1
|
Pradhan D, Sahu PK, Purohit S, Ranajit SK, Acharya B, Sangam S, Shrivastava AK. Therapeutic Interventions for Diabetes Mellitus-associated Complications. Curr Diabetes Rev 2025; 21:e030524229631. [PMID: 38706367 DOI: 10.2174/0115733998291870240408043837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Diabetes Mellitus (DM) is an alarming health concern, affecting approximately 537 million people worldwide. As a leading cause of morbidity and mortality, DM demands a comprehensive understanding of its diverse pathophysiological mechanisms and disease progression. METHODS This traditional review has consolidated literature on the pathogenesis of hyperglycemia, its progression into complications, and advances in optimal treatment strategies. The literature in the last two decades has been reviewed using several keywords, including "diabetes," "diabetes-associated complications", "novel therapeutic interventions for diabetes-associated diseases", "phyto-extracts as antidiabetic drugs", etc. in prominent databases, such as PubMed, Scopus, Google Scholar, Web of Science, and ClinicalTrials.gov. RESULTS We have discussed macrovascular and microvascular complications, such as atherosclerosis, cardiovascular disease, Peripheral Arterial Disease (PAD), stroke, diabetic nephropathy, retinopathy, and neuropathy, as well as various pharmacological and non-pharmacological interventions that are currently available for the management of DM. We have also focused on the potential of natural products in targeting molecular mechanisms involved in carbohydrate metabolism, insulin production, repair of pancreatic cells, and reduction of oxidative stress, thereby contributing to their antidiabetic activity. Additionally, novel therapeutic approaches, like genetic, stem cell, and immunomodulatory therapies, have been explored. We have also discussed the benefits and limitations of each intervention, emerging research and technologies, and precision medicine interventions. CONCLUSION This review has emphasized the need for an improved understanding of these advancements, which is essential to enhance clinicians' ability to identify the most effective therapeutic interventions.
Collapse
Affiliation(s)
- Dharmendra Pradhan
- School of Pharmacy, Centurion University of Technology and Management, Odisha, India
| | - Prafulla Kumar Sahu
- School of Pharmacy, Centurion University of Technology and Management, Odisha, India
| | - Sukumar Purohit
- School of Pharmacy, Centurion University of Technology and Management, Odisha, India
| | - Santosh Kumar Ranajit
- School of Pharmacy, Centurion University of Technology and Management, Odisha, India
| | - Biswajeet Acharya
- School of Pharmacy, Centurion University of Technology and Management, Odisha, India
| | - Shreya Sangam
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, 617, Massachusetts, USA
| | - Amit Kumar Shrivastava
- Department of Oriental Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeollabuk, South Korea
| |
Collapse
|
2
|
Nogueira Silva Lima MT, Delayre-Orthez C, Howsam M, Jacolot P, Niquet-Léridon C, Okwieka A, Anton PM, Perot M, Barbezier N, Mathieu H, Ghinet A, Fradin C, Boulanger E, Jaisson S, Gillery P, Tessier FJ. Early- and life-long intake of dietary advanced glycation end-products (dAGEs) leads to transient tissue accumulation, increased gut sensitivity to inflammation, and slight changes in gut microbial diversity, without causing overt disease. Food Res Int 2024; 195:114967. [PMID: 39277266 DOI: 10.1016/j.foodres.2024.114967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
Dietary advanced glycation end-products (dAGEs) accumulate in organs and are thought to initiate chronic low-grade inflammation (CLGI), induce glycoxidative stress, drive immunosenescence, and influence gut microbiota. Part of the toxicological interest in glycation products such as dietary carboxymethyl-lysine (dCML) relies on their interaction with receptor for advanced glycation end-products (RAGE). It remains uncertain whether early or lifelong exposure to dAGEs contributes physiological changes and whether such effects are reversible or permanent. Our objective was to examine the physiological changes in Wild-Type (WT) and RAGE KO mice that were fed either a standard diet (STD - 20.8 ± 5.1 µg dCML/g) or a diet enriched with dCML (255.2 ± 44.5 µg dCML/g) from the perinatal period for up to 70 weeks. Additionally, an early age (6 weeks) diet switch (dCML→STD) was explored to determine whether potential harmful effects of dCML could be reversed. Previous dCML accumulation patterns described by our group were confirmed here, with significant RAGE-independent accumulation of dCML in kidneys, ileum and colon over the 70-week dietary intervention (respectively 3-fold, 17-fold and 20-fold increases compared with controls). Diet switching returned tissue dCML concentrations to their baseline levels. The dCML-enriched diet had no significative effect on endogenous glycation, inflammation, oxidative stress or senescence parameters. The relative expression of TNFα, VCAM1, IL6, and P16 genes were all upregulated (∼2-fold) in an age-dependent manner, most notably in the kidneys of WT animals. RAGE knockout seemed protective in this regard, diminishing age-related renal expression of TNFα. Significant increases in TNFα expression were detectable in the intestinal tract of the Switch group (∼2-fold), suggesting a higher sensitivity to inflammation perhaps related to the timing of the diet change. Minor fluctuations were observed at family level within the caecal microbiota, including Eggerthellaceae, Anaerovoracaceae and Marinifilaceae communities, indicating slight changes in composition. Despite chronic dCML consumption resulting in higher free CML levels in tissues, there were no substantial increases in parameters related to inflammageing. Age was a more important factor in inflammation status, notably in the kidneys, while the early-life dietary switch may have influenced intestinal susceptibility to inflammation. This study affirms the therapeutic potential of RAGE modulation and corroborates evidence for the disruptive effect of dietary changes occurring too early in life. Future research should prioritize the potential influence of dAGEs on disease aetiology and development, notably any exacerbating effects they may have upon existing health conditions.
Collapse
Affiliation(s)
- M T Nogueira Silva Lima
- U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, University Lille, Inserm, CHU Lille, F-59000 Lille, France
| | - C Delayre-Orthez
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, Equipe PETALES, 60000 Beauvais, France
| | - M Howsam
- U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, University Lille, Inserm, CHU Lille, F-59000 Lille, France
| | - P Jacolot
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, Equipe PETALES, 60000 Beauvais, France
| | - C Niquet-Léridon
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, Equipe PETALES, 60000 Beauvais, France
| | - A Okwieka
- University of Reims Champagne-Ardenne, Laboratory of Biochemistry and Molecular Biology, CNRS/URCA UMR 7369 MEDyC, Faculté de Médecine, 51095 Reims, France
| | - P M Anton
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, Equipe PETALES, 60000 Beauvais, France
| | - M Perot
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, Equipe PETALES, 60000 Beauvais, France
| | - N Barbezier
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, Equipe PETALES, 60000 Beauvais, France
| | - H Mathieu
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, Equipe PETALES, 60000 Beauvais, France
| | - A Ghinet
- U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, University Lille, Inserm, CHU Lille, F-59000 Lille, France; Junia, Health and Environment, Laboratory of Sustainable Chemistry and Health, 59000 Lille, France
| | - C Fradin
- U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, University Lille, Inserm, CHU Lille, F-59000 Lille, France
| | - E Boulanger
- U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, University Lille, Inserm, CHU Lille, F-59000 Lille, France
| | - S Jaisson
- University of Reims Champagne-Ardenne, Laboratory of Biochemistry and Molecular Biology, CNRS/URCA UMR 7369 MEDyC, Faculté de Médecine, 51095 Reims, France; University Hospital of Reims, Laboratory of Biochemistry-Pharmacology-Toxicology, 51092 Reims, France
| | - P Gillery
- University of Reims Champagne-Ardenne, Laboratory of Biochemistry and Molecular Biology, CNRS/URCA UMR 7369 MEDyC, Faculté de Médecine, 51095 Reims, France; University Hospital of Reims, Laboratory of Biochemistry-Pharmacology-Toxicology, 51092 Reims, France
| | - F J Tessier
- U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, University Lille, Inserm, CHU Lille, F-59000 Lille, France.
| |
Collapse
|
3
|
Vergès B. Cardiovascular disease in type 1 diabetes, an underestimated danger: Epidemiological and pathophysiological data. Atherosclerosis 2024; 394:117158. [PMID: 37369617 DOI: 10.1016/j.atherosclerosis.2023.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023]
Abstract
Cardiovascular disease (CV) is a common complication of type 1 diabetes (T1D) and a leading cause of death. T1D patients are more likely to develop CV disease (CVD) early in life and show a reduction of life expectancy of at least 11 years. Patients with a young age of T1D onset have a substantially higher CV risk. The reasons for increased atherosclerosis in T1D patients are not entirely explained. In addition to the typical CV risk factors, long-term hyperglycemia has a significant impact by inducing oxidative stress, vascular inflammation, monocyte adhesion, arterial wall thickening and endothelial dysfunction. Additionally, CVD in T1D is also associated with nephropathy. However, CVD risk is still significantly increased in T1D patients, in good glycemic control without additional CV risk factors, indicating the involvement of supplementary potential factors. By increasing oxidative stress, vascular inflammation, and endothelial dysfunction, hypoglycemia and glucose variability may exacerbate CVD. Moreover, significant qualitative and functional abnormalities of lipoproteins are present in even well-controlled T1D patients and are likely to play a role in the development of atherosclerosis and the promotion of CVD. According to recent research, immune system dysfunction, which is typical of auto-immune T1D, may also promote CVD, likely via inflammatory pathways. In addition, T1D patients who are overweight or obese exhibit an additional CV risk due to pathophysiological mechanisms that are similar to those seen in T2D.
Collapse
Affiliation(s)
- Bruno Vergès
- Endocrinology-Diabetology Department, University-Hospital of Dijon, Dijon, France; INSERM LNC-UMR1231, Medicine University, 21000 Dijon, France; Service Endocrinologie, Diabétologie et Maladies Métaboliques, CHU-Dijon, 14 rue Gaffarel, F-21000 Dijon, France.
| |
Collapse
|
4
|
Dai Y, Zhou S, Qiao L, Peng Z, Zhao J, Xu D, Wu C, Li M, Zeng X, Wang Q. Non-apoptotic programmed cell deaths in diabetic pulmonary dysfunction: the new side of advanced glycation end products. Front Endocrinol (Lausanne) 2023; 14:1126661. [PMID: 37964954 PMCID: PMC10641270 DOI: 10.3389/fendo.2023.1126661] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 09/26/2023] [Indexed: 11/16/2023] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder that affects multiple organs and systems, including the pulmonary system. Pulmonary dysfunction in DM patients has been observed and studied for years, but the underlying mechanisms have not been fully understood. In addition to traditional mechanisms such as the production and accumulation of advanced glycation end products (AGEs), angiopathy, tissue glycation, oxidative stress, and systemic inflammation, recent studies have focused on programmed cell deaths (PCDs), especially the non-apoptotic ones, in diabetic pulmonary dysfunction. Non-apoptotic PCDs (NAPCDs) including autophagic cell death, necroptosis, pyroptosis, ferroptosis, and copper-induced cell death have been found to have certain correlations with diabetes and relevant complications. The AGE-AGE receptor (RAGE) axis not only plays an important role in the traditional pathogenesis of diabetes lung disease but also plays an important role in non-apoptotic cell death. In this review, we summarize novel studies about the roles of non-apoptotic PCDs in diabetic pulmonary dysfunction and focus on their interactions with the AGE-RAGE axis.
Collapse
Affiliation(s)
- Yimin Dai
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Shuang Zhou
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Lin Qiao
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Zhao Peng
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Jiuliang Zhao
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Dong Xu
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Chanyuan Wu
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Qian Wang
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| |
Collapse
|
5
|
Urbano F, Farella I, Brunetti G, Faienza MF. Pediatric Type 1 Diabetes: Mechanisms and Impact of Technologies on Comorbidities and Life Expectancy. Int J Mol Sci 2023; 24:11980. [PMID: 37569354 PMCID: PMC10418611 DOI: 10.3390/ijms241511980] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Type 1 diabetes (T1D) is one of the most common chronic diseases in childhood, with a progressively increasing incidence. T1D management requires lifelong insulin treatment and ongoing health care support. The main goal of treatment is to maintain blood glucose levels as close to the physiological range as possible, particularly to avoid blood glucose fluctuations, which have been linked to morbidity and mortality in patients with T1D. Indeed, the guidelines of the International Society for Pediatric and Adolescent Diabetes (ISPAD) recommend a glycated hemoglobin (HbA1c) level < 53 mmol/mol (<7.0%) for young people with T1D to avoid comorbidities. Moreover, diabetic disease strongly influences the quality of life of young patients who must undergo continuous monitoring of glycemic values and the administration of subcutaneous insulin. In recent decades, the development of automated insulin delivery (AID) systems improved the metabolic control and the quality of life of T1D patients. Continuous subcutaneous insulin infusion (CSII) combined with continuous glucose monitoring (CGM) devices connected to smartphones represent a good therapeutic option, especially in young children. In this literature review, we revised the mechanisms of the currently available technologies for T1D in pediatric age and explored their effect on short- and long-term diabetes-related comorbidities, quality of life, and life expectation.
