1
|
O'Brien MJ, Ansari A. Protein interaction network revealed by quantitative proteomic analysis links TFIIB to multiple aspects of the transcription cycle. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:140968. [PMID: 37863410 PMCID: PMC10872477 DOI: 10.1016/j.bbapap.2023.140968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023]
Abstract
Although TFIIB is widely regarded as an initiation factor, recent reports have implicated it in multiple aspects of eukaryotic transcription. To investigate the broader role of TFIIB in transcription, we performed quantitative proteomic analysis of yeast TFIIB. We purified two different populations of TFIIB; one from soluble cell lysate, which is not engaged in transcription, and the other from the chromatin fraction which yields the transcriptionally active form of the protein. TFIIB purified from the chromatin exhibits several interactions that explain its non-canonical roles in transcription. RNAPII, TFIIF and TFIIH were the only components of the preinitiation complex with a significant presence in chromatin TFIIB. A notable feature was enrichment of all subunits of CF1 and Rat1 3' end processing-termination complexes in chromatin-TFIIB preparation. Subunits of the CPF termination complex were also detected in both chromatin and soluble derived TFIIB preparations. These results may explain the presence of TFIIB at the 3' end of genes during transcription as well as its role in promoter-termination interaction.
Collapse
Affiliation(s)
- Michael J O'Brien
- Department of Biological Science, 5047 Gullen Mall, Wayne State University, Detroit, MI 48202, United States of America
| | - Athar Ansari
- Department of Biological Science, 5047 Gullen Mall, Wayne State University, Detroit, MI 48202, United States of America.
| |
Collapse
|
2
|
Medler S, Al Husini N, Raghunayakula S, Mukundan B, Aldea A, Ansari A. Evidence for a complex of transcription factor IIB with poly(A) polymerase and cleavage factor 1 subunits required for gene looping. J Biol Chem 2011; 286:33709-18. [PMID: 21835917 DOI: 10.1074/jbc.m110.193870] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Gene looping, defined as the interaction of the promoter and the terminator regions of a gene during transcription, requires transcription factor IIB (TFIIB). We have earlier demonstrated association of TFIIB with the distal ends of a gene in an activator-dependent manner (El Kaderi, B., Medler, S., Raghunayakula, S., and Ansari, A. (2009) J. Biol. Chem. 284, 25015-25025). The presence of TFIIB at the 3' end of a gene required its interaction with cleavage factor 1 (CF1) 3' end processing complex subunit Rna15. Here, employing affinity chromatography and glycerol gradient centrifugation, we show that TFIIB associates with poly(A) polymerase and the entire CF1 complex in yeast cells. The factors required for general transcription such as TATA-binding protein, RNA polymerase II, and TFIIH are not a component of the TFIIB complex. This holo-TFIIB complex was resistant to MNase digestion. The complex was observed only in the looping-competent strains, but not in the looping-defective sua7-1 strain. The requirement of Rna15 in gene looping has been demonstrated earlier. Here we provide evidence that poly(A) polymerase (Pap1) as well as CF1 subunits Rna14 and Pcf11 are also required for loop formation of MET16 and INO1 genes. Accordingly, cross-linking of TFIIB to the 3' end of genes was abolished in the mutants of Pap1, Rna14, and Pcf11. We further show that in sua7-1 cells, where holo-TFIIB complex is not formed, the kinetics of activated transcription is altered. These results suggest that a complex of TFIIB, CF1 subunits, and Pap1 exists in yeast cells. Furthermore, TFIIB interaction with the CF1 complex and Pap1 is crucial for gene looping and transcriptional regulation.
