1
|
Rashid FZM, Crémazy FGE, Hofmann A, Forrest D, Grainger DC, Heermann DW, Dame RT. The environmentally-regulated interplay between local three-dimensional chromatin organisation and transcription of proVWX in E. coli. Nat Commun 2023; 14:7478. [PMID: 37978176 PMCID: PMC10656529 DOI: 10.1038/s41467-023-43322-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
Nucleoid associated proteins (NAPs) maintain the architecture of bacterial chromosomes and regulate gene expression. Thus, their role as transcription factors may involve three-dimensional chromosome re-organisation. While this model is supported by in vitro studies, direct in vivo evidence is lacking. Here, we use RT-qPCR and 3C-qPCR to study the transcriptional and architectural profiles of the H-NS (histone-like nucleoid structuring protein)-regulated, osmoresponsive proVWX operon of Escherichia coli at different osmolarities and provide in vivo evidence for transcription regulation by NAP-mediated chromosome re-modelling in bacteria. By consolidating our in vivo investigations with earlier in vitro and in silico studies that provide mechanistic details of how H-NS re-models DNA in response to osmolarity, we report that activation of proVWX in response to a hyperosmotic shock involves the destabilization of H-NS-mediated bridges anchored between the proVWX downstream and upstream regulatory elements (DRE and URE), and between the DRE and ygaY that lies immediately downstream of proVWX. The re-establishment of these bridges upon adaptation to hyperosmolarity represses the operon. Our results also reveal additional structural features associated with changes in proVWX transcript levels such as the decompaction of local chromatin upstream of the operon, highlighting that further complexity underlies the regulation of this model operon. H-NS and H-NS-like proteins are wide-spread amongst bacteria, suggesting that chromosome re-modelling may be a typical feature of transcriptional control in bacteria.
Collapse
Affiliation(s)
- Fatema-Zahra M Rashid
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, 2333CC, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, 2333CC, The Netherlands
- Centre for Interdisciplinary Genome Research, Leiden University, Leiden, 2333CC, The Netherlands
| | - Frédéric G E Crémazy
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, 2333CC, The Netherlands
- Laboratoire Infection et Inflammation, INSERM, UVSQ, Université Paris-Saclay, Versailles, 78180, France
| | - Andreas Hofmann
- Statistical Physics and Theoretical Biophysics, Heidelberg University, Heidelberg, D-69120, Germany
| | - David Forrest
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - David C Grainger
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Dieter W Heermann
- Statistical Physics and Theoretical Biophysics, Heidelberg University, Heidelberg, D-69120, Germany
| | - Remus T Dame
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, 2333CC, The Netherlands.
- Centre for Microbial Cell Biology, Leiden University, Leiden, 2333CC, The Netherlands.
- Centre for Interdisciplinary Genome Research, Leiden University, Leiden, 2333CC, The Netherlands.
| |
Collapse
|
2
|
Jing Kay Lam K, Zhang Z, Saier Jr MH. Histone-like Nucleoid Structuring (H-NS) Protein Silences the beta-glucoside (bgl) Utilization Operon in Escherichia coli by Forming a DNA Loop. Comput Struct Biotechnol J 2022; 20:6287-6301. [DOI: 10.1016/j.csbj.2022.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2022] Open
|
3
|
Abstract
Proline was among the last biosynthetic precursors to have its biosynthetic pathway unraveled. This review recapitulates the findings on the biosynthesis and transport of proline. Glutamyl kinase (GK) catalyzes the ATP-dependent phosphorylation of L-glutamic acid. Purification of γ-GK from Escherichia coli was facilitated by the expression of the proB and proA genes from a high-copy-number plasmid and the development of a specific coupled assay based on the NADPH-dependent reduction of GP by γ-glutamyl phosphate reductase (GPR). GPR catalyzes the NADPH-dependent reduction of GP to GSA. Site directed mutagenesis was used to identify residues that constitute the active site of E. coli GK. This analysis indicated that there is an overlap between the binding sites for glutamate and the allosteric inhibitor proline, suggesting that proline competes with the binding of glutamate. The review also summarizes the genes involved in the metabolism of proline in E. coli and Salmonella. Among the completed genomic sequences of Enterobacteriaceae, genes specifying all three proline biosynthetic enzymes can be discerned in E. coli, Shigella, Salmonella enterica, Serratia marcescens, Erwinia carotovora, Yersinia, Photorhabdus luminescens, and Sodalis glossinidius strain morsitans. The intracellular proline concentration increases with increasing external osmolality in proline-overproducing mutants. This apparent osmotic regulation of proline accumulation in the overproducing strains may be the result of increased retention or recapture of proline, achieved by osmotic stimulation of the ProP or ProU proline transport systems. A number of proline analogs can be incorporated into proteins in vivo or in vitro.
Collapse
|
4
|
Abstract
Escherichia colicauses three types of illnesses in humans: diarrhea, urinary tract infections, and meningitis in newborns. The acquisition of virulence-associated genes and the ability to properly regulate these, often horizontally transferred, loci distinguishes pathogens from the normally harmless commensal E. coli found within the human intestine. This review addresses our current understanding of virulence gene regulation in several important diarrhea-causing pathotypes, including enteropathogenic, enterohemorrhagic,enterotoxigenic, and enteroaggregativeE. coli-EPEC, EHEC, ETEC and EAEC, respectively. The intensely studied regulatory circuitry controlling virulence of uropathogenicE. coli, or UPEC, is also reviewed, as is that of MNEC, a common cause of meningitis in neonates. Specific topics covered include the regulation of initial attachment events necessary for infection, environmental cues affecting virulence gene expression, control of attaching and effacing lesionformation, and control of effector molecule expression and secretion via the type III secretion systems by EPEC and EHEC. How phage control virulence and the expression of the Stx toxins of EHEC, phase variation, quorum sensing, and posttranscriptional regulation of virulence determinants are also addressed. A number of important virulence regulators are described, including the AraC-like molecules PerA of EPEC, CfaR and Rns of ETEC, and AggR of EAEC;the Ler protein of EPEC and EHEC;RfaH of UPEC;and the H-NS molecule that acts to silence gene expression. The regulatory circuitry controlling virulence of these greatly varied E. colipathotypes is complex, but common themes offerinsight into the signals and regulators necessary forE. coli disease progression.