Collapse
Affiliation(s)
- Flavia Urbano
- Giovanni XXIII Pediatric Hospital, 70126 Bari, Italy;
| | - Ilaria Farella
- Clinica Medica “A. Murri”, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Giacomina Brunetti
- Department of Biosciences, Biotechnologies, and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy
| | - Maria Felicia Faienza
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| |
Collapse
|
6
|
Abstract
Post-surgical adhesions are a major complication leading to organ dysfunctions, pain, intestinal obstruction, and infertility. The incidence of post-surgical adhesion is really high. The factors involved in the pathogenesis of post-surgical fibrosis, are largely unknown, for example why two patients with similar abdominal operation have a different risks of adhesion severity? High secretion of pro-inflammatory cytokines and growth factors, includes tumour necrosis factor α (TNF-α), interleukin 6 (IL6), and transforming growth factor β (TGF-β) by persistent recruitment of immune cells and the inappropriate proliferated fibroblast/mesothelial cells can stimulate signalling pathways particularly TGF-β leads to the up-regulation of some pro-fibrotic genes that impair fibrinolytic activity and promote extracellular matrix (ECM) accumulation. In this review, we focus on the role of diabetes and hyperglycaemia on post-surgical fibrosis, including the molecular mechanisms affected by hyperglycaemia that cause inflammation, oxidative stress, and increase the expression of pro-fibrotic molecules.
Collapse
Affiliation(s)
- Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Brighton, UK
| | - Seyed Mahdi Hassanian
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad-Hassan Arjmand
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
7
|
Lin JR, Wang ZT, Sun JJ, Yang YY, Li XX, Wang XR, Shi Y, Zhu YY, Wang RT, Wang MN, Xie FY, Wei P, Liao ZH. Gut microbiota and diabetic kidney diseases: Pathogenesis and therapeutic perspectives. World J Diabetes 2022; 13:308-318. [PMID: 35582668 PMCID: PMC9052008 DOI: 10.4239/wjd.v13.i4.308] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/09/2021] [Accepted: 04/04/2022] [Indexed: 02/06/2023] Open
Abstract
Diabetic kidney disease (DKD) is one of the major chronic complications of diabetes mellitus (DM), as well as a main cause of end-stage renal disease. Over the last few years, substantial research studies have revealed a contributory role of gut microbiota in the process of DM and DKD. Metabolites of gut microbiota like lipopolysaccharide, short-chain fatty acids, and trimethylamine N-oxide are key mediators of microbial–host crosstalk. However, the underlying mechanisms of how gut microbiota influences the onset and progression of DKD are relatively unknown. Besides, strategies to remodel the composition of gut microbiota or to reduce the metabolites of microbiota have been found recently, representing a new potential remedial target for DKD. In this mini-review, we will address the possible contribution of the gut microbiota in the pathogenesis of DKD and its role as a therapeutic target.
Collapse
Affiliation(s)
- Jia-Ran Lin
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
- Department of Nephrology and Endocrinology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Zi-Ting Wang
- Department of Environmental Medicine, Karolinska Institutet, Stockholm 17165, Sweden
| | - Jiao-Jiao Sun
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ying-Ying Yang
- Clinical Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna 17165, Sweden
| | - Xue-Xin Li
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17121, Sweden
| | - Xin-Ru Wang
- Department of Acupuncture and Moxibustion, First Clinical Medical College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yue Shi
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuan-Yuan Zhu
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Rui-Ting Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Mi-Na Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing 100010, China
| | - Fei-Yu Xie
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Department of Oncology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Peng Wei
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ze-Huan Liao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm 17177, Sweden
| |
Collapse
|
8
|
Antioxidant Potential of Adiponectin and Full PPAR- γ Agonist in Correcting Streptozotocin-Induced Vascular Abnormality in Spontaneously Hypertensive Rats. PPAR Res 2021; 2021:6661181. [PMID: 34691163 PMCID: PMC8531825 DOI: 10.1155/2021/6661181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 07/15/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress, which is associated with metabolic and anthropometric perturbations, leads to reactive oxygen species production and decrease in plasma adiponectin concentration. We investigated pharmacodynamically the pathophysiological role and potential implication of exogenously administered adiponectin with full and partial peroxisome proliferator-activated receptor-gamma (PPAR-γ) agonists on modulation of oxidative stress, metabolic dysregulation, and antioxidant potential in streptozotocin-induced spontaneously hypertensive rats (SHR). Group I (WKY) serves as the normotensive control, whereas 42 male SHRs were randomized equally into 7 groups (n = 6); group II serves as the SHR control, group III serves as the SHR diabetic control, and groups IV, V, and VI are treated with irbesartan (30 mg/kg), pioglitazone (10 mg/kg), and adiponectin (2.5 μg/kg), whereas groups VII and VIII received cotreatments as irbesartan+adiponectin and pioglitazone+adiponectin, respectively. Diabetes was induced using an intraperitoneal injection of streptozotocin (40 mg/kg). Plasma adiponectin, lipid contents, and arterial stiffness with oxidative stress biomarkers were measured using an in vitro and in vivo analysis. Diabetic SHRs exhibited hyperglycemia, hypertriglyceridemia, hypercholesterolemia, and increased arterial stiffness with reduced plasma adiponectin and antioxidant enzymatic levels (P < 0.05). Diabetic SHRs pretreated with pioglitazone and adiponectin separately exerted improvements in antioxidant enzyme activities, abrogated arterial stiffness, and offset the increased production of reactive oxygen species and dyslipidemic effects of STZ, whereas the blood pressure values were significantly reduced in the irbesartan-treated groups (all P < 0.05). The combined treatment of exogenously administered adiponectin with full PPAR-γ agonist augmented the improvement in lipid contents and adiponectin concentration and restored arterial stiffness with antioxidant potential effects, indicating the degree of synergism between adiponectin and full PPAR-γ agonists (pioglitazone).
Collapse
|
9
|
Experimental Animal Studies Support the Role of Dietary Advanced Glycation End Products in Health and Disease. Nutrients 2021; 13:nu13103467. [PMID: 34684468 PMCID: PMC8539226 DOI: 10.3390/nu13103467] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/24/2022] Open
Abstract
The increased incidence of obesity, diabetes mellitus, aging, and associated comorbidities indicates the interplay between genetic and environmental influences. Several dietary components have been identified to play a role in the pathogenesis of the so-called "modern diseases", and their complications including advanced glycation end products (AGEs), which are generated during the food preparation and processing. Diet-derived advanced glycation end products (dAGEs) can be absorbed in the gastrointestinal system and contribute to the total body AGEs' homeostasis, partially excreted in the urine, while a significant amount accumulates to various tissues. Various in vitro, in vivo, and clinical studies support that dAGEs play an important role in health and disease, in a similar way to those endogenously formed. Animal studies using wild type, as well as experimental, animal models have shown that dAGEs contribute significantly to the pathogenesis of various diseases and their complications, and are involved in the changes related to the aging process. In addition, they support that dAGEs' restriction reduces insulin resistance, oxidative stress, and inflammation; restores immune alterations; and prevents or delays the progression of aging, obesity, diabetes mellitus, and their complications. These data can be extrapolated in humans and strongly support that dAGEs' restriction should be considered as an alternative therapeutic intervention.
Collapse
|
10
|
Inagi R. Organelle stress and glycation in kidney disease. Glycoconj J 2021; 38:341-346. [PMID: 33709200 DOI: 10.1007/s10719-021-09989-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 01/23/2021] [Accepted: 02/28/2021] [Indexed: 11/28/2022]
Abstract
Glycation of proteins is a non-enzymatic posttranslational modification. Such random modification often deranges the structure and function of a wide range of proteins, and in turn leads to cellular dysfunction and organ damage. Protein glycation is thus an important topic in understanding the molecular mechanisms of the development or progression of various kinds of diabetes-related diseases. Meanwhile, organelle stress, such as mitochondrial or endoplasmic reticulum (ER) damage, is a causal factor for cellular dysfunction. Under pathogenic conditions, mitochondrial stress and ER stress are induced by glycated proteins. Intensive research has revealed the molecular mechanism of how glycation contributes to cell fate via organelle stress. This article will summarize the most recent evidence on organelle stress and glycation in kidney disease, especially diabetic kidney disease (DKD) associated with high glycation status.
Collapse
Affiliation(s)
- Reiko Inagi
- Division of CKD Pathophysiology, the University of Tokyo Graduate School of Medicine, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| |
Collapse
|
11
|
Cardiovascular disease in type 1 diabetes: A review of epidemiological data and underlying mechanisms. DIABETES & METABOLISM 2020; 46:442-449. [PMID: 32998054 DOI: 10.1016/j.diabet.2020.09.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/27/2020] [Accepted: 09/05/2020] [Indexed: 12/15/2022]
Abstract
Cardiovascular disease (CVD) is highly prevalent in patients with type 1 diabetes (T1D) and a major cause of mortality. CVD arises earlier in life in T1D patients and is responsible for a significant reduction of at least 11 years' life expectancy. Also, the incidence of CVD is much more pronounced in patients with T1D onset at an earlier age. However, the factors responsible for increased atherosclerosis and CVD in T1D are not yet totally clarified. In addition to the usual cardiovascular (CV) risk factors, chronic hyperglycaemia plays an important role by promoting oxidative stress, vascular inflammation, monocyte adhesion, arterial wall thickening and endothelial dysfunction. Diabetic nephropathy and cardiac autonomic neuropathy are also associated with increased CVD in T1D. In fact, the CVD risk remains significantly increased even in well-controlled T1D patients who have no additional CV risk factors, indicating that other potential factors are likely to be involved. Hypoglycemia and glucose variability could enhance CV disease by promoting oxidative stress, vascular inflammation and endothelial dysfunction. Furthermore, even well-controlled T1D patients show significant qualitative and functional abnormalities of lipoproteins that are likely to be implicated in the development of atherosclerosis and premature CVD. In addition, recent data suggest that a dysfunctional immune system, which is typical of autoimmune T1D, might also promote CVD possibly through inflammatory pathways. Moreover, overweight and obese T1D patients can manifest additional CV risk through pathophysiological mechanisms resembling those observed in type 2 diabetes (T2D).
Collapse
|
12
|
Graboski AL, Redinbo MR. Gut-Derived Protein-Bound Uremic Toxins. Toxins (Basel) 2020; 12:toxins12090590. [PMID: 32932981 PMCID: PMC7551879 DOI: 10.3390/toxins12090590] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/17/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022] Open
Abstract
Chronic kidney disease (CKD) afflicts more than 500 million people worldwide and is one of the fastest growing global causes of mortality. When glomerular filtration rate begins to fall, uremic toxins accumulate in the serum and significantly increase the risk of death from cardiovascular disease and other causes. Several of the most harmful uremic toxins are produced by the gut microbiota. Furthermore, many such toxins are protein-bound and are therefore recalcitrant to removal by dialysis. We review the derivation and pathological mechanisms of gut-derived, protein-bound uremic toxins (PBUTs). We further outline the emerging relationship between kidney disease and gut dysbiosis, including the bacterial taxa altered, the regulation of microbial uremic toxin-producing genes, and their downstream physiological and neurological consequences. Finally, we discuss gut-targeted therapeutic strategies employed to reduce PBUTs. We conclude that targeting the gut microbiota is a promising approach for the treatment of CKD by blocking the serum accumulation of PBUTs that cannot be eliminated by dialysis.
Collapse
Affiliation(s)
- Amanda L. Graboski
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599-7365, USA;
| | - Matthew R. Redinbo
- Departments of Chemistry, Biochemistry, Microbiology and Genomics, University of North Carolina, Chapel Hill, NC 27599-3290, USA
- Correspondence:
| |
Collapse
|
13
|
Haesen S, Cöl Ü, Schurgers W, Evens L, Verboven M, Driesen RB, Bronckaers A, Lambrichts I, Deluyker D, Bito V. Glycolaldehyde-modified proteins cause adverse functional and structural aortic remodeling leading to cardiac pressure overload. Sci Rep 2020; 10:12220. [PMID: 32699285 PMCID: PMC7376068 DOI: 10.1038/s41598-020-68974-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 07/06/2020] [Indexed: 02/07/2023] Open
Abstract
Growing evidence supports the role of advanced glycation end products (AGEs) in the development of diabetic vascular complications and cardiovascular diseases (CVDs). We have shown that high-molecular-weight AGEs (HMW-AGEs), present in our Western diet, impair cardiac function. Whether HMW-AGEs affect vascular function remains unknown. In this study, we aimed to investigate the impact of chronic HMW-AGEs exposure on vascular function and structure. Adult male Sprague Dawley rats were daily injected with HMW-AGEs or control solution for 6 weeks. HMW-AGEs animals showed intracardiac pressure overload, characterized by increased systolic and mean pressures. The contraction response to PE was increased in aortic rings from the HMW-AGEs group. Relaxation in response to ACh, but not SNP, was impaired by HMW-AGEs. This was associated with reduced plasma cyclic GMP levels. SOD restored ACh-induced relaxation of HMW-AGEs animals to control levels, accompanied by a reduced half-maximal effective dose (EC50). Finally, collagen deposition and intima-media thickness of the aortic vessel wall were increased with HMW-AGEs. Our data demonstrate that chronic HMW-AGEs exposure causes adverse vascular remodelling. This is characterised by disturbed vasomotor function due to increased oxidative stress and structural changes in the aorta, suggesting an important contribution of HMW-AGEs in the development of CVDs.