Collapse
Affiliation(s)
- Scott Medler
- Department of Biological Science, Wayne State University, Detroit, Michigan 48202, USA
| | | | | | | | | | | |
Collapse
|
3
|
Kimura M, Suzuki H, Ishihama A. Formation of a carboxy-terminal domain phosphatase (Fcp1)/TFIIF/RNA polymerase II (pol II) complex in Schizosaccharomyces pombe involves direct interaction between Fcp1 and the Rpb4 subunit of pol II. Mol Cell Biol 2002; 22:1577-88. [PMID: 11839823 PMCID: PMC134712 DOI: 10.1128/mcb.22.5.1577-1588.2002] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2001] [Revised: 11/13/2001] [Accepted: 11/30/2001] [Indexed: 11/20/2022] Open
Abstract
In transcriptional regulation, RNA polymerase II (pol II) interacts and forms complexes with a number of protein factors. To isolate and identify the pol II-associated proteins, we constructed a Schizosaccharomyces pombe strain carrying a FLAG tag sequence fused to the rpb3 gene encoding the pol II subunit Rpb3. By immunoaffinity purification with anti-FLAG antibody-resin, a pol II complex containing the Rpb1 subunit with a nonphosphorylated carboxyl-terminal domain (CTD) was isolated. In addition to the pol II subunits, the complex was found to contain three subunits of a transcription factor TFIIF (TFIIF alpha, TFIIF beta, and Tfg3) and TFIIF-interacting CTD-phosphatase Fcp1. The same type of pol II complex could also be purified from an Fcp1-tagged strain. The isolated Fcp1 showed CTD-phosphatase activity in vitro. The fcp1 gene is essential for cell viability. Fcp1 and pol II interacted directly in vitro. Furthermore, by chemical cross-linking, glutathione S-transferase pulldown, and affinity chromatography, the Fcp1-interacting subunit of pol II was identified as Rpb4, which plays regulatory roles in transcription. We also constructed an S. pombe thiamine-dependent rpb4 shut-off system. On repression of rpb4 expression, the cell produced more of the nonphosphorylated form of Rpb1, but the pol II complex isolated with the anti-FLAG antibody contained less Fcp1 and more of the phosphorylated form of Rpb1 with a concomitant reduction in Rpb4. This result indicates the importance of Fcp1-Rpb4 interaction for formation of the Fcp1/TFIIF/pol II complex in vivo.
Collapse
Affiliation(s)
- Makoto Kimura
- Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan.
| | | | | |
Collapse
|
4
|
Chen HT, Legault P, Glushka J, Omichinski JG, Scott RA. Structure of a (Cys3His) zinc ribbon, a ubiquitous motif in archaeal and eucaryal transcription. Protein Sci 2000; 9:1743-52. [PMID: 11045620 PMCID: PMC2144703 DOI: 10.1110/ps.9.9.1743] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Transcription factor IIB (TFIIB) is an essential component in the formation of the transcription initiation complex in eucaryal and archaeal transcription. TFIIB interacts with a promoter complex containing the TATA-binding protein (TBP) to facilitate interaction with RNA polymerase II (RNA pol II) and the associated transcription factor IIF (TFIIF). TFIIB contains a zinc-binding motif near the N-terminus that is directly involved in the interaction with RNA pol II/TFIIF and plays a crucial role in selecting the transcription initiation site. The solution structure of the N-terminal residues 2-59 of human TFIIB was determined by multidimensional NMR spectroscopy. The structure consists of a nearly tetrahedral Zn(Cys)3(His)1 site confined by type I and "rubredoxin" turns, three antiparallel beta-strands, and disordered loops. The structure is similar to the reported zinc-ribbon motifs in several transcription-related proteins from archaea and eucarya, including Pyrococcus furiosus transcription factor B (PfTFB), human and yeast transcription factor IIS (TFIIS), and Thermococcus celer RNA polymerase II subunit M (TcRPOM). The zinc-ribbon structure of TFIIB, in conjunction with the biochemical analyses, suggests that residues on the beta-sheet are involved in the interaction with RNA pol II/TFIIF, while the zinc-binding site may increase the stability of the beta-sheet.
Collapse
Affiliation(s)
- H T Chen
- Center for Metalloenzyme Studies, University of Georgia, Athens 30602-2556, USA
| | | | | | | | | |
Collapse
|
5
|
Teichmann M, Dieci G, Huet J, Rüth J, Sentenac A, Seifart KH. Functional interchangeability of TFIIIB components from yeast and human cells in vitro. EMBO J 1997; 16:4708-16. [PMID: 9303315 PMCID: PMC1170097 DOI: 10.1093/emboj/16.15.4708] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In eukaryotes, TFIIIB is required for proper initiation by RNA polymerase III. In the yeast Saccharomyces cerevisiae a single form of TFIIIB (gammaTFIIIB) is sufficient for transcription of all pol III genes, whereas in extracts derived from human cells two different hTFIIIB complexes exist which we have previously designated as hTFIIIB-alpha and hTFIIIB-beta. Human TFIIIB-alpha is a TBP-free entity and must be complemented by TBP for transcription of pol III genes driven by gene external promoters, whereas hTFIIIB-beta is a TBP-TAF complex which governs transcription from internal pol III promoters. We show that hTFIIIB-beta cannot be replaced by yeast TFIIIB for transcription of tRNA genes, but that the B" component of gammaTFIIIB can substitute for hTFIIIB-alpha activity in transcription of the human U6 gene. Moreover, hTFIIIB-alpha can be chromatographically divided into activities which are functionally related to gammaTFIIIE and recombinant yB"90, suggesting that hTFIIIB-alpha is a human homolog of yeast TFIIIB". In addition, we show that yeast TBP can only be exchanged against human TBP for in vitro transcription of the human and yeast U6 gene but virtually not for that of the yeast tRNA4Sup gene. This deficiency can be counteracted by a mutant of human TBP (R231K) which is able to replace yeast TBP for transcription of yeast tRNA genes in vitro.
