterologous transposon tagging systems has been an important objective for many laboratories. Here, we demonstrate the use of a Dissociation (Ds) derivative of the maize transposable element Activator (Ac) to tag the DRL1 locus of Arabidopsis. The drl1 mutant shows highly abnormal development with stunted roots, few root hairs, lanceolate leaves, and a highly enlarged, disorganized shoot apex that does not produce an inflorescence. The mutation was shown to be tightly linked to a transposed Ds, and somatic instability was observed in the presence of the transposase source. Some plants showing somatic reversion flowered and produced large numbers of wild-type progeny. These revertant progeny always inherited a DRL1 allele from which Ds had excised. Analysis of the changes in DNA sequence induced by the insertion and excision of the Ds element showed that they were typical of those induced by Ac and Ds in maize.
Collapse
Affiliation(s)
- I Bancroft
- Institute of Plant Science Research, Cambridge Laboratory, John Innes Centre, Colney, Norwich, United Kingdom
| | | | | |
Collapse
|
28
|
Tsay YF, Frank MJ, Page T, Dean C, Crawford NM. Identification of a mobile endogenous transposon in Arabidopsis thaliana. Science 1993; 260:342-4. [PMID: 8385803 DOI: 10.1126/science.8385803] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A mobile endogenous transposable element, Tag1, has been identified in the plant Arabidopsis thaliana. Tag1 was found in the nitrate transporter gene, CHL1, of a chlorate-resistant mutant present in a population of plants containing an active maize Ac transposon. Tag1 excises from the chl1 gene producing chlorate-sensitive revertants with Tag1 or Tag1-related elements at different loci. Tag1 and related elements are present in the Landsberg but not Columbia or Wassilewskija ecotypes of Arabidopsis. Thus, Tag1 provides a tool for the insertional mutagenesis of plant genes essential for biological processes of agronomic importance.
Collapse
Affiliation(s)
- Y F Tsay
- Department of Biology, University of California, San Diego, La Jolla 92093-0116
| | | | | | | | | |
Collapse
|
29
|
Bureau TE, Wessler SR. Tourist: a large family of small inverted repeat elements frequently associated with maize genes. THE PLANT CELL 1992; 4:1283-94. [PMID: 1332797 PMCID: PMC160215 DOI: 10.1105/tpc.4.10.1283] [Citation(s) in RCA: 207] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The wx-B2 mutation results from a 128-bp transposable element-like insertion in exon 11 of the maize Waxy gene. Surprisingly, 11 maize genes and one barley gene in the GenBank and EMBL data bases were found to contain similar elements in flanking or intron sequences. Members of this previously undescribed family of elements, designated Tourist, are short (133 bp on average), have conserved terminal inverted repeats, are flanked by a 3-bp direct repeat, and display target site specificity. Based on estimates of repetitiveness of three Tourist elements in maize genomic DNA, the copy number of the Tourist element family may exceed that of all previously reported eukaryotic inverted repeat elements. Taken together, our data suggest that Tourist may be the maize equivalent of the human Alu family of elements with respect to copy number, genomic dispersion, and the high frequency of association with genes.
Collapse
Affiliation(s)
- T E Bureau
- Botany Department, University of Georgia, Athens 30602
| | | |
Collapse
|
30
|
Altmann T, Schmidt R, Willmitzer L. Establishment of a gene tagging system in Arabidopsis thaliana based on the maize transposable element Ac. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1992; 84:371-383. [PMID: 24203197 DOI: 10.1007/bf00229496] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/1991] [Accepted: 11/29/1991] [Indexed: 06/02/2023]
Abstract
An Ac-derived, two-component transposable element system has been developed and analyzed with respect to its use in Arabidopsis thaliana. This system consists of an immobilized Ac element ("Ac clipped wing", Accl) as the source of transactivating transposase and a nonautonomous "Ds" element, DsA, which is inserted into a chimaeric neomycinphosphotransferase gene used as excision marker. After separate introduction of Acc1 and DsA into Arabidopsis thaliana, progeny analysis of crosses between five different Accl lines and seven different DsA lines shows that: (1) different Accl lines differ greatly in their capacity to transactivate DsA; (2) different DsA lines do not differ significantly with respect to DsA transactivation by one Accl line; (3) reintegration of excised DsA elements, both at (genetically) linked and unlinked sites, occurs in about 50% of the excision events; and (4) plants with a high rate of somatic excisions can be used as source of new DsA transpositions, allowing the creation of a large number of independent DsA insertions.
Collapse
Affiliation(s)
- T Altmann
- Institut für Genbiologische Forschung Berlin GmbH, Ihnestrasse 63, 33, Berlin, Germany
| | | | | |
Collapse
|
31
|
Bancroft I, Bhatt AM, Sjodin C, Scofield S, Jones JD, Dean C. Development of an efficient two-element transposon tagging system in Arabidopsis thaliana. MOLECULAR & GENERAL GENETICS : MGG 1992; 233:449-61. [PMID: 1320189 DOI: 10.1007/bf00265443] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Modified Ac and Ds elements, in combination with dominant markers (to facilitate monitoring of excision, reinsertion and segregation of the elements) were introduced into Arabidopsis thaliana ecotype Landsberg erecta. The frequencies of somatic and germinal transactivation of the Ds elements were monitored using a streptomycin resistance assay. Transactivation was significantly higher from a stable Ac (sAc) carrying a 537 bp deletion of the CpG-rich 5' untranslated leader of the transposase mRNA than from a wild-type sAc. However, substitution of the central 1.77 kb of the transposase open reading frame (ORF) with a hygromycin resistance marker did not alter the excision frequency of a Ds element. beta-Glucuronidase (GUS) or iaaH markers were linked to the transposase source to allow the identification of plants in which the transposase source had segregated away from the transposed Ds element, eliminating the possibility of somatic or germinal re-activation. Segregation of the excision marker, Ds and sAc was monitored in the progeny of plants showing germinal excision of Ds. 29% of the plants inheriting the excision marker carried a transposed Ds element.
Collapse
Affiliation(s)
- I Bancroft
- AFRC, IPSR, Cambridge Laboratory, John Innes Centre, Norwich, UK
| | | | | | | | | | | |
Collapse
|