Collapse
|
5
|
Khodr A, Fairweather V, Bouffartigues E, Rimsky S. IHF is a trans-acting factor implicated in the regulation of the proU P2 promoter. FEMS Microbiol Lett 2015; 362:1-6. [DOI: 10.1093/femsle/fnu049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
6
|
Dong ZF, Tang LJ, Deng GF, Zeng T, Liu SJ, Wan RP, Liu T, Zhao QH, Yi YH, Liao WP, Long YS. Transcription of the human sodium channel SCN1A gene is repressed by a scaffolding protein RACK1. Mol Neurobiol 2014; 50:438-48. [PMID: 24436055 DOI: 10.1007/s12035-014-8633-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 01/02/2014] [Indexed: 11/29/2022]
Abstract
Voltage-gated sodium channel α subunit type I (Nav1.1, encoded by SCN1A gene) plays a critical role in the initiation of action potential in the central nervous system. Downregulated expression of SCN1A is believed to be associated with epilepsy. Here, we found that the SCN1A promoter (P1c), located at the 5' untranslated exon 1c, drove the reporter gene expression in human NT2 cells, and a region between nt +53 and +62 downstream of the P1c promoter repressed the promoter activity. Further analyses showed that a scaffolding protein RACK1 (receptor for activated C kinase 1) was involved in binding to this silencer. Knockdown of RACK1 expression in NT2 cells deprived the repressive role of the silencer on the P1c promoter and increased SCN1A transcription, suggesting the potential involvement of RACK1 in negatively regulating SCN1A transcription via interaction with the silencer. Furthermore, we demonstrated that the binding of the protein complex including RACK1 to the SCN1A promoter motif was decreased in neuron-like differentiation of the NT2 cells induced by retinoic acid and resulted in the upregulation of SCN1A transcription. Taken together, this study reports a novel role of RACK1 in regulating SCN1A expression that participates in retinoic acid-induced neuronal differentiation of NT2 cells.
Collapse
Affiliation(s)
- Zhao-Fei Dong
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, 250 Changgang East Road, Guangzhou, 510260, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Rational design of an artificial genetic switch: Co-option of the H-NS-repressed proU operon by the VirB virulence master regulator. J Bacteriol 2011; 193:5950-60. [PMID: 21873493 DOI: 10.1128/jb.05557-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The H-NS protein represses the transcription of hundreds of genes in Gram-negative bacteria. Derepression is achieved by a multitude of mechanisms, many of which involve the binding of a protein to DNA at the repressed promoter in a manner that compromises the maintenance of the H-NS-DNA nucleoprotein repression complex. The principal virulence gene promoters in Shigella flexneri, the cause of bacillary dysentery, are repressed by H-NS. VirB, a protein that closely resembles members of the ParB family of plasmid-partitioning proteins, derepresses the operons that encode the main structural components and the effector proteins of the S. flexneri type III secretion system. Bioinformatic analysis suggests that VirB has been co-opted into its current role as an H-NS antagonist in S. flexneri. To test this hypothesis, the potential for VirB to act as a positive regulator of proU, an operon that is repressed by H-NS, was assessed. Although VirB has no known relationship with the osmoregulated proU operon, it could relieve H-NS-mediated repression when the parS-like VirB binding site was placed appropriately upstream of the RpoD-dependent proU promoter. These results reveal the remarkable facility with which novel regulatory circuits can evolve, at least among those promoters that are repressed by H-NS.
Collapse
|
8
|
Zhang W, Baseman JB. Transcriptional regulation of MG_149, an osmoinducible lipoprotein gene from Mycoplasma genitalium. Mol Microbiol 2011; 81:327-39. [PMID: 21692875 DOI: 10.1111/j.1365-2958.2011.07717.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transcriptional regulation remains poorly understood in Mycoplasma genitalium, the smallest self-replicating cell and the causative agent of a spectrum of urogenital diseases. Previously, we reported that MG_149, a lipoprotein-encoding gene, was highly induced under physiological hyperosmolarity conditions. In this study we further analysed MG_149 transcription with a focus on the identification of promoter elements and regulatory mechanisms. We established MG_149 as a genuine osmoinducible gene that exhibited the highest transcript abundance compared with other lipoprotein genes. Using genetic approaches, we demonstrated that the -10 region of the MG_149 promoter was essential for osmoinduction. Moreover, we showed that MG_149 osmoinduction was regulated by DNA supercoiling, as the presence of novobiocin decreased MG_149 expression in a dose-dependent manner. Taken together, these results indicate that DNA supercoiling participates in controlling MG_149 expression during in vivo-like conditions.
Collapse
Affiliation(s)
- Wenbo Zhang
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | | |
Collapse
|
9
|
Dillon SC, Cameron ADS, Hokamp K, Lucchini S, Hinton JCD, Dorman CJ. Genome-wide analysis of the H-NS and Sfh regulatory networks in Salmonella Typhimurium identifies a plasmid-encoded transcription silencing mechanism. Mol Microbiol 2010; 76:1250-65. [PMID: 20444106 DOI: 10.1111/j.1365-2958.2010.07173.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The conjugative IncHI1 plasmid pSfR27 from Shigella flexneri 2a strain 2457T encodes the Sfh protein, a paralogue of the global transcriptional repressor H-NS. Sfh allows pSfR27 to be transmitted to new bacterial hosts with minimal impact on host fitness, providing a 'stealth' function whose molecular mechanism has yet to be determined. The impact of the Sfh protein on the Salmonella enterica serovar Typhimurium transcriptome was assessed and binding sites for Sfh in the Salmonella Typhimurium genome were identified by chromatin immunoprecipitation. Sfh did not bind uniquely to any sites. Instead, it bound to a subset of the larger H-NS regulatory network. Analysis of Sfh binding in the absence of H-NS revealed a greatly expanded population of Sfh binding sites that included the majority of H-NS target genes. Furthermore, the presence of plasmid pSfR27 caused a decrease in H-NS interactions with the S. Typhimurium chromosome, suggesting that the A + T-rich DNA of this large plasmid acts to titrate H-NS, removing it from chromosomal locations. It is proposed that Sfh acts as a molecular backup for H-NS and that it provides its 'stealth' function by replacing H-NS on the chromosome, thus minimizing disturbances to the H-NS-DNA binding pattern in cells that acquire pSfR27.
Collapse
Affiliation(s)
- Shane C Dillon
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| | | | | | | | | | | |
Collapse
|
10
|
Regulation of expression of the region 3 promoter of the Escherichia coli K5 capsule gene cluster involves H-NS, SlyA, and a large 5' untranslated region. J Bacteriol 2008; 191:1838-46. [PMID: 19114478 DOI: 10.1128/jb.01388-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli group 2 capsule gene clusters are temperature regulated, being expressed at 37 degrees C but not at 20 degrees C. Expression is regulated at the level of transcription by two convergent promoters, PR1 and PR3. In this paper, we show that regulation of transcription from PR3 involves a number of novel features including H-NS, SlyA, and a large 741-bp 5' untranslated region (UTR). H-NS represses transcription from PR3 at 20 degrees C and binds both 5' and 3' of the transcription start site. The 3' downstream regulatory element (DRE) was essential for temperature-dependent H-NS repression. At 37 degrees C, SlyA activates transcription independent of H-NS but maximal transcription requires H-NS. The UTR is present between the transcription start site and the first gene in the operon, kpsM. We demonstrate that the UTR, as well as containing the H-NS DRE, functions to moderate the extent of transcription that reaches kpsM and allows the binding of antitermination factor RfaH.