Collapse
Affiliation(s)
- M Teichmann
- Institut für Molekularbiologie und Tumorforschung, Marburg/Lahn, Germany
| | | | | | | | | | | |
Collapse
|
6
|
Shaw SP, Carson DJ, Dorsey MJ, Ma J. Mutational studies of yeast transcription factor IIB in vivo reveal a functional surface important for gene activation. Proc Natl Acad Sci U S A 1997; 94:2427-32. [PMID: 9122211 PMCID: PMC20104 DOI: 10.1073/pnas.94.6.2427] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Recent experiments in yeast (Saccharomyces cerevisiae) cells have identified a species-specific region of yeast transcription factor IIB (TFIIB) located at residues 144-157. According to the human TFIIB structure, this region is part of a solvent-exposed helix in the first repeat of the carboxyl-terminal core domain. In this report, we systematically analyze four positions in this region (Lys-147, Cys-149, Lys-151, and Glu-152) that together have been shown previously to be important for yeast TFIIB's function in vivo. Our experiments suggest that all of these four positions, and in particular positions 151, 149, and 152, are critical for yeast TFIIB's ability to support cell growth. In addition, we describe an intragenic suppressor screening experiment to identify mutations that reverse, or partially reverse, the temperature-sensitive phenotype of a yeast TFIIB derivative bearing amino acid changes at these four positions to human residues. The suppressor mutations reveal changes at positions 115, 117, and 182 that are located outside the species-specific region of yeast TFIIB, suggesting an extended surface available to interact with other proteins. Finally, we demonstrate that the suppressor mutations restore gene activation in vivo, further supporting the idea that one important function of yeast TFIIB in living cells is to mediate gene activation.
Collapse
Affiliation(s)
- S P Shaw
- Division of Developmental Biology, Children's Hospital Research Foundation, University of Cincinnati College of Medicine, OH 45229, USA
| | | | | | | |
Collapse
|
7
|
Conaway RC, Conaway JW. General transcription factors for RNA polymerase II. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1997; 56:327-46. [PMID: 9187058 DOI: 10.1016/s0079-6603(08)61009-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- R C Conaway
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City 73104, USA
| | | |
Collapse
|
8
|
Bushnell DA, Bamdad C, Kornberg RD. A minimal set of RNA polymerase II transcription protein interactions. J Biol Chem 1996; 271:20170-4. [PMID: 8702741 DOI: 10.1074/jbc.271.33.20170] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
All pairwise interactions of RNA polymerase II and general transcription factors (TF) IIB, E, F, and H have been quantitated by surface plasmon resonance with the use of a Ni2+ chelate on the sensor surface where necessary to attain higher sensitivity. Only 4 of 10 possible interactions were found above the detection limit: TFIIB, -E, and -F binding to RNA polymerase II and TFIIE binding to TFIIH. These four interactions constitute a minimal set for the formation of a transcription initiation complex and may represent the primary interactions involved in assembly of the complex. Point mutations in TFIIB that alter the location of transcription start sites in vivo markedly diminished the affinity of TFIIB binding to RNA polymerase II. Protein blotting revealed an interaction between the largest subunit of TFIIE and third largest subunit of TFIIH, which may be responsible for TFIIE binding to TFIIH.
Collapse
Affiliation(s)
- D A Bushnell
- Department of Structural Biology, Stanford School of Medicine, Stanford, California 94027, USA
| | | | | |
Collapse
|
9
|
Sun ZW, Tessmer A, Hampsey M. Functional interaction between TFIIB and the Rpb9 (Ssu73) subunit of RNA polymerase II in Saccharomyces cerevisiae. Nucleic Acids Res 1996; 24:2560-6. [PMID: 8692696 PMCID: PMC145985 DOI: 10.1093/nar/24.13.2560] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Recessive mutations in the SSU71, SSU72 and SSU73 genes of Saccharomyces cerevisiae were identified as either suppressors or enhancers of a TFIIB defect (sua7-1) that confers both a cold-sensitive growth phenotype and a downstream shift in transcription start site selection. The SSU71 (TFG1) gene encodes the largest subunit of TFIIF and SSU72 encodes a novel protein that is essential for cell viability. Here we report that SSU73 is identical to RPB9, the gene encoding the 14.2 kDa subunit of RNA polymerase II. The ssu73-1 suppressor compensates for both the growth defect and the downstream shift in start site selection associated with sua7-1. These effects are similar to those of the ssu71-1 suppressor and distinct from the ssu72-1 enhancer. The ssu73-1 allele was retrieved and sequenced, revealing a nonsense mutation at codon 107. Consequently, ssu73-1 encodes a truncated form of Rpb9 lacking the C-terminal 16 amino acids. This Rpb9 derivative retains at least partial function since the ssu73-1 mutant exhibits none of the growth defects associated with rpb9 null mutants. However, in a SUA7+ background, ssu73-1 confers the same upstream shift at ADH1 as an rpb9 null allele. This suggests that the C-terminus of Rpb9 functions in start site selection and demonstrates that the previously observed effects of rpb9 mutations on start site selection are not necessarily due to complete loss of function. These results establish a functional interaction between TFIIB and the Rpb9 subunit of RNA polymerase II and suggest that these two components of the preinitiation complex interact during transcription start site selection.