Collapse
Affiliation(s)
- Sibren Haesen
- Biomedical Research Institute (BIOMED), Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - Ümare Cöl
- Biomedical Research Institute (BIOMED), Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - Wouter Schurgers
- Biomedical Research Institute (BIOMED), Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - Lize Evens
- Biomedical Research Institute (BIOMED), Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - Maxim Verboven
- Biomedical Research Institute (BIOMED), Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - Ronald B Driesen
- Biomedical Research Institute (BIOMED), Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - Annelies Bronckaers
- Biomedical Research Institute (BIOMED), Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - Ivo Lambrichts
- Biomedical Research Institute (BIOMED), Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - Dorien Deluyker
- Biomedical Research Institute (BIOMED), Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - Virginie Bito
- Biomedical Research Institute (BIOMED), Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium.
| |
Collapse
|
14
|
Menini S, Iacobini C, Fantauzzi CB, Pugliese G. L-carnosine and its Derivatives as New Therapeutic Agents for the Prevention and Treatment of Vascular Complications of Diabetes. Curr Med Chem 2020; 27:1744-1763. [PMID: 31296153 DOI: 10.2174/0929867326666190711102718] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/20/2019] [Accepted: 04/25/2019] [Indexed: 02/01/2023]
Abstract
Vascular complications are among the most serious manifestations of diabetes. Atherosclerosis is the main cause of reduced life quality and expectancy in diabetics, whereas diabetic nephropathy and retinopathy are the most common causes of end-stage renal disease and blindness. An effective therapeutic approach to prevent vascular complications should counteract the mechanisms of injury. Among them, the toxic effects of Advanced Glycation (AGEs) and Lipoxidation (ALEs) end-products are well-recognized contributors to these sequelae. L-carnosine (β-alanyl-Lhistidine) acts as a quencher of the AGE/ALE precursors Reactive Carbonyl Species (RCS), which are highly reactive aldehydes derived from oxidative and non-oxidative modifications of sugars and lipids. Consistently, L-carnosine was found to be effective in several disease models in which glyco/lipoxidation plays a central pathogenic role. Unfortunately, in humans, L-carnosine is rapidly inactivated by serum carnosinase. Therefore, the search for carnosinase-resistant derivatives of Lcarnosine represents a suitable strategy against carbonyl stress-dependent disorders, particularly diabetic vascular complications. In this review, we present and discuss available data on the efficacy of L-carnosine and its derivatives in preventing vascular complications in rodent models of diabetes and metabolic syndrome. We also discuss genetic findings providing evidence for the involvement of the carnosinase/L-carnosine system in the risk of developing diabetic nephropathy and for preferring the use of carnosinase-resistant compounds in human disease. The availability of therapeutic strategies capable to prevent both long-term glucose toxicity, resulting from insufficient glucoselowering therapy, and lipotoxicity may help reduce the clinical and economic burden of vascular complications of diabetes and related metabolic disorders.
Collapse
Affiliation(s)
- Stefano Menini
- Department of Clinical and Molecular Medicine, "La Sapienza" University, Rome, Italy
| | - Carla Iacobini
- Department of Clinical and Molecular Medicine, "La Sapienza" University, Rome, Italy
| | | | - Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, "La Sapienza" University, Rome, Italy
| |
Collapse
|
15
|
Elshazly N, Khalil A, Saad M, Patruno M, Chakraborty J, Marei M. Efficacy of Bioactive Glass Nanofibers Tested for Oral Mucosal Regeneration in Rabbits with Induced Diabetes. MATERIALS 2020; 13:ma13112603. [PMID: 32517367 PMCID: PMC7321558 DOI: 10.3390/ma13112603] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 01/04/2023]
Abstract
The healing of oral lesions that are associated with diabetes mellitus is a matter of great concern. Bioactive glass is a highly recommended bioceramic scaffold for bone and soft tissue regeneration. In this study, we aimed to assess the efficacy of a novel formula of bioactive glass nanofibers in enhancing oral mucosal wound regeneration in diabetes mellitus. Bioactive glass nanofibres (BGnf) of composition (1–2) mol% of B2O3, (68–69) mol% of SiO2, and (29–30) mol% of CaO were synthesized via the low-temperature sol-gel technique followed by mixing with polymer solution, then electrospinning of the glass sol to produce nanofibers, which were then subjected to heat treatment. X-Ray Diffraction analysis of the prepared nanofibers confirmed its amorphous nature. Microstructure of BGnf simulated that of the fibrin clot with cross-linked nanofibers having a varying range of diameter (500–900 nm). The in-vitro degradation profile of BGnf confirmed its high dissolution rate, which proved the glass bioactivity. Following fibers preparation and characterization, 12 healthy New Zealand male rabbits were successfully subjected to type I diabetic induction using a single dose of intravenous injection of alloxan monohydrate. Two weeks after diabetes confirmation, the rabbits were randomly divided into two groups (control and experimental groups). Bilateral elliptical oral mucosal defects of 10 × 3.5 mm were created in the maxillary mucobuccal fold of both groups. The defects of the experimental group were grafted with BGnf, while the other group of defects considered as a control group. Clinical, histological, and immune-histochemical assessment of both groups of wounds were performed after one, two and three weeks’ time interval. The results of the clinical evaluation of BGnf treated defects showed complete wound closure with the absence of inflammation signs starting from one week postoperative. Control defects, on the other hand, showed an open wound with suppurative exudate. On histological and immunohistochemical level, the BGnf treated defects revealed increasing in cell activity and vascularization with the absence of inflammation signs starting from one week time interval, while the control defects showed signs of suppurative inflammation at one week time interval with diminished vascularization. The results advocated the suitability of BGnf as bioscaffold to be used in a wet environment as the oral cavity that is full of microorganisms and also for an immune-compromised condition as diabetes mellitus.
Collapse
Affiliation(s)
- Noha Elshazly
- Tissue Engineering laboratories Faculty of Dentistry, Alexandria University, Alexandria 21526, Egypt; (M.S.); (M.M.)
- Correspondence: (N.E.); (M.P.); Tel.: +20-1553124195 (N.E.); +39-049-8272792 (M.P.)
| | - Abdelaziz Khalil
- Oral and Maxillofacial Surgery, Faculty of Dentistry, Alexandria University, Alexandria 21526, Egypt;
| | - Manal Saad
- Tissue Engineering laboratories Faculty of Dentistry, Alexandria University, Alexandria 21526, Egypt; (M.S.); (M.M.)
- Oral Biology, Faculty of Oral and Dental Medicine, Ahram Canadian University, Giza 12451, Egypt
| | - Marco Patruno
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Legnaro (PD), Italy
- Correspondence: (N.E.); (M.P.); Tel.: +20-1553124195 (N.E.); +39-049-8272792 (M.P.)
| | - Jui Chakraborty
- Bioceramics and Coating Division, Central Glass and Ceramics Research Institutes, Kolkata 700032, India;
| | - Mona Marei
- Tissue Engineering laboratories Faculty of Dentistry, Alexandria University, Alexandria 21526, Egypt; (M.S.); (M.M.)
- Removable Prosthodontics Department, Faculty of Dentistry, Alexandria University, Alexandria 21526, Egypt
| |
Collapse
|
16
|
MiR-92b-3p is Induced by Advanced Glycation End Products and Involved in the Pathogenesis of Diabetic Nephropathy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6050874. [PMID: 32215042 PMCID: PMC7079240 DOI: 10.1155/2020/6050874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/26/2020] [Accepted: 02/06/2020] [Indexed: 12/14/2022]
Abstract
Purpose The current study aims to examine the effects of advanced glycation end products (AGEs) on the microRNA (miRNA) expression profile in the kidney tissues of rats. Methods Wistar rats were randomly divided into three equal experiment groups: the AGE group, the RSA group, and the control group. The rats in the AGE group and the RSA group were administered with advanced glycation end products (AGEs) and rat serum albumin (RSA) via the tail vein, respectively, whereas the control group received PBS. Total RNA was prepared from the rat kidney tissues, and the miRNA expression profiles in different experiment groups were compared by microarray analysis. The expression levels of selected differential miRNAs were verified by RT-qPCR. Target gene prediction was conducted using algorithms such as TargetScan, miRanda, and PICTar. Functional analysis was performed to determine the putative biological roles of the validated miRNAs. Results The microarray study revealed 451 upregulated and 320 downregulated miRNAs in the AGE group compared with the RSA group (p < 0.05). Seven miRNAs, including miR-21-5p, miR-92b-3p, miR-140-3p, miR-196a-5p, miR-181b-5p, miR-186-5p, and miR-192-5p, were screened and verified using RT-qPCR, of which, the change of miR-92b-3p was the most obvious according to the miRNA expression different multiple and p < 0.05). Seven miRNAs, including miR-21-5p, miR-92b-3p, miR-140-3p, miR-196a-5p, miR-181b-5p, miR-186-5p, and miR-192-5p, were screened and verified using RT-qPCR, of which, the change of miR-92b-3p was the most obvious according to the miRNA expression different multiple and Conclusion The results of the current study suggested that miR-92b-3p could mediate AGE-induced development of renal abnormalities through targeting Smad7 in rats with DN.
Collapse
|
17
|
Affiliation(s)
- Miriam F. W.eiss
- University Hospitals of Cleveland and Case Western Reserve University; Cleveland, Ohio, U.S.A
| |
Collapse
|
18
|
Park MS, Kim JK, Holmes C, Weiss AMF. Effects of Bicarbonate/Lactate Solution on Peritoneal Advanced Glycosylation End-Product Accumulation. Perit Dial Int 2020. [DOI: 10.1177/089686080002005s07] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Advanced glycosylation end-products (AGEs) are associated with diabetic complications and peritoneal damage after long-term peritoneal dialysis (PD) with high glucose dialysis solutions. Glucose degradation products (GDPs) derived during heat sterilization of high glucose dialysis solutions are thought to accelerate AGE formation. A new technique of separating glucose from electrolytes has yielded markedly lower GDP levels and permitted the use of dialysis solutions containing the physiologic buffer bicarbonate. Formation of AGEs in vitro with this new solution is significantly lower compared with formation of AGEs with conventional solutions.The purpose of the present study was to investigate the effect of long-term intraperitoneal use of new, neutral dialysis solution (B/L) containing bicarbonate (25 mmol/L) and lactate (15 mmol/L) on peritoneal AGE accumulation and permeability. Normal male Sprague–Dawley rats were used. Twice daily for 12 weeks, 30 mL of new solution (B/L) or conventional solution [Lac (lactate 40 mmol/L)] was injected into the peritoneal cavity of the test rats. As a control, rats that were not injected were kept for 12 weeks in the same manner as the test rats. After 12 weeks, a 2-hour peritoneal equilibration test (PET) was performed in the test rats. After the PET, the parietal peritoneum and liver were obtained for evaluation of peritoneal morphology and for immunohistochemistry for AGE. Intensity of AGE staining was semi-quantitatively graded from 0 to 3. The omentum was also obtained and immediately frozen for analysis of pentosidine content by high-performance liquid chromatography. Compared with findings in the control group, hematoxylin and eosin staining of the parietal peritoneum and liver samples revealed partial denudation of mesothelial cells in the Lac group; denudation was not remarkable in the B/L group. The B/L solution showed significantly less AGE staining in the peritoneal cavity compared to conventional solution. However, B/L solution failed to lower pentosidine levels. Intraperitoneal volume and the ratio of dialysate glucose at 2 hours to dialysate glucose at instillation (D2/D0glucose) were significantly lower and the ratio of dialysate urea to plasma urea at 2 hours (D2/P2urea) was significantly higher in the Lac and B/L groups than in the control group. Intra-peritoneal volume was significantly higher in the B/L group than in the Lac group; D2/D0glucose and D2/P2urea did not differ between the two groups.In conclusion, peritoneal ultrafiltration decreased after long-term PD. The B/L solution showed a small but statistically significant protective effect against decreasing ultrafiltration as compared with Lac solution. The B/L solution attenuated peritoneal AGE accumulation compared with conventional solution, but did not affect peritoneal pentosidine levels. These findings indicate that biochemical kinetics of various AGE peptides are not unique, but multivalent.
Collapse
Affiliation(s)
| | | | - Cliff Holmes
- Baxter Healthcare Corporation, Renal Division, McGaw Park, Illinois, U.S.A
| | | |
Collapse
|
19
|
Ateshkadi A, Johnson CA, Founds HW, Zimmerman SW. Serum Advanced Glycosylation End-Products in Patients on Hemodialysis and CAPD. Perit Dial Int 2020. [DOI: 10.1177/089686089501500207] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
ObjectivesPart I: To evaluate the long-term effects of daily glucose absorption from the peritoneal dialysis fluid on the formation of low-molecular-weight advanced glycosylation end products (AGE-peptides) in nondiabetic continuous ambulatory peritoneal dialysis (CAPD) patients. Part II: To determine the acute effect of CAPD on serum AGE-peptide concentrations.DesignPart I: Noninterventional, parallel, cross-sectional clinical trial. Part II: Crossover clinical trial.SettingA university-based hospital, and clinics.PatientsPart I: Sixty nondiabetic subjects recruited into three age-matched (:1:5 years) groups, as follows: 20 healthy volunteers (controls); 20 hemodialysis patients; and 20 CAPD patients. Part II: Eight patients with diabetes mellitus (type lor II) and chronic renal failure who were about to undergo CAPD.InterventionPart I: None. Part II: Uninterrupted CAPD, as medically required.MeasurementsPart I: To determine serum AGEpeptide concentrations blood samples were obtained randomly from controls and CAPD patients, and predialysis from hemodialysis patients. Hemoglobin A1c was also measured in all subjects. Part II: To determine serum AGE-peptide concentrations, blood samples were collected within one month prior to initiation of CAPD (predialysis) and, again, one week after initiation of uninterrupted CAPD (postdialysis). Hemoglobin A1c was measured predialysis.ResultsPart I: Mean hemoglobin A1c values for all groups were within the normal range; however, the mean value for CAPD patients was significantly higher than for both hemodialysis patients and healthy controls (controls, 5.21%:1:0.6%; hemodialysis, 5.12%:1:0.5%; CAPD, 5.78%:1:0.6%; p < 0.01). The dialysis patients had a significantly higher mean serum AGE-peptide concentration than the control subjects (controls, 7.02:1:3.4 units/mL; hemodialysis, 11.9:1:3.6 units/mL; CAPD, 11.1:1:4.5 units/mL; p < 0.01). There was no difference in the mean serum AGE-peptide concentration of patients in the hemodialysis and CAPD groups. Part II: The mean hemoglobin A1c value in the diabetic predialysis patients was 9.2%:1:1.9%. There was no difference between the predialysis and postdialysis serum AGE-peptide concentrations (predialysis, 16.9:1:9.6 units/mL; postdialysis, 16.0:1:2.9 units/mL; p = 0.78).ConclusionsDespite the increased glucose load and the higher hemoglobin A1c values, indicating poor glycemic control, nondiabetic CAPD patients did not have higher serum AGEpeptide concentrations than the nondiabetic hemodialysis patients. In diabetic patients, CAPD did not further increase the serum concentrations of AGEpeptides.