Collapse
|
11
|
Radde N, Gebert J, Faigle U, Schrader R, Schnetz K. Modeling feedback loops in the H-NS-mediated regulation of the Escherichia coli bgl operon. J Theor Biol 2007; 250:298-306. [PMID: 17981304 DOI: 10.1016/j.jtbi.2007.09.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 09/21/2007] [Accepted: 09/24/2007] [Indexed: 11/26/2022]
Abstract
The histone-like nucleoid-associated protein H-NS is a global transcriptional repressor that controls approximately 5% of all genes in Escherichia coli and other enterobacteria. H-NS binds to DNA with low specificity. Nonetheless, repression of some loci is exceptionally specific. Experimental data for the E. coli bgl operon suggest that highly specific repression is caused by regulatory feedback loops. To analyze whether such feedback loops can account for the observed specificity of repression, here a model was built based on expression data. The model includes several regulatory interactions, which are synergy of repression by binding of H-NS to two regulatory elements, an inverse correlation of the rate of repression by H-NS and transcription, and a threshold for positive regulation by anti-terminator BglG, which is encoded within the operon. The latter two regulatory interactions represent feedback loops in the model. The resulting system of equations was solved for the expression level of the operon and analyzed with respect to different promoter activities. This analysis demonstrates that a small (3-fold) increase of the bgl promoter activity results in a strong (80-fold) enhancement of bgl operon expression. Thus, the parameters included into the model are sufficient to simulate specific repression by H-NS.
Collapse
Affiliation(s)
- Nicole Radde
- Center for Applied Computer Science, University of Cologne, Weyertal 80, 50931 Cologne, Germany.
| | | | | | | | | |
Collapse
|
12
|
Nagarajavel V, Madhusudan S, Dole S, Rahmouni AR, Schnetz K. Repression by binding of H-NS within the transcription unit. J Biol Chem 2007; 282:23622-30. [PMID: 17569663 DOI: 10.1074/jbc.m702753200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
H-NS inhibits transcription by forming repressing nucleoprotein complexes next to promoters. We investigated repression by binding of H-NS within the transcription unit using the bgl and proU operons. Repression of both operons requires a downstream regulatory element (DRE) in addition to an upstream element (URE). In bgl, H-NS binds to a region located between 600 to 700 bp downstream of the transcription start site, whereas in proU the DRE extends up to position +270. We show that binding of H-NS to the bgl-DRE inhibits transcription initiation at a step before open complex formation, as shown before for proU. This was shown by determining the occupancy of the bgl transcription unit by RNA polymerases, expression analysis of bgl and proU reporter constructs, and chloroacetaldehyde footprinting of RNA polymerase promoter complexes. The chloroacetaldehyde footprinting also revealed that RNA polymerase is "poised" at the osmoregulated sigma70-dependent proU promoter at low osmolarity, whereas at high osmolarity poising of RNA polymerase and repression by H-NS are reduced. Furthermore, repression by H-NS via the URE and DRE is synergistic, and the efficiency of repression by H-NS via the DRE inversely correlates with the promoter activity. Repression is high for a promoter of low activity, whereas it is low for a strong promoter. Inefficient repression of strong promoters by H-NS via a DRE may account for high induction levels of proU at high osmolarity and for bgl upon disruption of the URE.
Collapse
Affiliation(s)
- V Nagarajavel
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
| | | | | | | | | |
Collapse
|
13
|
Bouffartigues E, Buckle M, Badaut C, Travers A, Rimsky S. H-NS cooperative binding to high-affinity sites in a regulatory element results in transcriptional silencing. Nat Struct Mol Biol 2007; 14:441-8. [PMID: 17435766 DOI: 10.1038/nsmb1233] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Accepted: 03/14/2007] [Indexed: 12/19/2022]
Abstract
H-NS is a protein of the bacterial nucleoid involved in DNA compaction and transcription regulation. In vivo, H-NS selectively silences specific genes of the bacterial chromosome. However, many studies have concluded that H-NS binds sequence-independently to DNA, leaving the molecular basis for its selectivity unexplained. We show that the negative regulatory element (NRE) of the supercoiling-sensitive Escherichia coliproU gene contains two identical high-affinity binding sites for H-NS. Cooperative binding of H-NS is abrogated by changes in DNA superhelical density and temperature. We further demonstrate that the high-affinity sites nucleate cooperative binding and establish a nucleoprotein structure required for silencing. Mutations in these sites result in loss of repression by H-NS. In this model, silencing at proU, and by inference at other genes directly regulated by H-NS, is tightly controlled by the cooperativity between bound H-NS molecules.
Collapse
Affiliation(s)
- Emeline Bouffartigues
- Laboratoire de Biotechnologie et Pharmacologie génétique Appliquée (LBPA), UMR 8113 CNRS, Ecole Normale Supérieure, 61 Avenue du Président Wilson, 94235 Cachan, France
| | | | | | | | | |
Collapse
|
14
|
Wolf T, Janzen W, Blum C, Schnetz K. Differential dependence of StpA on H-NS in autoregulation of stpA and in regulation of bgl. J Bacteriol 2006; 188:6728-38. [PMID: 16980475 PMCID: PMC1595503 DOI: 10.1128/jb.00586-06] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
StpA has functional similarity to its homologue, the nucleoid structuring protein H-NS. It binds to AT-rich, planar, bent DNA and constrains DNA supercoils. In addition, StpA acts as an RNA chaperone. StpA and H-NS also form heterodimers. However, cellular levels of StpA are low due to repression of stpA by H-NS and negative autoregulation. Here we show that effective (30-fold) repression of stpA transcription requires a downstream regulator element located within the stpA coding region. In addition, we show that StpA represses stpA threefold in an hns null mutant. In contrast, repression of the bgl operon, another H-NS-repressed system, is not achieved by StpA alone. It becomes StpA dependent in the presence of a fusion protein encompassing the N-terminal 37 amino acids of H-NS, which comprise the core of the dimerization domain. StpA also effectively complements H-NS-I119T, a mutant defective in specific DNA binding, in repression of the bgl operon. Thus, StpA complements H-NS proteins defective in DNA binding to repress bgl, while in autoregulation of stpA it acts autonomously, indicating a difference in the mechanisms of repression.