Collapse
Affiliation(s)
- Z W Sun
- Department of Biochemistry and Molecular Biology, Louisianna State University Medical Center, Shreveport, LA 71130, USA
| | | | | |
Collapse
|
10
|
Leuther KK, Bushnell DA, Kornberg RD. Two-dimensional crystallography of TFIIB- and IIE-RNA polymerase II complexes: implications for start site selection and initiation complex formation. Cell 1996; 85:773-9. [PMID: 8646784 DOI: 10.1016/s0092-8674(00)81242-8] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
SUMMARY Transcription factors IIB (TFIIB) and IIE (TFIIE) bound to RNA polymerase II have been revealed by electron crystallography in projection at 15.7 A resolution. The results lead to simple hypotheses for the roles of these factors in the initiation of transcription. TFIIB is suggested to define the distance from TATA box to transcription start site by bringing TATA DNA in contact with polymerase at that distance from the active center of the enzyme. TFIIE is suggested to participate in a key conformational switch occurring at the active center upon polymerase-DNA interaction.
Collapse
Affiliation(s)
- K K Leuther
- Department of Structural Biology, Stanford University School of Medicine, California 94305-5400, USA
| | | | | |
Collapse
|
11
|
Maldonado E, Reinberg D. News on initiation and elongation of transcription by RNA polymerase II. Curr Opin Cell Biol 1995; 7:352-61. [PMID: 7662365 DOI: 10.1016/0955-0674(95)80090-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Transcription by RNA polymerase II is a complex process that requires additional factors to initiate transcription at the promoters. New developments in the past year have furthered our understanding of the functions of the transcription factors and provided more insights into the mechanisms involved in the regulation of initiation and elongation of transcription. One of the most significant advances of the past year was the discovery of the involvement of the general transcription factor TFIIH in DNA excision repair. Surprisingly, studies aimed at identifying the kinase activity within TFIIH responsible for phosphorylating the carboxy-terminal domain of RNA polymerase II revealed it to be the MO15/Cdk7 kinase and its partner, cyclin H. These exciting observations suggest a paradigm for linking transcription, DNA excision repair and cell cycle progression through one pivotal factor.
Collapse
Affiliation(s)
- E Maldonado
- Howard Hughes Medical Institute, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway 08854-5635, USA
| | | |
Collapse
|
12
|
Thompson CM, Young RA. General requirement for RNA polymerase II holoenzymes in vivo. Proc Natl Acad Sci U S A 1995; 92:4587-90. [PMID: 7753848 PMCID: PMC41989 DOI: 10.1073/pnas.92.10.4587] [Citation(s) in RCA: 208] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Yeast RNA polymerase II holoenzymes have been described that consist of RNA polymerase II, a subset of general transcription factors, and nine SRB regulatory proteins. The feature that distinguishes the RNA polymerase II holoenzymes from other forms of RNA polymerase II in the cell is their tight association with SRB proteins. We investigated the fraction of genes that require SRB proteins in vivo by examining the effect of temperature-sensitive mutations in SRB genes on transcription by RNA polymerase II. Upon transfer to the restrictive temperature, there is a rapid and general shutdown of mRNA synthesis in srb mutant cells. These data, combined with the observation that essentially all of the SRB protein in cells is tightly associated with RNA polymerase II molecules, argue that SRB-containing holoenzymes are the form of RNA polymerase II recruited to most promoters in the cell.