Collapse
Affiliation(s)
- Arasb Ateshkadi
- Department of Pharmacy Practice, The University of Utah College of Pharmacy, Salt Lake City, Utah
| | - Curtis A. Johnson
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin
| | | | - Stephen W. Zimmerman
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, U.S.A
| |
Collapse
|
20
|
Park MS, Lee HB. Age Accumulation in Peritoneal Membrane and Cavity during Peritoneal Dialysis and Its Effect on Peritoneal Structure and Function. Perit Dial Int 2020. [DOI: 10.1177/089686089901902s09] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Min Sun Park
- Hyonam Kidney Laboratory; Soon Chun Hyang University; Seoul, Korea
| | - Hi Bahl Lee
- Hyonam Kidney Laboratory; Soon Chun Hyang University; Seoul, Korea
| |
Collapse
|
21
|
Affiliation(s)
- Eli A. Friedman
- Department of Medicine SUNY Health Science Center at Brooklyn Brooklyn, New York 11203 U.S.A
| |
Collapse
|
22
|
Lee EA, Oh JH, Lee HA, Kim SI, Park EW, Park KB, Park MS. Structural and Functional Alterations of the Peritoneum after Prolonged Exposure to Dialysis Solutions: Role of Aminoguanidine. Perit Dial Int 2020. [DOI: 10.1177/089686080102100304] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
ObjectiveThe effect of long-term use of high glucose dialysate on peritoneal structure and function, and its relation with accumulation of advanced glycosylation end-product (AGE) in the peritoneum was investigated in this study.MethodsDialysates with 4.25% glucose were injected into the peritoneal cavity of normal rats for 12 weeks without (PD, n = 7) and with (1 g/L, PD+AG, n = 7) aminoguanidine in their drinking water. Rats not having intraperitoneal (IP) injection served as control ( n = 9). After 12 weeks of IP injection, a 2-hour peritoneal equilibration test (PET) was performed using 30 mL 4.25% glucose dialysate. Intraperitoneal volume (IPV), dialysate-to-plasma urea ratio at 2 hours (D2/P2), the ratio of dialysate glucose at 2 hours to initial dialysate glucose (D2/D0), and the peritoneal fluid absorption rate (Qa) were evaluated. After the PET, samples of the parietal peritoneum were taken for hematoxylin and eosin (H&E) staining and immunohistochemical staining for AGE.ResultsThe IPV and D2/D0glucose were significantly lower and Qaand D2/P2urea significantly higher in the PD group than in the control group. Aminoguanidine reversed in part the changes in IPV and D2/P2urea in the PD group; it had no effect on Qaand D2/D0glucose. The H&E staining showed a linear mesothelial lining with negligible cells and capillaries in the narrow submesothelial space in the control group. Mesothelial denudation and submesothelial infiltration of monocytes and capillary formation were observed in the PD group. Mesothelial denudation was relatively intact in the PD+AG group compared with the PD group. Submesothelial monocyte infiltration and capillary formation in the PD+AG group were not as prominent as in the PD group. Positive AGE staining was found in the submesothelial space, vascular walls, and endomysium in the PD group, while it was markedly attenuated in PD+AG group and negligible in the control group.ConclusionLong-term use of high glucose solutions induced peritoneal AGE accumulation and mesothelial denudation, and increased peritoneal permeability and peritoneal fluid absorption rate. Inhibition of peritoneal AGE accumulation prevented those functional and structural damages to the peritoneum.
Collapse
Affiliation(s)
- Eun Ah Lee
- Hyonam Kidney Laboratory, Soon Chun Hyang University, Seoul
| | - Jong Hoon Oh
- Hyonam Kidney Laboratory, Soon Chun Hyang University, Seoul
| | - Hyun Ah Lee
- Hyonam Kidney Laboratory, Soon Chun Hyang University, Seoul
| | - Sung Il Kim
- Hyonam Kidney Laboratory, Soon Chun Hyang University, Seoul
| | - Eung Woo Park
- Korea Atomic Energy Research Institute, Daejeon, Korea
| | | | - Min Sun Park
- Hyonam Kidney Laboratory, Soon Chun Hyang University, Seoul
| |
Collapse
|
23
|
Park MS, Lee HA, Chu WS, Yang DH, Hwang SD. Peritoneal Accumulation of Age and Peritoneal Membrane Permeability. Perit Dial Int 2020. [DOI: 10.1177/089686080002000413] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BackgroundIn continuous ambulatory peritoneal dialysis (CAPD), the peritoneal membrane is continuously exposed to high-glucose-containing dialysis solutions. Abnormally high glucose concentration in the peritoneal cavity may enhance advanced glycosylation end-product (AGE) formation and accumulation in the peritoneum. Increased AGE accumulation in the peritoneum, decreased ultrafiltration volume, and increased peritoneal permeability in long-term dialysis patients have been reported.AimThe purpose of the study was to evaluate the relation between peritoneal membrane permeability and peritoneal accumulation of AGE.MethodsPeritoneal membrane permeability was evaluated by peritoneal equilibration test (PET) using dialysis solutions containing 4.25% glucose. Serum, dialysate, and peritoneal tissue levels of AGE were measured by ELISA method using polyclonal anti-AGE antibody. Peritoneal biopsy was performed during peritoneal catheter insertion [new group (group N), n = 18] and removal [long-term group (group LT), n = 10]. Peritoneal catheters were removed due to exit-site infection not extended into the internal cuff ( n = 6) and ultrafiltration failure ( n = 4) after 51.6 ± 31.5 months (13 – 101 months) of dialysis. PET data obtained within 3 months after the initiation of CAPD or before catheter removal were included in this study. Ten patients in group N and 4 patients in group LT were diabetic. Patients in group LT were significantly younger (46.5 ± 11.1 years vs 57.5 ± 1.3 years) and experienced more episodes of peritonitis (3.5 ± 2.1 vs 0.2 ± 0.7) than group N.ResultsPeritoneal tissue AGE level in group LT was significantly higher than in group N, in both nondiabetic (0.187 ± 0.108 U/mg vs 0.093 ± 0.08 U/mg of hydroxyproline, p < 0.03) and diabetic patients (0.384 ± 0.035 U/mg vs 0.152 ± 0.082 U/mg of hydroxyproline, p < 0.03), while serum and dialysate levels did not differ between the groups in both nondiabetic and diabetic patients. Drain volume (2600 ± 237 mL vs 2766 ± 222 mL, p = 0.07) and D4/D0glucose (0.229 ± 0.066 vs 0.298 ± 0.081, p < 0.009) were lower, and D4/P4creatinine (0.807 ± 0.100 vs 0.653 ± 0.144, p < 0.0001) and D1/P1sodium (0.886 ± 0.040 vs 0.822 ± 0.032, p < 0.0003) were significantly higher in group LT than in group N. On linear regression analysis, AGE level in the peritoneum was directly correlated with duration of CAPD ( r = 0.476, p = 0.012), number of peritonitis episodes ( r = 0.433, p = 0.0215), D4/P4creatinine ( r = 0.546, p < 0.027), and D1/P1sodium ( r = 0.422, p = 0.0254), and inversely correlated with drain volume ( r = 0.432, p = 0.022) and D4/D0glucose ( r = 0.552, p < 0.0023). AGE level in the peritoneal tissue and dialysate were significantly higher in diabetics than in nondiabetics in group LT, while these differences were not found in group N. Serum AGE level did not differ between nondiabetics and diabetics in either group N or group LT. Drain volume and D4/D0glucose were lower and D4/P4creatinine and D1/P1sodium higher in diabetics than in nondiabetics in both groups.ConclusionPeritoneal accumulation of AGE increased with time on CAPD and number of peritonitis episodes, and was directly related with peritoneal permeability. Peritoneal AGE accumulation and peritoneal permeability in diabetic patients were higher than in nondiabetic patients from the beginning of CAPD.
Collapse
Affiliation(s)
- Min Sun Park
- Hyonam Kidney Laboratory, Soon Chun Hyang University, Seoul, Korea
| | - Hyon Ah Lee
- Hyonam Kidney Laboratory, Soon Chun Hyang University, Seoul, Korea
| | - Won Suk Chu
- Hyonam Kidney Laboratory, Soon Chun Hyang University, Seoul, Korea
| | - Dong Ho Yang
- Hyonam Kidney Laboratory, Soon Chun Hyang University, Seoul, Korea
| | - Seung Duk Hwang
- Hyonam Kidney Laboratory, Soon Chun Hyang University, Seoul, Korea
| |
Collapse
|
24
|
Gill V, Kumar V, Singh K, Kumar A, Kim JJ. Advanced Glycation End Products (AGEs) May Be a Striking Link Between Modern Diet and Health. Biomolecules 2019; 9:biom9120888. [PMID: 31861217 PMCID: PMC6995512 DOI: 10.3390/biom9120888] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/30/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022] Open
Abstract
The Maillard reaction is a simple but ubiquitous reaction that occurs both in vivo and ex vivo during the cooking or processing of foods under high-temperature conditions, such as baking, frying, or grilling. Glycation of proteins is a post-translational modification that forms temporary adducts, which, on further crosslinking and rearrangement, form permanent residues known as advanced glycation end products (AGEs). Cooking at high temperature results in various food products having high levels of AGEs. This review underlines the basis of AGE formation and their corresponding deleterious effects on the body. Glycated Maillard products have a direct association with the pathophysiology of some metabolic diseases, such as diabetes mellitus type 2 (DM2), acute renal failure (ARF), Alzheimer’s disease, dental health, allergies, and polycystic ovary syndrome (PCOS). The most glycated and structurally abundant protein is collagen, which acts as a marker for diabetes and aging, where decreased levels indicate reduced skin elasticity. In diabetes, high levels of AGEs are associated with carotid thickening, ischemic heart disease, uremic cardiomyopathy, and kidney failure. AGEs also mimic hormones or regulate/modify their receptor mechanisms at the DNA level. In women, a high AGE diet directly correlates with high levels of androgens, anti-Müllerian hormone, insulin, and androstenedione, promoting ovarian dysfunction and/or infertility. Vitamin D3 is well-associated with the pathogenesis of PCOS and modulates steroidogenesis. It also exhibits a protective mechanism against the harmful effects of AGEs. This review elucidates and summarizes the processing of infant formula milk and the associated health hazards. Formulated according to the nutritional requirements of the newborn as a substitute for mother’s milk, formula milk is a rich source of primary adducts, such as carboxy-methyl lysine, which render an infant prone to inflammation, dementia, food allergies, and other diseases. We therefore recommend that understanding this post-translational modification is the key to unlocking the mechanisms and physiology of various metabolic syndromes.
Collapse
Affiliation(s)
- Vidhu Gill
- Central Research Station, Subharti Medical College, Swami Vivekanand Subharti University, Meerut 250002, India; (V.G.); (K.S.)
| | - Vijay Kumar
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
- Correspondence: (V.K.); (J.-J.K.); Tel.: +82-53-810-3027 or +82-10-9668-3464 (J.-J.K.); Fax: +82-53-801-3027 (J.-J.K.)
| | - Kritanjali Singh
- Central Research Station, Subharti Medical College, Swami Vivekanand Subharti University, Meerut 250002, India; (V.G.); (K.S.)
| | - Ashok Kumar
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India;
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
- Correspondence: (V.K.); (J.-J.K.); Tel.: +82-53-810-3027 or +82-10-9668-3464 (J.-J.K.); Fax: +82-53-801-3027 (J.-J.K.)
| |
Collapse
|
25
|
Chen GT, Yang BB, Chen JH, Zhang Z, Zhu LL, Jiang HS, Yu W, Chen Y, Dai YT. Pancreatic kininogenase improves erectile function in streptozotocin-induced type 2 diabetic rats with erectile dysfunction. Asian J Androl 2019; 20:448-453. [PMID: 29676291 PMCID: PMC6116675 DOI: 10.4103/aja.aja_23_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Erectile dysfunction (ED) associated with type 2 diabetes is a severe problem that requires effective treatment. Pancreatic kininogenase (PK) has the potential to improve the erectile function of ED patients. This study aims to investigate the effect of PK on erectile function in streptozotocin-induced type 2 diabetic ED rats. To achieve this goal, we divided male Sprague-Dawley rats into five groups. One group was not treated, and the other four groups were treated with saline, sildenafil, PK or sildenafil, and PK, respectively, for 4 weeks after the induction of type 2 diabetic ED. Then, intracavernous pressure under cavernous nerve stimulation was measured, and penile tissue was collected for further study. Endothelial nitric oxide synthase levels, smooth muscle content, endothelium content, cyclic guanosine monophosphate (cGMP) levels in the corpus cavernosum, and neuronal nitric oxide synthase levels in the dorsal penile nerve were measured. Improved erectile function and endothelium and smooth muscle content in the corpus cavernosum were observed in diabetic ED rats. When treating diabetic ED rats with PK and sildenafil at the same time, a better therapeutic effect was achieved. These data demonstrate that intraperitoneal injection of PK can improve erectile function in a rat model of type 2 diabetic ED. With further research on specific mechanisms of erectile function improvement, PK may become a novel treatment for diabetic ED.