Collapse
Affiliation(s)
- Tinka Wolf
- Institut für Genetik, Universität zu Köln, Zülpicher Str. 47, 50674 Cologne, Germany
| | | | | | | |
Collapse
|
15
|
Balaji B, O'Connor K, Lucas JR, Anderson JM, Csonka LN. Timing of induction of osmotically controlled genes in Salmonella enterica Serovar Typhimurium, determined with quantitative real-time reverse transcription-PCR. Appl Environ Microbiol 2006; 71:8273-83. [PMID: 16332813 PMCID: PMC1317391 DOI: 10.1128/aem.71.12.8273-8283.2005] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The signals that control the transcription of osmoregulated genes are not understood satisfactorily. The "turgor control model" suggested that the primary osmoregulatory signal in Enterobacteriaceae is turgor loss, which induces the kdp K+ transport operon and activates the Trk K+ permease. The ensuing increase in cytoplasmic K+ concentration was proposed to be the signal that turns on all secondary responses, including the induction of the proU (proline-glycine betaine transport) operon. The "ionic strength model" proposed that the regulatory signal for all osmotically controlled responses is the increase in the cytoplasmic ionic strength or macromolecular crowding after an osmotic upshift. The assumption in the turgor control model that the induction of kdp is a primary response to osmotic shock predicts that this response should precede all secondary responses. Both models predict that the induction of all osmotically activated responses should be independent of the chemical nature of the solute used to impose osmotic stress. We tested these predictions by quantitative real-time reverse transcription-PCR analysis of the expression of six osmotically regulated genes in Salmonella enterica serovar Typhimurium. After shock with 0.3 M NaCl, proU was induced at 4 min, proP and rpoS were induced at 4 to 6 min, kdp was induced at 8 to 9 min, and otsB and ompC were induced at 10 to 12 min. After an equivalent osmotic shock with 0.6 M sucrose, proU was induced with kinetics similar to those seen with NaCl, but induction of kdp was reduced 150-fold in comparison to induction by NaCl. Our results are inconsistent with both the turgor control and the ionic strength control models.
Collapse
Affiliation(s)
- Boovaraghan Balaji
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-1392, USA
| | | | | | | | | |
Collapse
|
16
|
Yang J, Tauschek M, Strugnell R, Robins-Browne RM. The H-NS protein represses transcription of the eltAB operon, which encodes heat-labile enterotoxin in enterotoxigenic Escherichia coli, by binding to regions downstream of the promoter. MICROBIOLOGY-SGM 2005; 151:1199-1208. [PMID: 15817787 DOI: 10.1099/mic.0.27734-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Heat-labile enterotoxin, a major virulence determinant of enterotoxigenic Escherichia coli, is encoded by the eltAB operon. To elucidate the molecular mechanism by which the heat-stable nucleoid-structural (H-NS) protein controls transcription of eltAB, the authors constructed an eltAB-lacZ transcriptional fusion and performed beta-galactosidase analysis. The results showed that H-NS protein exerts fivefold repression on transcription from the eltAB promoter at 37 degrees C and 10-fold repression at 22 degrees C. Two silencer regions that were required for H-NS-mediated repression of eltAB expression were identified, both of which were located downstream of the start site of transcription. One silencer was located between +31 and +110, the other between +460 and +556, relative to the start site of transcription, and they worked cooperatively in repression. DNA sequences containing the silencers were predicted to be curved by in silico analysis and bound H-NS protein directly in vitro. Repression of eltAB transcription by H-NS was independent of promoter strength, and the presence of H-NS protein did not affect promoter opening in vitro, indicating that repression was achieved by inhibiting promoter clearance or blocking transcription elongation, probably via DNA looping between the two silencers.
Collapse
Affiliation(s)
- Ji Yang
- Department of Microbiology and Immunology, University of Melbourne, Victoria 3010, Australia, and Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia
| | - Marija Tauschek
- Department of Microbiology and Immunology, University of Melbourne, Victoria 3010, Australia, and Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia
| | - Richard Strugnell
- Department of Microbiology and Immunology, University of Melbourne, Victoria 3010, Australia, and Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia
| | - Roy M Robins-Browne
- Department of Microbiology and Immunology, University of Melbourne, Victoria 3010, Australia, and Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia
| |
Collapse
|
17
|
Dole S, Nagarajavel V, Schnetz K. The histone-like nucleoid structuring protein H-NS represses the Escherichia coli bgl operon downstream of the promoter. Mol Microbiol 2004; 52:589-600. [PMID: 15066043 DOI: 10.1111/j.1365-2958.2004.04001.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Specificity of repression by the histone-like nucleoid structuring protein and pleiotropic regulator, H-NS, is exceptionally high in case of the Escherichia coli bgl (beta-glucoside) operon. Here we present evidence that H-NS represses the operon at two levels. The binding of H-NS to an upstream silencer results in an approximately threefold repression of the catabolite gene regulator protein (CRP) dependent bgl promoter. In addition, H-NS binds to a silencer region located approximately 600-700 base pairs downstream of the promoter, within the coding region of first gene, bglG, resulting in a approximately sevenfold further decrease of expression. Repression by H-NS at the downstream silencer requires termination factor Rho and is reduced by translation of the bglG mRNA, but is independent of the promoter. This suggests that H-NS induces polarity of transcription by acting as a roadblock to the elongating RNA polymerase. The control of the bgl operon by H-NS at two levels results in a highly specific repression.
Collapse
Affiliation(s)
- Sudhanshu Dole
- Institute for Genetics, University Cologne,Weyertal 121, 50931 Cologne, Germany
| | | | | |
Collapse
|
18
|
Behrens M, Sheikh J, Nataro JP. Regulation of the overlapping pic/set locus in Shigella flexneri and enteroaggregative Escherichia coli. Infect Immun 2002; 70:2915-25. [PMID: 12010980 PMCID: PMC127977 DOI: 10.1128/iai.70.6.2915-2925.2002] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most strains of Shigella flexneri 2a and enteroaggregative Escherichia coli carry a highly conserved chromosomal locus which encodes a 109-kDa secreted mucinase (called Pic) and, on the opposite strand in overlapping fashion, an oligomeric enterotoxin called ShET1, encoded by the setA and setB genes. Here, we characterize the genetic regulation of these overlapping genes. Our data suggest that pic and the setBA loci are transcribed as complementary 4-kb mRNA species. The major pic promoter is maximally activated at 37 degrees C in exponential growth phase. Our data suggest that the setB gene is transcribed from a promoter which lies more than 1.5 kb upstream of the setB structural gene; setA may be transcribed via readthrough of the setB transcript and possibly by its own promoter. The long leader of the setB gene provides a strong silencing effect on setB transcription. The signals which provide relief from setB silencing are not clear, but significant induction is observed in a continuous anaerobic culture of human fecal bacteria, suggesting that some complex characteristics of the human intestine act to lift repression of setB expression. Our studies provide the first insights into the mechanisms affecting expression of this unusual virulence locus.