Collapse
Affiliation(s)
- C M Thompson
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | |
Collapse
|
13
|
Hull MW, McKune K, Woychik NA. RNA polymerase II subunit RPB9 is required for accurate start site selection. Genes Dev 1995; 9:481-90. [PMID: 7883169 DOI: 10.1101/gad.9.4.481] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The diverse functions of Saccharomyces cerevisiae RNA polymerase II are partitioned among its 12 subunits, designated RPB1-RPB12. Although multiple functions have been assigned to the three largest subunits, RPB1, RPB2, and RPB3, the functions of the remaining smaller subunits are unknown. We have determined the function of one of the smaller subunits, RPB9, by demonstrating that it is necessary for accurate start site selection. Transcription in the absence of RPB9 initiates farther upstream at new and previously minor start sites both at the CYC1 promoter in vitro and at the CYC1, ADH1, HIS4, H2B-1, and RPB6 promoters in vivo. Immunoprecipitation of RNA polymerase II from cells lacking the RPB9 gene revealed that all of the remaining 11 subunits are assembled into the enzyme, suggesting that the start site defect is attributable solely to the absence of RPB9. In support of this hypothesis, we have shown that addition of wild-type recombinant RPB9 completely corrects for the start site defect seen in vitro. A mutated recombinant RPB9 protein, with an alteration in a metal-binding domain required for high temperature growth and accurate start site selection in vivo, was at least 10-fold less effective at correcting the start site defect in vitro. RPB9 appears to play a unique role in transcription initiation, as the defects revealed in its absence are distinct from those seen with mutants in RNA polymerase subunit RPB1 and factor e (TFIIB), two other yeast proteins also involved in start site selection.
Collapse
Affiliation(s)
- M W Hull
- Roche Institute of Molecular Biology, Nutley, New Jersey 07110
| | | | | |
Collapse
|
14
|
Wettach J, Gohl HP, Tschochner H, Thomm M. Functional interaction of yeast and human TATA-binding proteins with an archaeal RNA polymerase and promoter. Proc Natl Acad Sci U S A 1995; 92:472-6. [PMID: 7831313 PMCID: PMC42762 DOI: 10.1073/pnas.92.2.472] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
TATA boxes are common structural features of eucaryal class II and archaeal promoters. In addition, a gene encoding a polypeptide with sequence similarity to eucaryal TATA-binding protein (TBP) has recently been detected in Archaea, but its relationship to the archaeal transcription factors A (aTFA) and B (aTFB) was unclear. Here, we demonstrate that yeast and human TBP can substitute for aTFB in a Methanococcus-derived archaeal cell-free transcription system. Template-commitment studies show that eucaryal TBP is stably sequestered at the archaeal promoter and that this interaction is further stabilized in combination with aTFA. Binding studies revealed that recognition of an archaeal promoter by TBP involves specific binding to the TATA box. These findings demonstrate a common function of TBP and aTFB and imply a common evolutionary origin of eucaryal and archaeal transcriptional machinery.
Collapse
Affiliation(s)
- J Wettach
- Institut für Mikrobiologie, Christian-Albrechts-Universität zu Kiel, Federal Republic of Germany
| | | | | | | |
Collapse
|
15
|
Khoo B, Brophy B, Jackson SP. Conserved functional domains of the RNA polymerase III general transcription factor BRF. Genes Dev 1994; 8:2879-90. [PMID: 7995525 DOI: 10.1101/gad.8.23.2879] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In Saccharomyces cerevisiae, two components of the RNA polymerase III (Pol III) general transcription factor TFIIIB are the TATA-binding protein (TBP) and the B-related factor (BRF), so called because its amino-terminal half is homologous to the Pol II transcription factor IIB (TFIIB). We have cloned BRF genes from the yeasts Kluyveromyces lactis and Candida albicans. Despite the large evolutionary distance between these species and S. cerevisiae, the BRF proteins are conserved highly. Although the homology is most pronounced in the amino-terminal half, conserved regions also exist in the carboxy-terminal half that is unique to BRF. By assaying for interactions between BRF and other Pol III transcription factors, we show that it is able to bind to the 135-kD subunit of TFIIIC and also to TBP. Surprisingly, in addition to binding the TFIIB-homologous amino-terminal portion of BRF, TBP also interacts strongly with the carboxy-terminal half. Deleting two conserved regions in the BRF carboxy-terminal region abrogates this interaction. Furthermore, TBP mutations that selectively inhibit Pol III transcription in vivo impair interactions between TBP and the BRF carboxy-terminal domain. Finally, we demonstrate that BRF but not TFIIB binds the Pol III subunit C34 and we define a region of C34 necessary for this interaction. These observations provide insights into the roles performed by BRF in Pol III transcription complex assembly.