Collapse
Affiliation(s)
- Guo-Tao Chen
- Department of Andrology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Bai-Bing Yang
- Department of Andrology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Jian-Huai Chen
- Department of Andrology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Zheng Zhang
- Department of Andrology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Lei-Lei Zhu
- Department of Andrology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - He-Song Jiang
- Department of Andrology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Wen Yu
- Department of Andrology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yun Chen
- Department of Andrology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yu-Tian Dai
- Department of Andrology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| |
Collapse
|
26
|
Gryszczyńska B, Budzyń M, Begier-Krasińska B, Osińska A, Boruczkowski M, Kaczmarek M, Bukowska A, Iskra M, Kasprzak MP. Association between Advanced Glycation End Products, Soluble RAGE Receptor, and Endothelium Dysfunction, Evaluated by Circulating Endothelial Cells and Endothelial Progenitor Cells in Patients with Mild and Resistant Hypertension. Int J Mol Sci 2019; 20:ijms20163942. [PMID: 31412635 PMCID: PMC6720658 DOI: 10.3390/ijms20163942] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 08/06/2019] [Indexed: 02/08/2023] Open
Abstract
The aim of the present study was to evaluate advanced glycation end products (AGEs) and soluble form of receptor RAGE (sRAGE) concentrations as well as the AGEs/sRAGE ratio in mild (MH) and resistant (RH) hypertensive patients in comparison with normotensive individuals. We also evaluated the association between AGEs, sRAGE as well as AGEs/sRAGE ratio and circulating endothelial cells (CECs) and circulating endothelial progenitor cells (CEPCs). The MH group consisted of 30 patients, whereas 30 patients were classified for the RH group. The control group (C) included 25 normotensive volunteers. AGEs and sRAGE were measured using enzyme-linked-immunosorbent assay (ELISA). The multicolor flow cytometry was used for analysis of CECs and CEPCs. Significantly higher levels of AGEs in RH cohort were observed as compared to C cohort. Furthermore, significantly lower sRAGE levels as well as a higher AGEs/sRAGE ratio were observed between MH and RH cohorts. Significant correlations were found in the MH cohort for sRAGE and CECs, and CEPCs. The elevation of AGEs levels suggests that oxidative modification of proteins occurs in hypertension pathogenesis. The decrease in sRAGE levels and elevation of the AGEs/sRAGE ratio in MH and RH groups may suggest that hypertensive patients are less protected against the side effects of AGEs as a consequence of an insufficient competitive role of sRAGE against the AGEs-RAGE axis. Finally, it may be concluded that the level of AGEs may be an independent predictor of the condition and function of the endothelium. Furthermore, sRAGE may be classified as a potential biomarker of inflammation and endothelium dysfunction.
Collapse
Affiliation(s)
- Bogna Gryszczyńska
- Department of General Chemistry, Chair of Chemistry and Clinical Biochemistry, Poznan University of Medical Sciences, 60-806 Poznan, Poland.
| | - Magdalena Budzyń
- Department of General Chemistry, Chair of Chemistry and Clinical Biochemistry, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Beata Begier-Krasińska
- Department of Hypertension, Angiology, and Internal Disease, Poznan University of Medical Sciences, 61-848 Poznan, Poland
| | - Angelika Osińska
- Department of Hypertension, Angiology, and Internal Disease, Poznan University of Medical Sciences, 61-848 Poznan, Poland
| | - Maciej Boruczkowski
- Department of Clinical Immunology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Mariusz Kaczmarek
- Department of Clinical Immunology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Alicja Bukowska
- Medical Analysis Laboratory Regional Blood Centre, 60-354 Poznan, Poland
| | - Maria Iskra
- Department of General Chemistry, Chair of Chemistry and Clinical Biochemistry, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Magdalena Paulina Kasprzak
- Department of General Chemistry, Chair of Chemistry and Clinical Biochemistry, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| |
Collapse
|
27
|
Ravichandran G, Lakshmanan DK, Raju K, Elangovan A, Nambirajan G, Devanesan AA, Thilagar S. Food advanced glycation end products as potential endocrine disruptors: An emerging threat to contemporary and future generation. ENVIRONMENT INTERNATIONAL 2019; 123:486-500. [PMID: 30622074 DOI: 10.1016/j.envint.2018.12.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/14/2018] [Accepted: 12/15/2018] [Indexed: 06/09/2023]
Abstract
Mankind exposure to chemicals in the past century has increased dramatically throughout environment. There is no question that chemicals interfere with the physiology of biological system. Abundance of chemicals is documented to be detrimental to human and wildlife. The mammalian endocrine system is comprised of many interacting tissues mediate themselves through hormones that are essential for metabolism, growth and development. Humans secrete over fifty different hormones to orchestrate major physiological functions however; these vital functions can be intervened by huge number of internal and external chemical stressors that are identified as endocrine disruptors. Advanced glycation end products (AGEs), familiarly known as Maillard products, formed through non-enzymatic glycation whose production is augmented on aging as well as environmental stressors. Processed foods have become very popular today due to their taste, convenience, and inexpensiveness. Manufacture of these day-to-day foods involves extreme temperatures on processing results in the formation of AGEs could independently promote oxidative stress, aging, diabetes, cancer, degenerative diseases, more fascinatingly hormonal disruption is the subject of interest of this review. Based on some substantial observations documented till time, we discuss the emergence of dietary AGEs as potential endocrine disruptors by emphasizing their occurrence, mechanisms and participation in endocrine interruption. Both economically and in terms of human life, AGEs may represent an enormous cost for the future society. Therefore, by explicating their novel role in endocrine diseases, the review strives to make an impact on AGEs and their exposure among public as well as scientific communities.
Collapse
Affiliation(s)
- Guna Ravichandran
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, Tamilnadu, India
| | - Dinesh Kumar Lakshmanan
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, Tamilnadu, India
| | - Karthik Raju
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, Tamilnadu, India
| | - Abbirami Elangovan
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, Tamilnadu, India
| | - Gayathri Nambirajan
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, Tamilnadu, India
| | - Arul Ananth Devanesan
- Department of Food Quality and Safety, Gilat Research Center, Agricultural Research Organization, M.P. Negev 85280, Israel
| | - Sivasudha Thilagar
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, Tamilnadu, India.
| |
Collapse
|
28
|
Yang BB, Hong ZW, Zhang Z, Yu W, Song T, Zhu LL, Jiang HS, Chen GT, Chen Y, Dai YT. Epalrestat, an Aldose Reductase Inhibitor, Restores Erectile Function in Streptozocin-induced Diabetic Rats. Int J Impot Res 2018; 31:97-104. [PMID: 30214006 PMCID: PMC6462873 DOI: 10.1038/s41443-018-0075-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/25/2018] [Accepted: 07/23/2018] [Indexed: 01/03/2023]
Abstract
Epalrestat, an aldose reductase inhibitor (ARI), was adopted to improve the function of peripheral nerves in diabetic patients. The aim of this study was to investigate whether epalrestat could restore the erectile function of diabetic erectile dysfunction using a rat model. From June 2016, 24 rats were given streptozocin (STZ) to induce the diabetic rat model, and epalrestat was administered to ten diabetic erectile dysfunction (DED) rats. Intracavernous pressure (ICP) and mean systemic arterial pressure (MAP), levels of aldose reductase (AR), nerve growth factor (NGF), neuronal nitric oxide synthase (nNOS), α-smooth muscle antigen (α-SMA), and von Willebrand factor (vWF) in the corpus cavernosum were analyzed. We discovered that epalrestat acted on cavernous tissue and partly restored erectile function. NGF and nNOS levels in the corpora were increased after treatment with epalrestat. We also found that the content of α-SMA-positive smooth muscle cells and vWF-positive endothelial cells in the corpora cavernosum were declined. Accordingly, epalrestat might improve erectile function by increasing the upregulation of NGF and nNOS to restore the function of the dorsal nerve of the penis.
Collapse
Affiliation(s)
- Bai-Bing Yang
- Department of Andrology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210000, China
| | - Zhi-Wei Hong
- Department of Urology, Fujian Provincial Hospital, Fuzhou, 350000, China
| | - Zheng Zhang
- Department of Andrology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210000, China
| | - Wen Yu
- Department of Andrology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210000, China
| | - Tao Song
- Department of Andrology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210000, China
| | - Lei-Lei Zhu
- Department of Andrology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210000, China
| | - He-Song Jiang
- Department of Andrology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210000, China
| | - Guo-Tao Chen
- Department of Andrology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210000, China
| | - Yun Chen
- Department of Andrology, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, 210000, China.
| | - Yu-Tian Dai
- Department of Andrology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210000, China.
| |
Collapse
|
29
|
Chaudhuri J, Bains Y, Guha S, Kahn A, Hall D, Bose N, Gugliucci A, Kapahi P. The Role of Advanced Glycation End Products in Aging and Metabolic Diseases: Bridging Association and Causality. Cell Metab 2018; 28:337-352. [PMID: 30184484 PMCID: PMC6355252 DOI: 10.1016/j.cmet.2018.08.014] [Citation(s) in RCA: 404] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Accumulation of advanced glycation end products (AGEs) on nucleotides, lipids, and peptides/proteins are an inevitable component of the aging process in all eukaryotic organisms, including humans. To date, a substantial body of evidence shows that AGEs and their functionally compromised adducts are linked to and perhaps responsible for changes seen during aging and for the development of many age-related morbidities. However, much remains to be learned about the biology of AGE formation, causal nature of these associations, and whether new interventions might be developed that will prevent or reduce the negative impact of AGEs-related damage. To facilitate achieving these latter ends, we show how invertebrate models, notably Drosophila melanogaster and Caenorhabditis elegans, can be used to explore AGE-related pathways in depth and to identify and assess drugs that will mitigate against the detrimental effects of AGE-adduct development.
Collapse
Affiliation(s)
- Jyotiska Chaudhuri
- The Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA.
| | - Yasmin Bains
- Touro University College of Osteopathic Medicine, Glycation Oxidation and Research laboratory, Vallejo, CA, 94592, USA
| | - Sanjib Guha
- The Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Arnold Kahn
- The Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA; University of California, Department of Urology, 400 Parnassus Avenue, San Francisco, CA 94143, USA
| | - David Hall
- The Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Neelanjan Bose
- The Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA; University of California, Department of Urology, 400 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Alejandro Gugliucci
- Touro University College of Osteopathic Medicine, Glycation Oxidation and Research laboratory, Vallejo, CA, 94592, USA.
| | - Pankaj Kapahi
- The Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA; University of California, Department of Urology, 400 Parnassus Avenue, San Francisco, CA 94143, USA.
| |
Collapse
|
30
|
Wu Y, Su SA, Xie Y, Shen J, Zhu W, Xiang M. Murine models of vascular endothelial injury: Techniques and pathophysiology. Thromb Res 2018; 169:64-72. [PMID: 30015230 DOI: 10.1016/j.thromres.2018.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/08/2018] [Accepted: 07/08/2018] [Indexed: 12/13/2022]
Abstract
Vascular endothelial injury (VEI) triggers pathological processes in various cardiovascular diseases, such as coronary heart disease and hypertension. To further elucidate the in vivo pathological mechanisms of VEI, many animal models have been established. For the easiness of genetic manipulation and feeding, murine models become most commonly applied for investigating VEI. Subsequently, countless valuable information concerning pathogenesis has been obtained and therapeutic strategies for VEI have been developed. This review will highlight some typical murine VEI models from the perspectives of pharmacological intervention, surgery and genetic manipulation. The techniques, pathophysiology, advantages, disadvantages and the experimental purpose of each model will also be discussed.
Collapse
Affiliation(s)
- Yue Wu
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hang Zhou 310009, Zhejiang Province, China
| | - Sheng-An Su
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hang Zhou 310009, Zhejiang Province, China
| | - Yao Xie
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hang Zhou 310009, Zhejiang Province, China
| | - Jian Shen
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hang Zhou 310009, Zhejiang Province, China
| | - Wei Zhu
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hang Zhou 310009, Zhejiang Province, China.
| | - Meixiang Xiang
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hang Zhou 310009, Zhejiang Province, China.
| |
Collapse
|
31
|
Li P, Chen D, Cui Y, Zhang W, Weng J, Yu L, Chen L, Chen Z, Su H, Yu S, Wu J, Huang Q, Guo X. Src Plays an Important Role in AGE-Induced Endothelial Cell Proliferation, Migration, and Tubulogenesis. Front Physiol 2018; 9:765. [PMID: 29977209 PMCID: PMC6021521 DOI: 10.3389/fphys.2018.00765] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/31/2018] [Indexed: 01/10/2023] Open
Abstract
Advanced glycation end products (AGEs), produced by the non-enzymatic glycation of proteins and lipids under hyperglycemia or oxidative stress conditions, has been implicated to be pivotal in the development of diabetic vascular complications, including diabetic retinopathy. We previously demonstrated that Src kinase played a causative role in AGE-induced hyper-permeability and barrier dysfunction in human umbilical vein endothelial cells (HUVECs). While the increase of vascular permeability is the early event of angiogenesis, the effect of Src in AGE-induced angiogenesis and the mechanism has not been completely revealed. Here, we investigated the impact of Src on AGE-induced HUVECs proliferation, migration, and tubulogenesis. Inhibition of Src with inhibitor PP2 or siRNA decreased AGE-induced migration and tubulogenesis of HUVECs. The inactivation of Src with pcDNA3/flag-SrcK298M also restrained AGE-induced HUVECs proliferation, migration, and tube formation, while the activation of Src with pcDNA3/flag-SrcY530F enhanced HUVECs angiogenesis alone and exacerbated AGE-induced angiogenesis. AGE-enhanced HUVECs angiogenesis in vitro was accompanied with the phosphorylation of ERK in HUVECs. The inhibition of ERK with its inhibitor PD98059 decreased AGE-induced HUVECs angiogenesis. Furthermore, the inhibition and silencing of Src suppressed the AGE-induced ERK activation. And the silencing of AGEs receptor (RAGE) inhibited the AGE-induced ERK activation and angiogenesis as well. In conclusions, this study demonstrated that Src plays a pivotal role in AGE-promoted HUVECs angiogenesis by phosphorylating ERK, and very likely through RAGE-Src-ERK pathway.