Collapse
Affiliation(s)
- Martin Behrens
- Center for Vaccine Development, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | |
Collapse
|
19
|
Rajkumari K, Gowrishankar J. In vivo expression from the RpoS-dependent P1 promoter of the osmotically regulated proU operon in Escherichia coli and Salmonella enterica serovar Typhimurium: activation by rho and hns mutations and by cold stress. J Bacteriol 2001; 183:6543-50. [PMID: 11673423 PMCID: PMC95484 DOI: 10.1128/jb.183.22.6543-6550.2001] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Unlike the sigma(70)-controlled P2 promoter for the osmotically regulated proU operon of Escherichia coli and Salmonella enterica serovar Typhimurium, the sigma(s)-controlled P1 promoter situated further upstream appears not to contribute to expression of the proU structural genes under ordinary growth conditions. For S. enterica proU P1, there is evidence that promoter crypticity is the result of a transcription attenuation phenomenon which is relieved by the deletion of a 22-base C-rich segment in the transcript. In this study, we have sought to identify growth conditions and trans-acting mutations which activate in vivo expression from proU P1. The cryptic S. enterica proU P1 promoter was activated, individually and additively, in a rho mutant (which is defective in the transcription termination factor Rho) as well as by growth at 10 degrees C. The E. coli proU P1 promoter was also cryptic in constructs that carried 1.2 kb of downstream proU sequence, and in these cases activation of in vivo expression was achieved either by a rho mutation during growth at 10 degrees C or by an hns null mutation (affecting the nucleoid protein H-NS) at 30 degrees C. The rho mutation had no effect at either 10 or 30 degrees C on in vivo expression from two other sigma(s)-controlled promoters tested, those for osmY and csiD. In cells lacking the RNA-binding regulator protein Hfq, induction of E. coli proU P1 at 10 degrees C and by hns mutation at 30 degrees C was still observed, although the hfq mutation was associated with a reduction in the absolute levels of P1 expression. Our results suggest that expression from proU P1 is modulated both by nucleoid structure and by Rho-mediated transcription attenuation and that this promoter may be physiologically important for proU operon expression during low-temperature growth.
Collapse
Affiliation(s)
- K Rajkumari
- Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | | |
Collapse
|
20
|
Jordi BJ, Higgins CF. The downstream regulatory element of the proU operon of Salmonella typhimurium inhibits open complex formation by RNA polymerase at a distance. J Biol Chem 2000; 275:12123-8. [PMID: 10766847 DOI: 10.1074/jbc.275.16.12123] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The intracellular concentration of K(+)-glutamate, chromatin-associated proteins, and a downstream regulatory element (DRE) overlapping with the coding sequence, have been implicated in the regulation of the proU operon of Salmonella typhimurium. The basal expression of the proU operon is low, but it is rapidly induced when the bacteria are grown in media of high osmolarity (e.g. 0.3 M NaCl). It has previously been suggested that increased intracellular concentrations of K(+)-glutamate activate the proU promoter in response to increased extracellular osmolarity. We show here that the activation of the proU promoter by K(+)-glutamate in vitro is nonspecific, and the in vivo regulation cannot simply be mimicked in vitro. In vivo specificity requires both the chromatin-associated protein H-NS and the DRE; they are both needed to maintain repression of proU expression at low osmolarity. How H-NS and the DRE repress the proU promoter in vivo has so far been unclear. We show that, in vivo, the DRE acts at a distance to inhibit open complex formation at the proU promoter.
Collapse
Affiliation(s)
- B J Jordi
- Department of Bacteriology, Institute of Infectious Diseases and Immunology, Faculty of Veterinary Sciences, Yalelaan 1, 3508 TD Utrecht, The Netherlands.
| | | |
Collapse
|
21
|
Ferraris JD, Williams CK, Ohtaka A, García-Pérez A. Functional consensus for mammalian osmotic response elements. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:C667-73. [PMID: 10069994 DOI: 10.1152/ajpcell.1999.276.3.c667] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The molecular mechanisms underlying adaptation to hyperosmotic stress through the accumulation of organic osmolytes are largely unknown. Yet, among organisms, this is an almost universal phenomenon. In mammals, the cells of the renal medulla are uniquely exposed to high and variable salt concentrations; in response, renal cells accumulate the osmolyte sorbitol through increased transcription of the aldose reductase (AR) gene. In cloning the rabbit AR gene, we found the first evidence of an osmotic response region in a eukaryotic gene. More recently, we functionally defined a minimal essential osmotic response element (ORE) having the sequence CGGAAAATCAC(C) (bp -1105 to -1094). In the present study, we systematically replaced each base with every other possible nucleotide and tested the resulting sequences individually in reporter gene constructs. Additionally, we categorized hyperosmotic response by electrophoretic mobility shift assays of a 17-bp sequence (-1108 to -1092) containing the native ORE as a probe against which the test constructs would compete for binding. In this manner, binding activity was assessed for the full range of osmotic responses obtained. Thus we have arrived at a functional consensus for the mammalian ORE, NGGAAAWDHMC(N). This finding should accelerate the discovery of genes previously unrecognized as being osmotically regulated.
Collapse
Affiliation(s)
- J D Ferraris
- Osmotic Regulation Section, Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1603, USA.
| | | | | | | |
Collapse
|
22
|
Gowrishankar J, Pittard AJ. Superimposition of tyrR protein-mediated regulation on osmoresponsive transcription of Escherichia coli proU in vivo. J Bacteriol 1998; 180:6743-8. [PMID: 9852023 PMCID: PMC107782 DOI: 10.1128/jb.180.24.6743-6748.1998] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Osmotic regulation of proU expression in the enterobacteria is achieved, at least in part, by a repression mechanism involving the histone-like nucleoid protein H-NS. By the creation of binding sites for the TyrR regulator protein in the vicinity of the sigma70-controlled promoter of proU in Escherichia coli, we were able to demonstrate a superposed TyrR-mediated activation by L-phenylalanine (Phe), as well as repression by L-tyrosine, of proU expression in vivo. Based on the facts that pronounced activation in the presence of Phe was observed even at a low osmolarity and that the affinity of binding of TyrR to its cognate sites on DNA is not affected by Phe, we argue that H-NS-mediated repression of proU at a low osmolarity may not involve a classical silencing mechanism. Our data also suggest the involvement of recruited RNA polymerase in the mechanism of antirepression in E. coli.