Collapse
Affiliation(s)
- B Khoo
- Wellcome/CRC Institute, Cambridge University, UK
| | | | | |
Collapse
|
16
|
Pinto I, Wu WH, Na JG, Hampsey M. Characterization of sua7 mutations defines a domain of TFIIB involved in transcription start site selection in yeast. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)43851-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
17
|
Henry NL, Campbell AM, Feaver WJ, Poon D, Weil PA, Kornberg RD. TFIIF-TAF-RNA polymerase II connection. Genes Dev 1994; 8:2868-78. [PMID: 7995524 DOI: 10.1101/gad.8.23.2868] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
RNA polymerase transcription factor IIF (TFIIF) is required for initiation at most, if not all, polymerase II promoters. We report here the cloning and sequencing of genes for a yeast protein that is the homolog of mammalian TFIIF. This yeast protein, previously designated factor g, contains two subunits, Tfg1 and Tfg2, both of which are required for transcription, essential for yeast cell viability, and whose sequences exhibit significant similarity to those of the mammalian factor. The yeast protein also contains a third subunit, Tfg3, which is less tightly associated and at most stimulatory to transcription, dispensable for cell viability, and has no known counterpart in mammalian TFIIF. Remarkably, the TFG3 gene encodes yeast TAF30, and furthermore, is identical to ANC1, a gene implicated in actin cytoskeletal function in vivo (Welch and Drubin 1994). Tfg3 is also a component of the recently described mediator complex (Kim et al. 1994), whose interaction with the carboxy-terminal repeat domain of RNA polymerase II enables transcriptional activation. Deletion of TFG3 results in diminished transcription in vivo.
Collapse
Affiliation(s)
- N L Henry
- Department of Structural Biology, Stanford University School of Medicine, California 94305
| | | | | | | | | | | |
Collapse
|
18
|
A highly conserved domain of RNA polymerase II shares a functional element with acidic activation domains of upstream transcription factors. Mol Cell Biol 1994. [PMID: 7935466 DOI: 10.1128/mcb.14.11.7507] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report here that the largest subunit of yeast RNA polymerase II contains an acidic domain that is similar to acidic activators of transcription. This domain includes the highly conserved homology box H. A hybrid protein containing this acidic domain fused to the DNA-binding domain of GAL4 is a potent activator of transcription in the yeast Saccharomyces cerevisiae. Interestingly, mutations that reduce the upstream activating activity of this acidic domain also abolish the normal function of RNA polymerase II. Such functional defects can be rescued by the acidic activation domains of VP16 and GAL4 when inserted into the mutant derivatives of RNA polymerase II. We further show that this acidic domain of RNA polymerase II interacts directly with two general transcription factors, the TATA-binding protein and TFIIB, and that the acidic activation domain of VP16 can compete specifically with the acidic domain of the RNA polymerase for these interactions. We discuss the implications of this finding for the mechanisms of transcriptional activation in eucaryotes.
Collapse
|
19
|
Feaver WJ, Henry NL, Bushnell DA, Sayre MH, Brickner JH, Gileadi O, Kornberg RD. Yeast TFIIE. Cloning, expression, and homology to vertebrate proteins. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47019-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
20
|
Xiao H, Friesen JD, Lis JT. A highly conserved domain of RNA polymerase II shares a functional element with acidic activation domains of upstream transcription factors. Mol Cell Biol 1994; 14:7507-16. [PMID: 7935466 PMCID: PMC359287 DOI: 10.1128/mcb.14.11.7507-7516.1994] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We report here that the largest subunit of yeast RNA polymerase II contains an acidic domain that is similar to acidic activators of transcription. This domain includes the highly conserved homology box H. A hybrid protein containing this acidic domain fused to the DNA-binding domain of GAL4 is a potent activator of transcription in the yeast Saccharomyces cerevisiae. Interestingly, mutations that reduce the upstream activating activity of this acidic domain also abolish the normal function of RNA polymerase II. Such functional defects can be rescued by the acidic activation domains of VP16 and GAL4 when inserted into the mutant derivatives of RNA polymerase II. We further show that this acidic domain of RNA polymerase II interacts directly with two general transcription factors, the TATA-binding protein and TFIIB, and that the acidic activation domain of VP16 can compete specifically with the acidic domain of the RNA polymerase for these interactions. We discuss the implications of this finding for the mechanisms of transcriptional activation in eucaryotes.
Collapse
Affiliation(s)
- H Xiao
- Department of Genetics, Hospital for Sick Children, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
21
|
Role of core promoter structure in assembly of the RNA polymerase II preinitiation complex. A common pathway for formation of preinitiation intermediates at many TATA and TATA-less promoters. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47233-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
22
|
Abstract
RNA polymerase II requires multiple general transcription factors to initiate site-specific transcription. These proteins can assemble in an ordered fashion onto promoter DNA in vitro, and such ordered assembly may occur in vivo (Fig. 1a). Some general transcription factors can interact with RNA polymerase II in the absence of DNA, however, suggesting that RNA polymerase II may also assemble into a multi-component complex containing a subset of initiation factors before binding to promoter DNA (Fig. 1b). Here we present evidence from the yeast Saccharomyces cerevisiae for such an RNA polymerase II holoenzyme, a multi-subunit complex containing roughly equimolar amounts of RNA polymerase II, a subset of general transcription factors, and SRB regulatory proteins. Transcription by this holoenzyme is stimulated by the activator protein GAL4-VP16, a feature not observed with purified RNA polymerase II and general transcription factors alone. We propose that the holoenzyme is a form of RNA polymerase II readily recruited to promoters in vivo.