Collapse
Affiliation(s)
- Peixin Li
- Key Laboratory for Shock and Microcirculation Research of Guangdong Province, Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Deshu Chen
- Key Laboratory for Shock and Microcirculation Research of Guangdong Province, Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Yun Cui
- Key Laboratory for Shock and Microcirculation Research of Guangdong Province, Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Weijin Zhang
- Key Laboratory for Shock and Microcirculation Research of Guangdong Province, Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Jie Weng
- Key Laboratory for Shock and Microcirculation Research of Guangdong Province, Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Lei Yu
- Key Laboratory for Shock and Microcirculation Research of Guangdong Province, Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Lixian Chen
- Key Laboratory for Shock and Microcirculation Research of Guangdong Province, Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Zhenfeng Chen
- Key Laboratory for Shock and Microcirculation Research of Guangdong Province, Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Haiying Su
- Key Laboratory for Shock and Microcirculation Research of Guangdong Province, Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Shengxiang Yu
- Key Laboratory for Shock and Microcirculation Research of Guangdong Province, Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Jie Wu
- Key Laboratory for Shock and Microcirculation Research of Guangdong Province, Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Qiaobing Huang
- Key Laboratory for Shock and Microcirculation Research of Guangdong Province, Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Xiaohua Guo
- Key Laboratory for Shock and Microcirculation Research of Guangdong Province, Department of Pathophysiology, Southern Medical University, Guangzhou, China
| |
Collapse
|
32
|
Zhu LL, Zhang Z, Jiang HS, Chen H, Chen Y, Dai YT. Superparamagnetic iron oxide nanoparticle targeting of adipose tissue-derived stem cells in diabetes-associated erectile dysfunction. Asian J Androl 2018; 19:425-432. [PMID: 27157506 PMCID: PMC5507087 DOI: 10.4103/1008-682x.179532] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Erectile dysfunction (ED) is a major complication of diabetes, and many diabetic men with ED are refractory to common ED therapies. Adipose tissue-derived stem cells (ADSCs) have been shown to improve erectile function in diabetic animal models. However, inadequate cell homing to damaged sites has limited their efficacy. Therefore, we explored the effect of ADSCs labeled with superparamagnetic iron oxide nanoparticles (SPIONs) on improving the erectile function of streptozotocin-induced diabetic rats with an external magnetic field. We found that SPIONs effectively incorporated into ADSCs and did not exert any negative effects on stem cell properties. Magnetic targeting of ADSCs contributed to long-term cell retention in the corpus cavernosum and improved the erectile function of diabetic rats compared with ADSC injection alone. In addition, the paracrine effect of ADSCs appeared to play the major role in functional and structural recovery. Accordingly, magnetic field-guided ADSC therapy is an effective approach for diabetes-associated ED therapy.
Collapse
Affiliation(s)
- Lei-Lei Zhu
- Department of Andrology, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210008, China
| | - Zheng Zhang
- Department of Andrology, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210008, China
| | - He-Song Jiang
- Department of Andrology, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210008, China
| | - Hai Chen
- Department of Andrology, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210008, China
| | - Yun Chen
- Department of Andrology, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210008, China
| | - Yu-Tian Dai
- Department of Andrology, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210008, China
| |
Collapse
|
33
|
Chen Q, Huang J, Gong W, Chen Z, Huang J, Liu P, Huang H. MRTF-A mediated FN and ICAM-1 expression in AGEs-induced rat glomerular mesangial cells via activating STAT5. Mol Cell Endocrinol 2018; 460:123-133. [PMID: 28712960 DOI: 10.1016/j.mce.2017.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/12/2017] [Accepted: 07/12/2017] [Indexed: 01/13/2023]
Abstract
Advanced glycation end products (AGEs), formed at an accelerated rate under diabetes, play a role in inflammation and fibrosis in mesangial areas in diabetic nephropathy (DN). However, the transcriptional modulator that mediates the cellular response to AGEs remains largely obscure. Our goal was to determine whether myocardin-related transcription factor (MRTF)-A, a key protein involved in the transcriptional regulation of smooth muscle cell phenotype, was responsible for the glomerular mesangial cells (GMCs) injury by AGEs, and, if so, how MRTF-A promoted mesangial dysfunction initiated by AGEs. In this study, MRTF-A was activated by AGEs in terms of protein expression and nuclear translocation in rat GMCs. MRTF-A overexpression synergistically enhanced the induction of FN and ICAM-1 by AGEs. In contract, depletion of MRTF-A abrogated the pathogenic program triggered by AGEs. Then, by interfering with MRTF-A, STAT1, STAT3 and STAT5 nuclear translocation were observed and we screened out STAT5, which was decreased obviously when MRTF-A depleted. Further investigation showed that MRTF-A interacted with STAT5 and promoted its nuclear accumulation and transcriptional activity. Therefore, our present findings suggested a role of MRTF-A in AGEs-induced GMCs injury, and further revealed that the underlying molecular mechanism was related to activating the nuclear factor STAT5.
Collapse
Affiliation(s)
- Qiuhong Chen
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Junying Huang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenyan Gong
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhiquan Chen
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jiani Huang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Peiqing Liu
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Heqing Huang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Engineering & Technology Research Center for Disease-Model Animals, Guangzhou 510006, China.
| |
Collapse
|
34
|
Cwalina B, Turek A, Nozynski J, Jastrzebska M, Nawrat Z. Structural Changes in Pericardium Tissue Modified with Tannic Acid. Int J Artif Organs 2018; 28:648-53. [PMID: 16015575 DOI: 10.1177/039139880502800614] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Introduction Structural modification of proteins, mainly collagen in connective tissues, is important in the manufacture of tissue-derived biomaterials. Natural compounds like genipin or tannic acid (TA) have been proposed instead of glutaraldehyde which shows cytotoxic effects on the processed tissue. Furthermore, calcification of glutaraldehyde-treated tissue limits the functional lifetime of bioprostheses. TA is known to form numerous hydrogen bonds with proteins. The purpose of our study was to investigate structural changes in porcine pericardium upon chemical modification with tannic acid. Methods Porcine pericardium tissue (PP) was soaked in 2% TA for 4, 24 or 48 hours. Changes in tissue structure were studied using electrophoresis (SDS-PAGE) and histological examination. Structural stability of PP tissue was evaluated by SDS/NaCl extraction method and enzymatic digestion with pancreatin. Results TA-modification of PP caused a time-dependent decrease in the number of peptides extracted from tissue. Microscopic studies revealed no significant morphological differences between native and TA-modified tissues, except for the native pancreatin-digested tissue where lack of both cells and low molecular peptides was observed. Conclusion Modification of PP with TA causes the structural changes leading to an increase in the tissue resistance to SDS/NaCl extraction and enzymatic digestion, providing experimental evidence for the higher structural stability of TA-treated tissue.
Collapse
Affiliation(s)
- B Cwalina
- Department of Biophysics, Medical University of Silesia, Sosnowiec, Poland. cwalina@slam..katowice.pl
| | | | | | | | | |
Collapse
|
35
|
Prasad K, Mishra M. AGE-RAGE Stress, Stressors, and Antistressors in Health and Disease. Int J Angiol 2017; 27:1-12. [PMID: 29483760 DOI: 10.1055/s-0037-1613678] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adverse effects of advanced glycation end-products (AGEs) on the tissues are through nonreceptor- and receptor-mediated mechanisms. In the receptor-mediated mechanism, interaction of AGEs with its cell-bound receptor of AGE (RAGE) increases generation of oxygen radicals, activates nuclear factor-kappa B, and increases expression and release of pro-inflammatory cytokines resulting in the cellular damage. The deleterious effects of AGE and AGE-RAGE interaction are coined as "AGE-RAGE stress." The body is equipped with defense mechanisms to counteract the adverse effects of AGE and RAGE through endogenous enzymatic (glyoxalase 1, glyoxalase 2) and AGE receptor-mediated (AGER1, AGER2) degradation of AGE, and through elevation of soluble receptor of AGE (sRAGE). Exogenous defense mechanisms include reduction in consumption of AGE, prevention of AGE formation, and downregulation of RAGE expression. We have coined AGE and RAGE as "stressors" and the defense mechanisms as "anti-stressors." AGE-RAGE stress is defined as a shift in the balance between stressors and antistressors in the favor of stressors. Measurements of stressors or antistressors alone would not assess AGE-RAGE stress. For true assessment of AGE-RAGE stress, the equation should include all the stressors and antistressors. The equation for AGE-RAGE stress, therefore, would be the ratio of AGE + RAGE/sRAGE + glyoxalase1 + glyoxalase 2 + AGER1 +AGER2. This is, however, not practical in patients. AGE-RAGE stress may be assessed simply by the ratio of AGE/sRAGE. A high ratio of AGE/sRAGE indicates a relative shift in stressors from antistressors, suggesting the presence of AGE-RAGE stress, resulting in tissue damage, initiation, and progression of the diseases and their complications.
Collapse
Affiliation(s)
- Kailash Prasad
- Department of Physiology, University of Saskatchewan, College of Medicine, Saskatoon, Canada
| | - Manish Mishra
- Department of Physiology, University of Saskatchewan, College of Medicine, Saskatoon, Canada
| |
Collapse
|
36
|
Jiménez IU, Díaz-Díaz E, Castro JS, Ramos JP, León MC, Alvarado Ríos JA, Auriostigue Bautista JC, Correa-Rotter R, Aguilar Salinas CA, Larrea F. Circulating Concentrations of Advanced Glycation end Products, its Association With the Development of Diabetes Mellitus. Arch Med Res 2017; 48:360-369. [PMID: 29157674 DOI: 10.1016/j.arcmed.2017.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 07/03/2017] [Indexed: 01/15/2023]
Abstract
BACKGROUND Diabetes Mellitus (DM) is characterized by the production and accumulation of advanced glycation end products (AGEs), which are one of the key mechanisms in the development of its chronic complications. AIMS OF THE STUDY To assess the serum AGEs concentration by a radioimmunoassay (RIA) developed in our laboratory, to establish reference values in healthy population and to evaluate the diagnostic potential of measuring longitudinal changes in circulating AGEs concentrations to predict the development of DM. METHODS Clinical and metabolic parameters were obtained from a cohort of 781 Mexican people, initially and then seven years later. AGEs were quantified by a specific RIA. Associations of the changes in circulating levels of AGEs with the appearance of impaired fasting glucose (IFG), and the development of DM were evaluated. RESULTS Diabetic subjects had higher circulating levels of AGEs than normoglycemic subjects or individuals with IFG in both samples studied (471 vs. 246 and 342 μU/mL, p <0.001; and 912 vs. 428 and 519 μU/mL, p <0.001; respectively). A multinomial logistic regression analysis showed that subjects who had AGEs concentration ≥400 μU/mL in the baseline sample had a relative risk ratio of 1.98 to develop IFG seven years later (p = 0.003). While the subjects who had AGEs concentration ≥450 μU/mL in the baseline sample had a relative risk ratio of 10.7 to develop DM seven years later (p <0.001). CONCLUSIONS Circulating AGEs concentration is a good early marker to predict risk of developing DM.
Collapse
Affiliation(s)
- Itzel Uribe Jiménez
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana Xochimilco-Iztapalapa-Cuajimalpa, Ciudad de México, México; Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Eulises Díaz-Díaz
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México.
| | - Jorge Salmerón Castro
- Unidad Académica de Investigación Epidemiológica, Centro de Investigación en Políticas, Población y Salud, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Julia Pérez Ramos
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Ciudad de México, México
| | - Mario Cárdenas León
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - José Antonio Alvarado Ríos
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México; Programa de Postgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Juan Carlos Auriostigue Bautista
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México; Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Ricardo Correa-Rotter
- Departamento de Nefrología y Metabolismo Mineral, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Carlos Alberto Aguilar Salinas
- Departamento de Endocrinología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Fernando Larrea
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| |
Collapse
|
37
|
Jagadish S, Hemshekhar M, NaveenKumar SK, Sharath Kumar KS, Sundaram MS, Basappa, Girish KS, Rangappa KS. Novel oxolane derivative DMTD mitigates high glucose-induced erythrocyte apoptosis by regulating oxidative stress. Toxicol Appl Pharmacol 2017; 334:167-179. [DOI: 10.1016/j.taap.2017.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 09/05/2017] [Accepted: 09/09/2017] [Indexed: 01/02/2023]
|
38
|
Hirakawa Y, Jao TM, Inagi R. Pathophysiology and therapeutics of premature ageing in chronic kidney disease, with a focus on glycative stress. Clin Exp Pharmacol Physiol 2017; 44 Suppl 1:70-77. [PMID: 28467603 DOI: 10.1111/1440-1681.12777] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 04/12/2017] [Accepted: 04/22/2017] [Indexed: 11/30/2022]
Abstract
Chronic kidney disease (CKD) is a major concern in public health. The pathology of CKD includes premature ageing in the kidney and vessels, which results in a high risk of cardiovascular events and end-stage renal disease. Many factors are involved in premature ageing in CKD, including hormonal imbalance, glycative stress, nitrogenous metabolites, and oxidative stress. Of these, the most important role in premature ageing in CKD is played by glycative stress, namely a massive and unfavourable glycation state, since the kidney is responsible for the clearance of advanced glycation endproducts (AGEs). In an animal model, overexpression of glyoxalase I (GLO-1), a detoxifier of AGEs, has been found to alleviate premature ageing in the kidney and vessels. Both lifestyle changes and drug therapy have shown promise in overcoming premature ageing. Promising drug therapies include a GLO-1 activator and an absorbent against glycotoxin and nitrogenous metabolites.