Collapse
Affiliation(s)
- J Gowrishankar
- Centre for Cellular & Molecular Biology, Hyderabad 500007, India.
| | | |
Collapse
|
23
|
Martínez-Argudo I, Ruiz-Vázquez RM, Murillo FJ. The structure of an ECF-sigma-dependent, light-inducible promoter from the bacterium Myxococcus xanthus. Mol Microbiol 1998; 30:883-93. [PMID: 10094635 DOI: 10.1046/j.1365-2958.1998.01129.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Expression of the Myxococcus xanthus gene crtl is controlled by a light-inducible promoter. The activity of this promoter depends on CarQ, a sigma factor of the extracytoplasmic function (ECF) subfamily. Here, we show thatthe minimum DNA stretch reproducing normal expression of crtl extends from a few bases upstream of the -35 position to a site well downstream of the transcriptional start. The downstream DNA contains an enhancer-like element that remains active when displaced upstream of the promoter. Experimental evidence is provided for the activity of the crtl promoter being critically dependent on a pentanucleotide sequence centred at the -31 position. The similarity of this sequence with the consensus for ECF-sigma-dependent promoters from other bacteria is discussed. The activity of the crtl promoter also depends on certain basepairs at the -10 region. Hence, the operation of ECF-sigma-factors seems to require binding to two different DNA sites, although the -10 sequences of different ECF-sigma-dependent promoters are unrelated to one another, and the ECF-sigma-factors themselves lack the conserved domain known to mediate binding of other sigma-factors to the -10 DNA site.
Collapse
Affiliation(s)
- I Martínez-Argudo
- Departamento de Genética y Microbiología, Facultad de Biologia, Universidad de Murcia, Spain
| | | | | |
Collapse
|
24
|
Rajkumari K, Ishihama A, Gowrishankar J. Evidence for transcription attenuation rendering cryptic a sigmaS-dependent promoter of the osmotically regulated proU operon of Salmonella typhimurium. J Bacteriol 1997; 179:7169-73. [PMID: 9371467 PMCID: PMC179661 DOI: 10.1128/jb.179.22.7169-7173.1997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The osmotically regulated proU locus in Escherichia coli has two promoters, P1 and P2, that are recognized, respectively, by the sigmaS- and sigma70-bearing RNA polymerase holoenzymes. However, the equivalent of the P1 promoter does not appear to exist in Salmonella typhimurium. We demonstrate in this study that wild-type S. typhimurium has a cryptic P1 promoter that is recognized by sigmaS RNA polymerase in vitro and that a 22-bp deletion from +63 to +84 (relative to the start site of transcription) confers sigmaS-dependent in vivo expression of a reporter gene fusion to P1. Primer extension analysis of RNA isolated from cells carrying the wild-type and mutant S. typhimurium proU constructs indicated that a primer which hybridizes proximal to +60 is able to detect P1-initiated transcripts from both constructs but a primer which hybridizes distal to +85 is able to do so only from the latter. Our results suggest that the sigmaS-controlled proU P1 promoter in S. typhimurium may be rendered cryptic because of factor-dependent transcription attenuation within a short distance downstream of the promoter start site.
Collapse
Affiliation(s)
- K Rajkumari
- Centre for Cellular & Molecular Biology, Hyderabad, India
| | | | | |
Collapse
|
25
|
Murphree D, Froehlich B, Scott JR. Transcriptional control of genes encoding CS1 pili: negative regulation by a silencer and positive regulation by Rns. J Bacteriol 1997; 179:5736-43. [PMID: 9294429 PMCID: PMC179461 DOI: 10.1128/jb.179.18.5736-5743.1997] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The adherence of enterotoxigenic Escherichia coli (ETEC) to the human small intestine is an important early event in infection. Attachment is thought to be mediated by proteinaceous structures called pili. We have investigated the regulation of expression of the genes encoding CS1 pili found on human ETEC strains and find that there are at least three promoters, P1 and P2, upstream of the coo genes, and P3, downstream of the start of cooB translation. We identified a silencer of transcription which extends over several hundred bases overlapping the cooB open reading frame. This silencer is dependent on the promoter and/or upstream region for its negative effect. The DNA binding protein H-NS is a repressor of coo transcription that acts in the same region as the silencer, so it is possible that H-NS is involved in this silencing. Rns, a member of the AraC family, positively regulates transcription of the coo operon and relieves the silencing of CS1 expression.
Collapse
Affiliation(s)
- D Murphree
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
26
|
Jordi BJ, Fielder AE, Burns CM, Hinton JC, Dover N, Ussery DW, Higgins CF. DNA binding is not sufficient for H-NS-mediated repression of proU expression. J Biol Chem 1997; 272:12083-90. [PMID: 9115277 DOI: 10.1074/jbc.272.18.12083] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
H-NS is a major component of bacterial chromatin and influences the expression of many genes. H-NS has been shown to exhibit a binding preference for certain AT-rich curved DNA elements in vitro. In this study we have addressed the factors that determine the specificity of H-NS action in vitro and in vivo. In bandshift studies, H-NS showed a slight binding preference for all curved sequences tested whether GC-based or AT-based; the specific architecture of the curve also influenced H-NS binding. In filter retention assays little difference in affinity could be detected for any sequence tested, including the downstream regulatory element (DRE) a downstream curved DNA element required for H-NS to repress transcription of the Salmonella typhimurium proU operon in vivo. A Kd of 1-2 microM was estimated for binding of H-NS to each of these sequences. In vivo, the distance between the proU promoter and the DRE, their relative orientations on the face of the DNA helix, and translation of the DRE had no major effect on proU regulation. None of the synthetic curved sequences tested could functionally replace the DRE in vivo. These data show that differential binding to curved DNA cannot account for the specificity of H-NS action in vivo. Furthermore, binding of H-NS to DNA per se is insufficient to repress the proU promoter. Thus, the DRE does not simply act as an H-NS binding site but must have a more specific role in mediating H-NS regulation of proU transcription.