Collapse
Affiliation(s)
- A J Koleske
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
| | | |
Collapse
|
23
|
Li Y, Kornberg RD. Interplay of positive and negative effectors in function of the C-terminal repeat domain of RNA polymerase II. Proc Natl Acad Sci U S A 1994; 91:2362-6. [PMID: 8134400 PMCID: PMC43371 DOI: 10.1073/pnas.91.6.2362] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
RNA polymerase II lacking a C-terminal domain (CTD) was active in transcription with purified proteins from yeast but failed to support transcription in a yeast extract. CTD dependence could be reconstituted in the purified system by addition of two fractions from the extract. An inhibitory fraction abolished transcription by both wild-type and CTD-less RNA polymerases; a stimulatory fraction restored activity of the wild-type polymerase but had a much lesser effect on the CTD-less enzyme. Parallel results were obtained with the use of a kinase inhibitor that prevents phosphorylation of the CTD by RNA polymerase II initiation factor b. The kinase inhibitor abolished transcription by wild-type polymerase in yeast extract but had no significant effect in the purified system. The requirement for both the CTD and kinase action for transcription in an extract indicates that CTD phosphorylation is involved in opposing the negative effector in the extract. Factor b must play a role(s) in addition to phosphorylation of the CTD because it was still required for transcription with polymerase lacking a CTD in the purified system.
Collapse
Affiliation(s)
- Y Li
- Department of Cell Biology, Stanford University School of Medicine, CA 94305
| | | |
Collapse
|
24
|
Cairns BR, Kim YJ, Sayre MH, Laurent BC, Kornberg RD. A multisubunit complex containing the SWI1/ADR6, SWI2/SNF2, SWI3, SNF5, and SNF6 gene products isolated from yeast. Proc Natl Acad Sci U S A 1994; 91:1950-4. [PMID: 8127913 PMCID: PMC43282 DOI: 10.1073/pnas.91.5.1950] [Citation(s) in RCA: 313] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A complex containing the products of the SWI1/ADR6, SWI2/SNF2, SWI3, SNF5, and SNF6 genes and four additional polypeptides has been purified from extracts of the yeast Saccharomyces cerevisiae. Physical association of these proteins was demonstrated by copurification and coimmunoprecipitation. A potent DNA-dependent ATPase copurified with the complex, and this activity was evidently associated with SWI2/SNF2.
Collapse
Affiliation(s)
- B R Cairns
- Department of Cell Biology, Stanford University School of Medicine, CA 94305
| | | | | | | | | |
Collapse
|
25
|
Li Y, Flanagan PM, Tschochner H, Kornberg RD. RNA polymerase II initiation factor interactions and transcription start site selection. Science 1994; 263:805-7. [PMID: 8303296 DOI: 10.1126/science.8303296] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
An RNA polymerase II transcription system was resolved and reconstituted from extracts of Schizosaccharomyces pombe. Exchange with components of a Saccharomyces cerevisiae system was undertaken to reveal the factor or factors responsible for the difference in location of the transcription start site, about 30 base pairs and 40 to 120 base pairs downstream of the TATA box in S. pombe and S. cerevisiae, respectively. Two components, counterparts of human transcription factor IIF (TFIIF) and TFIIH, could be exchanged individually between systems without effect on the start site. Three components, counterparts of human TFIIB, TFIIE, and RNA polymerase II, could not be exchanged individually but could be swapped in the pairs TFIIE-TFIIH and TFIIB-RNA polymerase II, which demonstrates that there are functional interactions between these components. Moreover, exchange of the latter pair shifted the starting position, which shows that TFIIB and RNA polymerase II are solely responsible for determining the start site of transcription.