Collapse
Affiliation(s)
- Yosuke Hirakawa
- Division of Nephrology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Tzu-Ming Jao
- Division of CKD Pathophysiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Reiko Inagi
- Division of CKD Pathophysiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| |
Collapse
|
39
|
Yang D, Liu W, Ma L, Wang Y, Ma J, Jiang M, Deng X, Huang F, Yang T, Chen M. Profilin‑1 contributes to cardiac injury induced by advanced glycation end‑products in rats. Mol Med Rep 2017; 16:6634-6641. [PMID: 28901418 PMCID: PMC5865800 DOI: 10.3892/mmr.2017.7446] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 07/20/2017] [Indexed: 12/21/2022] Open
Abstract
Cardiac injury, including hypertrophy and fibrosis, induced by advanced glycation end products (AGEs) has an important function in the onset and development of diabetic cardiomyopathy. Profilin-1, a ubiquitously expressed and multifunctional actin-binding protein, has been reported to be an important mediator in cardiac hypertrophy and fibrosis. However, whether profilin-1 is involved in AGE-induced cardiac hypertrophy and fibrosis remains to be determined. Therefore, the present study aimed to investigate the function of profilin-1 in cardiac injury induced by AGEs. The model of cardiac injury was established by chronic tail vein injection of AGEs (50 mg/kg/day for 8 weeks) in Sprague-Dawley rats. Rats were randomly assigned to control, AGEs, AGEs + profilin-1 shRNA adenovirus vectors (AGEs + S)or AGEs + control adenovirus vectors (AGEs + V) groups. Profilin-1 shRNA adenovirus vectors were injected via the tail vein to knockdown profilin-1 expression at a dose of 3×109 plaque forming units every 4 weeks. Echocardiography was performed to measure cardiac contractile function. Cardiac tissues were stained with Masson's trichrome stain to evaluate ventricular remodeling. The serum levels of procollagen type III N-terminal peptide were detected by ELISA. The expression of profilin-1, receptor for AGEs (RAGE), Rho, p65, atrial natriuretic peptide, β-myosin heavy chain, matrix metalloproteinase (MMP)-2 and MMP-9 were determined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and/or western blot analysis and immunohistochemistry staining. The results demonstrated that chronic injection of exogenous AGEs led to cardiac dysfunction, hypertrophy and fibrosis, as determined by echocardiography, Masson trichrome staining and the expression of associated genes. The expression of profilin-1 was markedly increased in heart tissue at the mRNA and protein level following AGE administration, as determined by RT-qPCR and western blotting, which was further confirmed by immunohistochemistry staining. Furthermore, the expression of RAGE, Rho and p65 was also increased at the protein level. Notably, knockdown of profilin-1 expression ameliorated AGE-induced cardiac injury and reduced the expression of RAGE, Rho and p65. These results indicate an important role for profilin-1 in AGE-induced cardiac injury, which may provide a novel therapeutic target for patients with diabetic heart failure.
Collapse
Affiliation(s)
- Dafeng Yang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Weiwei Liu
- Department of Cardiology, The First Hospital of Changsha, Changsha, Hunan 410005, P.R. China
| | - Liping Ma
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Ya Wang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jing Ma
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Minna Jiang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xu Deng
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410006, P.R. China
| | - Fang Huang
- Department of Cardiology, The First Hospital of Changsha, Changsha, Hunan 410005, P.R. China
| | - Tianlun Yang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Meifang Chen
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
40
|
Kamtchueng Simo O, Ikhlef S, Berrougui H, Khalil A. Advanced glycation end products affect cholesterol homeostasis by impairing ABCA1 expression on macrophages. Can J Physiol Pharmacol 2017; 95:977-984. [PMID: 28704619 DOI: 10.1139/cjpp-2017-0170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Reverse cholesterol transport (RCT), which is intimately linked to high-density lipoproteins (HDLs), plays a key role in cholesterol homeostasis and the prevention of atherosclerosis. The goal of the present study was to investigate the effect of aging and advanced glycation end products (AGEs) on RCT as well as on other factors that may affect the antiatherogenic property of HDLs. The transfer of macrophage-derived cholesterol to the plasma and liver and then to the feces for elimination was significantly lower in aged mice than in young mice. Chronic injection of d -galactose (D-gal) or AGEs also significantly reduced RCT (65.3% reduction in [3H]cholesterol levels in the plasma of D-gal-treated mice after 48 h compared with control mice, P < 0.01). The injection of both D-gal and aminoguanidine hydrochloride increased [3H]cholesterol levels in the plasma, although the levels were lower than those of control mice. The in vitro incubation of HDLs with dicarbonyl compounds increased the carbonyl and conjugated diene content of HDLs and significantly reduced PON1 paraoxonase activity (87.4% lower than control HDLs, P < 0.0001). Treating J774A.1 macrophages with glycated fetal bovine serum increased carbonyl formation (39.5% increase, P < 0.003) and reduced ABCA1 protein expression and the capacity of macrophages to liberate cholesterol (69.1% decrease, P < 0.0001). Our results showed, for the first time, that RCT is altered with aging and that AGEs contribute significantly to this alteration.
Collapse
Affiliation(s)
| | - Souade Ikhlef
- a Research Centre on Aging, Sherbrooke, QC J1H 4C4, Canada.,b Department of Biology, University Sultan moulay Slimane, Beni Mellal, Morocco
| | - Hicham Berrougui
- a Research Centre on Aging, Sherbrooke, QC J1H 4C4, Canada.,b Department of Biology, University Sultan moulay Slimane, Beni Mellal, Morocco
| | - Abdelouahed Khalil
- a Research Centre on Aging, Sherbrooke, QC J1H 4C4, Canada.,c Department of Medicine, Geriatrics Service, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
41
|
Yang S, Jan YH, Mishin V, Heck DE, Laskin DL, Laskin JD. Diacetyl/l-Xylulose Reductase Mediates Chemical Redox Cycling in Lung Epithelial Cells. Chem Res Toxicol 2017; 30:1406-1418. [PMID: 28595002 DOI: 10.1021/acs.chemrestox.7b00052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Reactive carbonyls such as diacetyl (2,3-butanedione) and 2,3-pentanedione in tobacco and many food and consumer products are known to cause severe respiratory diseases. Many of these chemicals are detoxified by carbonyl reductases in the lung, in particular, dicarbonyl/l-xylulose reductase (DCXR), a multifunctional enzyme important in glucose metabolism. DCXR is a member of the short-chain dehydrogenase/reductase (SDR) superfamily. Using recombinant human enzyme, we discovered that DCXR mediates redox cycling of a variety of quinones generating superoxide anion, hydrogen peroxide, and, in the presence of transition metals, hydroxyl radicals. Redox cycling activity preferentially utilized NADH as a cosubstrate and was greatest for 9,10-phenanthrenequinone and 1,2-naphthoquinone, followed by 1,4-naphthoquinone and 2-methyl-1,4-naphthoquinone (menadione). Using 9,10-phenanthrenequinone as the substrate, quinone redox cycling was found to inhibit DCXR reduction of l-xylulose and diacetyl. Competitive inhibition of enzyme activity by the quinone was observed with respect to diacetyl (Ki = 190 μM) and l-xylulose (Ki = 940 μM). Abundant DCXR activity was identified in A549 lung epithelial cells when diacetyl was used as a substrate. Quinones inhibited reduction of this dicarbonyl, causing an accumulation of diacetyl in the cells and culture medium and a decrease in acetoin, the reduced product of diacetyl. The identification of DCXR as an enzyme activity mediating chemical redox cycling suggests that it may be important in generating cytotoxic reactive oxygen species in the lung. These activities, together with the inhibition of dicarbonyl/l-xylulose metabolism by redox-active chemicals, as well as consequent deficiencies in pentose metabolism, are likely to contribute to lung injury following exposure to dicarbonyls and quinones.
Collapse
Affiliation(s)
- Shaojun Yang
- Department of Environmental and Occupational Health, Rutgers University School of Public Health , Piscataway, New Jersey 08854, United States
| | - Yi-Hua Jan
- Department of Environmental and Occupational Health, Rutgers University School of Public Health , Piscataway, New Jersey 08854, United States
| | - Vladimir Mishin
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy , Piscataway, New Jersey 08854, United States
| | - Diane E Heck
- Department of Environmental Health Science, New York Medical College , Valhalla, New York 10595, United States
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy , Piscataway, New Jersey 08854, United States
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health, Rutgers University School of Public Health , Piscataway, New Jersey 08854, United States
| |
Collapse
|
42
|
Dietary Metabolites and Chronic Kidney Disease. Nutrients 2017; 9:nu9040358. [PMID: 28375181 PMCID: PMC5409697 DOI: 10.3390/nu9040358] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/30/2017] [Accepted: 03/31/2017] [Indexed: 01/04/2023] Open
Abstract
Dietary contents and their metabolites are closely related to chronic kidney disease (CKD) progression. Advanced glycated end products (AGEs) are a type of uremic toxin produced by glycation. AGE accumulation is not only the result of elevated glucose levels or reduced renal clearance capacity, but it also promotes CKD progression. Indoxyl sulfate, another uremic toxin derived from amino acid metabolism, accumulates as CKD progresses and induces tubulointerstitial fibrosis and glomerular sclerosis. Specific types of amino acids (d-serine) or fatty acids (palmitate) are reported to be closely associated with CKD progression. Promising therapeutic targets associated with nutrition include uremic toxin absorbents and inhibitors of AGEs or the receptor for AGEs (RAGE). Probiotics and prebiotics maintain gut flora balance and also prevent CKD progression by enhancing gut barriers and reducing uremic toxin formation. Nrf2 signaling not only ameliorates oxidative stress but also reduces elevated AGE levels. Bardoxolone methyl, an Nrf2 activator and NF-κB suppressor, has been tested as a therapeutic agent, but the phase 3 clinical trial was terminated owing to the high rate of cardiovascular events. However, a phase 2 trial has been initiated in Japan, and the preliminary analysis reveals promising results without an increase in cardiovascular events.
Collapse
|
43
|
Xu Y, Guo H. Role of Advanced Glycation End Products in the Progression of Diabetes Mellitus. ACTA ACUST UNITED AC 2017. [DOI: 10.17352/2455-8583.000019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
El-Bassossy HM, Elberry AA, Ghareib SA. Geraniol improves the impaired vascular reactivity in diabetes and metabolic syndrome through calcium channel blocking effect. J Diabetes Complications 2016; 30:1008-16. [PMID: 27131411 DOI: 10.1016/j.jdiacomp.2016.04.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 03/17/2016] [Accepted: 04/08/2016] [Indexed: 10/21/2022]
Abstract
AIM The aim of the present study is to investigate the effect and possible mechanism of action of geraniol on the impaired vascular reactivity of aortic rings isolated from diabetes or metabolic syndrome (MS) -induced rats. METHODS Male Wistar rats were divided into control, type 1 diabetes and metabolic syndrome (MS) groups. Diabetes was induced by a single intraperitoneal injection of streptozotocin (50mg/kg) and left for 10weeks to develop vascular complications. MS was induced by adding 10% fructose and 3% salt to water and diet for 12weeks. The present study investigated the effect of in vitro incubation with geraniol (10-300μM) on the vasoconstrictor response to phenylephrine (PE) and the vasodilator response to acetylcholine (ACh) as well as its effect on aortae incubated with methylglyoxal (MG) as an advanced glycation end product (AGE). To investigate the mechanism of action of geraniol, different blockers are used, including Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME, 100μM), tetraethylammonium chloride (TEA, 10mM), and indomethacin (INDO, 5μM). Moreover, the effect of calcium chloride (CaCl2) on aortic rings precontracted with PE or potassium chloride (KCl) was examined. RESULTS Thirty minutes incubation with geraniol alleviated the exaggerated vasoconstriction in aortae isolated from diabetic or MS animals or in vitro exposed to MG in a concentration-dependent manner. In addition, geraniol improved the vasodilatation response of diabetic or MS aortae or aortae exposed to MG. In search for the mechanism; geraniol produced concentration-dependent relaxation of both PE and KCl-precontracted aorta. Geraniol relaxation was not affected by L-NAME, INDO or TEA. However, geraniol significantly inhibited voltage dependent and receptor mediated Ca(2+)-induced contraction activated by KCl or PE respectively. CONCLUSION In conclusion, geraniol ameliorates impaired vascular reactivity in experimentally induced diabetes and MS. The effect may be partially attributed to an endothelium-independent pathway involving blockage of both voltage dependent and receptor operated calcium channel.