Collapse
Affiliation(s)
- B J Jordi
- Nuffield Department of Clinical Biochemistry, and Imperial Cancer Research Fund Laboratories, Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
27
|
Xu J, Johnson RC. Cyclic AMP receptor protein functions as a repressor of the osmotically inducible promoter proP P1 in Escherichia coli. J Bacteriol 1997; 179:2410-7. [PMID: 9079929 PMCID: PMC178980 DOI: 10.1128/jb.179.7.2410-2417.1997] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Transcription of the proP gene, encoding a transporter of the osmoprotectants proline and glycine betaine, is controlled from two promoters, P1 and P2, that respond primarily to osmotic and stationary-phase signals, respectively. The P1 promoter is normally expressed at a very low level under low or normal medium osmolarity. We demonstrate that the binding of the cyclic AMP (cAMP) receptor protein (CRP) to a site centered at -34.5 within the promoter is responsible for the low promoter activity under these conditions. A brief period of reduced CRP binding in early log phase corresponds to a transient burst of P1 transcription upon resumption of growth in Luria-Bertani broth. A CRP binding-site mutation or the absence of a functional crp gene leads to high constitutive expression of P1. We show that the binding of CRP-cAMP inhibits transcription by purified RNA polymerase in vitro at P1, but this repression is relieved at moderately high potassium glutamate concentrations. Likewise, open-complex formation at P1 in vivo is inhibited by the presence of CRP under low-osmolarity conditions. Because P1 expression can be further induced by osmotic upshifts in a delta crp strain or in the presence of the CRP binding-site mutation, additional controls exist to osmotically regulate P1 expression.
Collapse
Affiliation(s)
- J Xu
- Department of Biological Chemistry, UCLA School of Medicine, Los Angeles, California 90095-1737, USA
| | | |
Collapse
|
28
|
Rajkumari K, Kusano S, Ishihama A, Mizuno T, Gowrishankar J. Effects of H-NS and potassium glutamate on sigmaS- and sigma70-directed transcription in vitro from osmotically regulated P1 and P2 promoters of proU in Escherichia coli. J Bacteriol 1996; 178:4176-81. [PMID: 8763946 PMCID: PMC178175 DOI: 10.1128/jb.178.14.4176-4181.1996] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have used supercoiled DNA templates in this study to demonstrate that transcription in vitro from the P1 and P2 promoters of the osmoresponsive proU operon of Escherichia coli is preferentially mediated by the sigma(s) and sigma70-bearing RNA polymerase holoenzymes, respectively. Addition of potassium glutamate resulted in the activation of transcription from both P1 and P2 and also led to a pronounced enhancement of sigma(s) selectivity at the P1 promoter. Transcription from P2, and to a lesser extent from P1, was inhibited by the nucleoid protein H-NS but only in the absence of potassium glutamate. This study validates the existence of dual promoters with dual specificities for proU transcription. Our results also support the proposals that potassium, which is known to accumulate in cells grown at high osmolarity, is at least partially responsible for effecting the in vivo induction of proU transcription and that it does so through two mechanisms, directly by the activation of RNA polymerase and indirectly by the relief of repression imposed by H-NS.
Collapse
Affiliation(s)
- K Rajkumari
- Centre for Cellular & Molecular Biology, Hyderabad, India
| | | | | | | | | |
Collapse
|
29
|
Zhang X, Fletcher SA, Csonka LN. Site-directed mutational analysis of the osmotically regulated proU promoter of Salmonella typhimurium. J Bacteriol 1996; 178:3377-9. [PMID: 8655527 PMCID: PMC178099 DOI: 10.1128/jb.178.11.3377-3379.1996] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We carried out PCR mutagenesis of the proU promoter of Salmonella typhimurium, in order to identify sequences important for its osmotic control. We obtained five mutations in the -35 element: two decreased the promoter strength, one increased it, and the others had no effect. However, none abolished osmotic control, suggesting that the sequence of the -35 element is not crucial for osmotic control.
Collapse
Affiliation(s)
- X Zhang
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA
| | | | | |
Collapse
|
30
|
Gowrishankar J, Manna D. How is osmotic regulation of transcription of the Escherichia coli proU operon achieved? A review and a model. Genetica 1996; 97:363-78. [PMID: 9081863 DOI: 10.1007/bf00055322] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The proU operon in enterobacteria encodes a binding-protein-dependent transporter for the active uptake of glycine betaine and L-proline, and serves an adaptive role during growth of cells in hyperosmolar environments. Transcription of proU is induced 400-fold under these conditions, but the underlying signal transduction mechanisms are incompletely understood. Increased DNA supercoiling and activation by potassium glutamate have each been proposed in alternative models as mediators of proU osmoresponsivity. We review here the available experimental data on proU regulation, and in particular the roles for DNA supercoiling, potassium glutamate, histone-like proteins of the bacterial nucleoid, and alternative sigma factors of RNA polymerase in such regulation. We also propose a new unifying model, in which the pronounced osmotic regulation of proU expression is achieved through the additive effects of at least three separate mechanisms, each comprised of a cis element [two promoters P1 and P2, and negative-regulatory-element (NRE) downstream of both promoters] and distinct trans-acting factors that interact with it: stationary-phase sigma factor RpoS with P1, nucleoid proteins HU and IHF with P2, and nucleoid protein H-NS with the NRE. In this model, potassium glutamate may activate proU expression through each of the three mechanisms whereas DNA supercoiling has a very limited role, if any, in the osmotic induction of proU transcription. We also suggest that proU may be a virulence gene in the pathogenic enterobacteria.
Collapse
Affiliation(s)
- J Gowrishankar
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | | |
Collapse
|
31
|
Lamark T, Røkenes TP, McDougall J, Strøm AR. The complex bet promoters of Escherichia coli: regulation by oxygen (ArcA), choline (BetI), and osmotic stress. J Bacteriol 1996; 178:1655-62. [PMID: 8626294 PMCID: PMC177851 DOI: 10.1128/jb.178.6.1655-1662.1996] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The bet regulon allows Escherichia coli to synthesize the osmoprotectant glycine betaine from choline. It comprises a regulatory gene, betI, and three structural genes: betT (choline porter), betA (choline dehydrogenase), and betB (betaine aldehyde dehydrogenase). The bet genes are regulated by oxygen, choline, and osmotic stress. Primer extension analysis identified two partially overlapping promoters which were responsible for the divergent expression of the betT and betIBA transcripts. The transcripts were initiated 61 bp apart. Regulation of the promoters was investigated by using cat (chloramphenicol acetyltransferase) and lacZ (beta-galactosidase) operon fusions. Mutation of betI on plasmid F'2 revealed that BetI is a repressor which regulates both promoters simultaneously in response to the inducer choline. Both promoters remained inducible by osmotic stress in a betI mutant background. On the basis of experiments with hns and hns rpoS mutants, we conclude that osmoregulation of the bet promoters was hns independent. The bet promoters were repressed by ArcA under anaerobic growth conditions. An 89-bp promoter fragment, as well as all larger fragments tested, which included both transcriptional start points, displayed osmotic induction and BetI-dependent choline regulation when linked with a cat reporter gene on plasmid pKK232-8. Flanking DNA, presumably on the betT side of the promoter region, appeared to be needed for ArcA-dependent regulation of both promoters.