Collapse
Affiliation(s)
- Y Li
- Department of Cell Biology, Stanford University, School of Medicine, CA 94305
| | | | | | | |
Collapse
|
26
|
The sua8 suppressors of Saccharomyces cerevisiae encode replacements of conserved residues within the largest subunit of RNA polymerase II and affect transcription start site selection similarly to sua7 (TFIIB) mutations. Mol Cell Biol 1994. [PMID: 8264591 DOI: 10.1128/mcb.14.1.226] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations in the Saccharomyces cerevisiae sua8 gene were found to be suppressors of an aberrant ATG translation initiation codon in the leader region of the cyc1 gene. Analysis of cyc1 transcripts from sua8 mutants revealed that suppression is a consequence of diminished transcription initiation at the normal start sites in favor of initiation at downstream sites, including a site between the aberrant and normal ATG start codons. This effect is not cyc1 gene specific since initiation at other genes, including ADH1, CYC7, and HIS4, was similarly affected, although initiation at HIS3 and SPT15 was unaffected. The SUA8 gene was cloned and partially sequenced, revealing identity to RPB1, which encodes the largest subunit of RNA polymerase II. The sua8 suppressors are the result of single amino acid replacements of highly conserved residues. Three replacements were found either within or immediately preceding homology block D, and a fourth was found adjacent to homology block H, indicating that these regions play a role in defining start sites in vivo. Nearly identical effects on start site selection were observed for sua7 suppressors, which encode altered forms of TFIIB. Synthetic lethality was associated with double sua7 sua8 suppressor mutations, and recessive sua7 mutants failed to fully complement recessive sua8 mutants in heterozygous diploids (nonallelic noncomplementation). These data indicate that the largest subunit of RNA polymerase II and TFIIB are important determinants of transcription start site selection in S. cerevisiae and suggest that this function might be conferred by interaction between these two proteins.
Collapse
|
27
|
Berroteran RW, Ware DE, Hampsey M. The sua8 suppressors of Saccharomyces cerevisiae encode replacements of conserved residues within the largest subunit of RNA polymerase II and affect transcription start site selection similarly to sua7 (TFIIB) mutations. Mol Cell Biol 1994; 14:226-37. [PMID: 8264591 PMCID: PMC358373 DOI: 10.1128/mcb.14.1.226-237.1994] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Mutations in the Saccharomyces cerevisiae sua8 gene were found to be suppressors of an aberrant ATG translation initiation codon in the leader region of the cyc1 gene. Analysis of cyc1 transcripts from sua8 mutants revealed that suppression is a consequence of diminished transcription initiation at the normal start sites in favor of initiation at downstream sites, including a site between the aberrant and normal ATG start codons. This effect is not cyc1 gene specific since initiation at other genes, including ADH1, CYC7, and HIS4, was similarly affected, although initiation at HIS3 and SPT15 was unaffected. The SUA8 gene was cloned and partially sequenced, revealing identity to RPB1, which encodes the largest subunit of RNA polymerase II. The sua8 suppressors are the result of single amino acid replacements of highly conserved residues. Three replacements were found either within or immediately preceding homology block D, and a fourth was found adjacent to homology block H, indicating that these regions play a role in defining start sites in vivo. Nearly identical effects on start site selection were observed for sua7 suppressors, which encode altered forms of TFIIB. Synthetic lethality was associated with double sua7 sua8 suppressor mutations, and recessive sua7 mutants failed to fully complement recessive sua8 mutants in heterozygous diploids (nonallelic noncomplementation). These data indicate that the largest subunit of RNA polymerase II and TFIIB are important determinants of transcription start site selection in S. cerevisiae and suggest that this function might be conferred by interaction between these two proteins.
Collapse
Affiliation(s)
- R W Berroteran
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport 71130
| | | | | |
Collapse
|
28
|
Bradsher JN, Jackson KW, Conaway RC, Conaway JW. RNA polymerase II transcription factor SIII. I. Identification, purification, and properties. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74431-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
29
|
Na JG, Hampsey M. The Kluyveromyces gene encoding the general transcription factor IIB: structural analysis and expression in Saccharomyces cerevisiae. Nucleic Acids Res 1993; 21:3413-7. [PMID: 8346020 PMCID: PMC331439 DOI: 10.1093/nar/21.15.3413] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The Kluyveromyces lactis gene encoding the general transcription factor IIB (TFIIB) was isolated from a genomic library by complementation of the cold-sensitive phenotype conferred by a mutation in the SUA7 gene, which encodes TFIIB in Saccharomyces cerevisiae. DNA sequence analysis of the KI-SUA7 gene revealed a 357 amino acid open reading frame that is 67% identical (81% overall similarity) to S. cerevisiae TFIIB. Comparison with other eukaryotic TFIIBs indicated that the most highly conserved sequence is located adjacent to the Zn-finger motif near the N-terminus. A plasmid shuffle system was used to replace the essential Sc-SUA7 gene with KI-SUA7 in S.cerevisiae. The resulting strain was viable and phenotypically indistinguishable from the normal strain. However, transcription start site selection at the ADH1 locus, shown previously to be affected by mutations in Sc-SUA7, was affected by K.lactis TFIIB. This result provides further evidence that TFIIB is a principal determinant of start site selection in yeast.
Collapse
Affiliation(s)
- J G Na
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport 71130-3932
| | | |
Collapse
|
30
|
|