Collapse
Affiliation(s)
- Hany M El-Bassossy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Ahmed A Elberry
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Clinical Pharmacology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt.
| | - Salah A Ghareib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
45
|
Kakde S, Bhopal RS, Bhardwaj S, Misra A. Urbanized South Asians' susceptibility to coronary heart disease: The high-heat food preparation hypothesis. Nutrition 2016; 33:216-224. [PMID: 27776951 DOI: 10.1016/j.nut.2016.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/17/2016] [Accepted: 07/08/2016] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Known risk factors do not fully explain the comparatively high susceptibility to coronary heart disease (CHD) in South Asians (Indian, Pakistani, Bangladeshi, and Sri Lankan populations in South Asia and overseas). The search for explanatory hypotheses and cofactors that raise susceptibility of South Asians to CHD continues. The aim of this study was to propose "the high-heat food preparation hypothesis," where neo-formed contaminants (NFCs) such as trans-fatty acids (TFAs) and advanced glycation end-products (AGEs) are the cofactors. METHODS We reviewed the actions of AGEs and TFAs, the burden of these products in tissues and blood in South Asians, the relationship between these products and CHD, the effects of preparing food and reheating oils at high temperatures on NFCs, and the foods and mode of preparation in South Asian and Chinese cuisines. RESULTS Animal and human studies show NFCs increase the risk for CHD. Evidence on the consumption and body burden of these products across ethnic groups is not available, and comparable data on the NFC content of the cuisine of South Asians and potential comparison populations (e.g., the Chinese with lower CHD rates) are limited. South Asians' cuisine is dominated by frying and roasting techniques that use high temperatures. South Asian foods have high TFA content primarily through the use of partially hydrogenated fats, reheated oils, and high-heat cooking. Reheating oils greatly increases the TFA content. In comparison, Chinese cuisine involves mostly braising, steaming, and boiling rather than frying. CONCLUSION We hypothesize that South Asians' susceptibility to CHD is partly attributable to high-heat treated foods producing high NFCs. Research to accrue direct evidence is proposed.
Collapse
Affiliation(s)
- Smitha Kakde
- Edinburgh Migration, Ethnicity and Health Research Group, Centre for Population Health Sciences, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Raj S Bhopal
- Edinburgh Migration, Ethnicity and Health Research Group, Centre for Population Health Sciences, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK.
| | - Swati Bhardwaj
- National Diabetes, Obesity and Cholesterol Diseases Foundation, SDA, New Delhi, India; Diabetes Foundation (India), SDA, New Delhi, India; Center of Nutrition & Metabolic Research (C-NET), Delhi, India
| | - Anoop Misra
- National Diabetes, Obesity and Cholesterol Diseases Foundation, SDA, New Delhi, India; Diabetes Foundation (India), SDA, New Delhi, India; Center of Nutrition & Metabolic Research (C-NET), Delhi, India; Fortis C-DOC Center for Excellence for Diabetes, Metabolic Diseases and Endocrinology, New Delhi, India
| |
Collapse
|
46
|
Adamopoulos C, Piperi C, Gargalionis AN, Dalagiorgou G, Spilioti E, Korkolopoulou P, Diamanti-Kandarakis E, Papavassiliou AG. Advanced glycation end products upregulate lysyl oxidase and endothelin-1 in human aortic endothelial cells via parallel activation of ERK1/2-NF-κB and JNK-AP-1 signaling pathways. Cell Mol Life Sci 2016; 73:1685-1698. [PMID: 26646068 PMCID: PMC11108501 DOI: 10.1007/s00018-015-2091-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/26/2015] [Accepted: 11/09/2015] [Indexed: 10/22/2022]
Abstract
Endothelial dysfunction involves deregulation of the key extracellular matrix (ECM) enzyme lysyl oxidase (LOX) and the vasoconstrictor protein, endothelin-1 (ET-1), whose gene expression can be modulated by the transcriptional activators nuclear factor kappa B (NF-κB) and activator protein-1 (AP-1). Advanced glycation end products (AGEs) present an aggravating factor of endothelial dysfunction which upon engagement to their receptor RAGE induce upregulation of mitogen-activated protein kinases (MAPKs), leading to NF-κB and AP-1 potentiation. We hypothesized that AGEs could induce NF-κΒ- and AP-1-dependent regulation of LOX and ET-1 expression via the AGE/RAGE/MAPK signaling axis. Western blot, real-time qRT-PCR, FACS analysis and electrophoretic mobility-shift assays were employed in human aortic endothelial cells (HAECs) following treatment with AGE-bovine serum albumin (AGE-BSA) to investigate the signaling pathway towards this hypothesis. Furthermore, immunohistochemical analysis of AGEs, RAGE, LOX and ET-1 expression was conducted in aortic endothelium of a rat experimental model exposed to high- or low-AGE content diet. HAECs exposed to AGE-BSA for various time points exhibited upregulation of LOX and ET-1 mRNA levels in a dose- and time-dependent manner. Exposure of HAECs to AGE-BSA also showed specific elevation of phospho(p)-ERK1/2 and p-JNK levels in a dose- and time-dependent fashion. AGE administration significantly increased NF-κΒ- and AP-1-binding activity to both LOX and ET-1 cognate promoter regions. Moreover, LOX and ET-1 overexpression in rat aortic endothelium upon high-AGE content diet confirmed the functional interrelation of these molecules. Our findings demonstrate that AGEs trigger NF-κΒ- and AP-1-mediated upregulation of LOX and ET-1 via the AGE/RAGE/MAPK signaling cascade in human endothelial cells, thus contributing to distorted endothelial homeostasis by impairing endothelial barrier function, altering ECM biomechanical properties and cell proliferation.
Collapse
Affiliation(s)
- Christos Adamopoulos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece
| | - Antonios N Gargalionis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece
| | - Georgia Dalagiorgou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece
| | - Eliana Spilioti
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece
| | - Penelope Korkolopoulou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Evanthia Diamanti-Kandarakis
- Third Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, 'Sotiria' Hospital, 11527, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece.
| |
Collapse
|
47
|
Analysis of advanced glycation endproducts in selected food items by ultra-performance liquid chromatography tandem mass spectrometry: Presentation of a dietary AGE database. Food Chem 2016. [DOI: 10.1016/j.foodchem.2015.06.049] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
48
|
Ghareib SA, El-Bassossy HM, Elberry AA, Azhar A, Watson ML, Banjar ZM. 6-Gingerol alleviates exaggerated vasoconstriction in diabetic rat aorta through direct vasodilation and nitric oxide generation. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:6019-26. [PMID: 26609223 PMCID: PMC4644177 DOI: 10.2147/dddt.s94346] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aim of the present study is to investigate the effect and potential mechanism of action of 6-gingerol on alterations of vascular reactivity in the isolated aorta from diabetic rats. Male Wistar rats were divided into two experimental groups, control and diabetics. Diabetes was induced by a single intraperitoneal injection of streptozotocin (50 mg kg−1), and the rats were left for 10 weeks to develop vascular complications. The effect of in vitro incubation with 6-gingerol (0.3–3 μM) on the vasoconstrictor response of the isolated diabetic aortae to phenylephrine and the vasodilator response to acetylcholine was examined. Effect of 6-gingerol was also examined on aortae incubated with methylglyoxal as an advanced glycation end product (AGE). To investigate the mechanism of action of 6-gingerol, the nitric oxide synthase inhibitor Nω-nitro-l-arginine methyl ester hydrochloride (100 μM), guanylate cyclase inhibitor methylene blue (5 μM), calcium-activated potassium channel blocker tetraethylammonium chloride (10 mM), and cyclooxygenase inhibitor indomethacin (5 μM) were added 30 minutes before assessing the direct vasorelaxant effect of 6-gingerol. Moreover, in vitro effects of 6-gingerol on NO release and the effect of 6-gingerol on AGE production were examined. Results showed that incubation of aortae with 6-gingerol (0.3–10 μM) alleviated the exaggerated vasoconstriction of diabetic aortae to phenylephrine in a concentration-dependent manner with no significant effect on the impaired relaxatory response to acetylcholine. Similar results were seen in the aortae exposed to methylglyoxal. In addition, 6-gingerol induced a direct vasodilation effect that was significantly inhibited by Nω-nitro-l-arginine methyl ester hydrochloride and methylene blue. Furthermore, 6-gingerol stimulated aortic NO generation but had no effect on AGE formation. In conclusion, 6-gingerol ameliorates enhanced vascular contraction in diabetic aortae, which may be partially attributed to its ability to increase the production of NO and stimulation of cyclic guanosine monophosphate.
Collapse
Affiliation(s)
- Salah A Ghareib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hany M El-Bassossy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia ; Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Ahmed A Elberry
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia ; Department of Pharmacology, Faculty of Medicine, Beni Suef University, Beni Suef, Egypt
| | - Ahmad Azhar
- Department of Pediatric Cardiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Malcolm L Watson
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | - Zainy Mohammed Banjar
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
49
|
Kim CS, Kim J, Jo K, Lee YM, Sohn E, Yoo NH, Kim JS. OSSC1E-K19, a novel phytochemical component of Osteomeles schwerinae, prevents glycated albumin-induced retinal vascular injury in rats. Mol Med Rep 2015; 12:7279-84. [PMID: 26460071 PMCID: PMC4626176 DOI: 10.3892/mmr.2015.4413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 08/24/2015] [Indexed: 11/06/2022] Open
Abstract
In the pathophysiology of diabetic retinopathy (DR), advanced glycation end products (AGEs) and vascular endothelial growth factor (VEGF) are thought to have important roles. It is known that VEGF causes a breakdown of the blood‑retinal barrier (BRB) and retinal neovascularization; however, how AGEs affect the retina has largely remained elusive. OSSC1E‑K19 is a novel phytochemical component of Osteomeles schwerinae. The objective of the present study was to evaluate the protective effects of OSSC1E‑K19 on retinal vascular injury in AGE‑modified rat serum albumin (AGE-RSA)-induced retinopathy. AGE-RSA-injected rat eyes were used investigate the protective effects of OSSC1E‑K19 on BRB breakdown. Intravitreal injection of OSSC1E-K19 prevented AGE-RSA-induced BRB breakdown and decreased retinal VEGF expression in retinal vessels. In addition, OSSC1E-K19 inhibited the loss of occludin, a significant tight junction protein. These results supported the potential therapeutic utility of OSSC1E-K19 for retinal vascular permeability diseases.
Collapse
Affiliation(s)
- Chan-Sik Kim
- Korean Medicine Based Herbal Drug Development Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 305‑811, Republic of Korea
| | - Junghyun Kim
- Korean Medicine Based Herbal Drug Development Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 305‑811, Republic of Korea
| | - Kyuhyung Jo
- Korean Medicine Based Herbal Drug Development Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 305‑811, Republic of Korea
| | - Yun Mi Lee
- Korean Medicine Based Herbal Drug Development Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 305‑811, Republic of Korea
| | - Eunjin Sohn
- Korean Medicine Based Herbal Drug Development Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 305‑811, Republic of Korea
| | - Nam Hee Yoo
- Korea Natural Products Development Laboratory, International Ginseng and Herb Research Institute, Geumsan, South Chungcheong 312‑804, Republic of Korea
| | - Jin Sook Kim
- Korean Medicine Based Herbal Drug Development Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 305‑811, Republic of Korea
| |
Collapse
|
50
|
Stinghen AEM, Massy ZA, Vlassara H, Striker GE, Boullier A. Uremic Toxicity of Advanced Glycation End Products in CKD. J Am Soc Nephrol 2015; 27:354-70. [PMID: 26311460 DOI: 10.1681/asn.2014101047] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Advanced glycation end products (AGEs), a heterogeneous group of compounds formed by nonenzymatic glycation reactions between reducing sugars and amino acids, lipids, or DNA, are formed not only in the presence of hyperglycemia, but also in diseases associated with high levels of oxidative stress, such as CKD. In chronic renal failure, higher circulating AGE levels result from increased formation and decreased renal clearance. Interactions between AGEs and their receptors, including advanced glycation end product-specific receptor (RAGE), trigger various intracellular events, such as oxidative stress and inflammation, leading to cardiovascular complications. Although patients with CKD have a higher burden of cardiovascular disease, the relationship between AGEs and cardiovascular disease in patients with CKD is not fully characterized. In this paper, we review the various deleterious effects of AGEs in CKD that lead to cardiovascular complications and the role of these AGEs in diabetic nephropathy. We also discuss potential pharmacologic approaches to circumvent these deleterious effects by reducing exogenous and endogenous sources of AGEs, increasing the breakdown of existing AGEs, or inhibiting AGE-induced inflammation. Finally, we speculate on preventive and therapeutic strategies that focus on the AGE-RAGE axis to prevent vascular complications in patients with CKD.
Collapse
Affiliation(s)
- Andréa E M Stinghen
- Institut National de la Santé et de la Recherche Médicale (INSERM) U-1088, Jules Verne University of Picardie, Amiens, France
| | - Ziad A Massy
- Institut National de la Santé et de la Recherche Médicale (INSERM) U-1088, Jules Verne University of Picardie, Amiens, France; Division of Nephrology, Ambroise Paré University Medical Center, Assistance Publique-Hôpitaux de Paris (APHP), University of Paris Ouest, University Versailles-Saint Quentin, Boulogne Billancourt/Paris, France
| | - Helen Vlassara
- Division of Experimental Diabetes and Aging, Departments of Geriatrics and Palliative Care and Medicine and Division of Experimental Diabetes and Aging, Department of Geriatrics and Aging and Division of Nephrology, Department of Medicine, Icahn School of Medicine, New York, New York; and
| | - Gary E Striker
- Division of Experimental Diabetes and Aging, Departments of Geriatrics and Palliative Care and Medicine and Division of Experimental Diabetes and Aging, Department of Geriatrics and Aging and Division of Nephrology, Department of Medicine, Icahn School of Medicine, New York, New York; and
| | - Agnès Boullier
- Institut National de la Santé et de la Recherche Médicale (INSERM) U-1088, Jules Verne University of Picardie, Amiens, France; Biochemistry Laboratory, Amiens University Medical Center, Amiens, France
| |
Collapse
|