Collapse
Affiliation(s)
- T Lamark
- The Norwegian College of Fishery Science, University of Tromsø, Norway
| | | | | | | |
Collapse
|
32
|
Fletcher SA, Csonka LN. Fine-structure deletion analysis of the transcriptional silencer of the proU operon of Salmonella typhimurium. J Bacteriol 1995; 177:4508-13. [PMID: 7635833 PMCID: PMC177203 DOI: 10.1128/jb.177.15.4508-4513.1995] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Transcriptional control of the osmotically regulated proU operon of Salmonella typhimurium is mediated in part by a transcriptional silencer downstream from the promoter (D.G. Overdier and L.N. Csonka, Proc. Natl. Acad. Sci. USA 89:3140-3144, 1992). We carried out a fine-structure deletion analysis to determine the structure and the position of the silencer, which demonstrated that this regulatory element is located between nucleotide positions +73 to +274 downstream from the transcription start site. The silencer appears to be made up of a number of components which have cumulative negative regulatory effects. Deletions or insertions of short nucleotide sequences (< 40 bp) between the proU promoter and the silencer do not disrupt repression exerted by the silencer, but long insertions (> or = 0.8 kbp) result in a high level of expression from the proU promoter, similar to that imparted by deletion of the entire silencer. The general DNA-binding protein H-NS is required for the full range of repression of the proU operon in media of low osmolality. Although in the presence of the silencer hns mutations increased basal expression from the proU promoter three- to sixfold, in the absence of the silencer they did not result in a substantial increase in basal expression from the proU promoter. Furthermore, deletion of the silencer in hns+ background was up to 10-fold more effective in increasing basal expression from the proU promoter than the hns mutations. These results indicate that osmotic control of the proU operon is dependent of some factor besides H-NS. We propose that the transcriptional regulation of this operon is effected in media of low osmolality by a protein which makes the promoter inaccessible to RNA polymerase by forming a complex containing the proU promoter and silencer.
Collapse
Affiliation(s)
- S A Fletcher
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA
| | | |
Collapse
|
33
|
Kempf B, Bremer E. OpuA, an osmotically regulated binding protein-dependent transport system for the osmoprotectant glycine betaine in Bacillus subtilis. J Biol Chem 1995; 270:16701-13. [PMID: 7622480 DOI: 10.1074/jbc.270.28.16701] [Citation(s) in RCA: 140] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Exogenously provided glycine betaine can efficiently protect Bacillus subtilis from the detrimental effects of high osmolarity environments. Through functional complementation of an Escherichia coli mutant deficient in glycine betaine uptake with a gene library from B. subtilis, we have identified a multicomponent glycine betaine transport system, OpuA. Uptake of radiolabeled glycine betaine in B. subtilis was found to be osmotically stimulated and was strongly decreased in a mutant strain lacking the OpuA transport system. DNA sequence analysis revealed that the components of the OpuA system are encoded by anoperon (opuA) comprising three structural genes: opuAA, opuAB, and opuAC. The products of these genes exhibit features characteristic for binding protein-dependent transport systems and in particular show homology to the glycine betaine uptake system ProU from E. coli. Expression of the opuA operon is under osmotic control. The transcriptional initiation sites of opuA were mapped by high resolution primer extension analysis, and two opuA mRNAs were detected that differed by 38 base pairs at their 5' ends. Synthesis of the shorter transcript was strongly increased in cells grown at high osmolarity, whereas the amount of the longer transcript did not vary in response to medium osmolarity. Physical and genetic mapping experiments allowed the positioning the opuA operon at 25 degrees on the genetic map of B. subtilis.
Collapse
Affiliation(s)
- B Kempf
- Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| | | |
Collapse
|
34
|
Abstract
We present edition VIII of the genetic map of Salmonella typhimurium LT2. We list a total of 1,159 genes, 1,080 of which have been located on the circular chromosome and 29 of which are on pSLT, the 90-kb plasmid usually found in LT2 lines. The remaining 50 genes are not yet mapped. The coordinate system used in this edition is neither minutes of transfer time in conjugation crosses nor units representing "phage lengths" of DNA of the transducing phage P22, as used in earlier editions, but centisomes and kilobases based on physical analysis of the lengths of DNA segments between genes. Some of these lengths have been determined by digestion of DNA by rare-cutting endonucleases and separation of fragments by pulsed-field gel electrophoresis. Other lengths have been determined by analysis of DNA sequences in GenBank. We have constructed StySeq1, which incorporates all Salmonella DNA sequence data known to us. StySeq1 comprises over 548 kb of nonredundant chromosomal genomic sequences, representing 11.4% of the chromosome, which is estimated to be just over 4,800 kb in length. Most of these sequences were assigned locations on the chromosome, in some cases by analogy with mapped Escherichia coli sequences.
Collapse
Affiliation(s)
- K E Sanderson
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | | | | |
Collapse
|
35
|
Sledjeski D, Gottesman S. A small RNA acts as an antisilencer of the H-NS-silenced rcsA gene of Escherichia coli. Proc Natl Acad Sci U S A 1995; 92:2003-7. [PMID: 7534408 PMCID: PMC42411 DOI: 10.1073/pnas.92.6.2003] [Citation(s) in RCA: 184] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The regulation of capsular polysaccharide synthesis in Escherichia coli K-12 depends on the level of an unstable positive regulator, RcsA. The amount of RcsA protein is limited both by its rapid degradation by Lon, an ATP-dependent protease, and by its low level of synthesis. We have found that the low level of expression from the rcsA promoter is due to transcriptional silencing by the histone-like protein H-NS; this silencing is sensitive to both sequence and context in a region upstream of the -35 region of the promoter. A small (85-nt) RNA, DsrA, when overproduced, activates transcription of rcsA::lacZ fusions by counteracting H-NS silencing. DsrA RNA does not show any extended homology with the rcsA promoter or other sequenced regions of E. coli. Since the stimulation of rcsA transcription by this small RNA does not depend on any sequences from within the rcsA transcript, DsrA acts, either directly or indirectly, on rcsA transcription initiation.
Collapse
Affiliation(s)
- D Sledjeski
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255
| | | |
Collapse
|
36
|
Gutierrez JA, Csonka LN. Isolation and characterization of adenylate kinase (adk) mutations in Salmonella typhimurium which block the ability of glycine betaine to function as an osmoprotectant. J Bacteriol 1995; 177:390-400. [PMID: 7814329 PMCID: PMC176603 DOI: 10.1128/jb.177.2.390-400.1995] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Mutants of Salmonella typhimurium that were not protected by glycine betaine (GB) but could still use proline as an osmoprotectant in media of high osmolality were isolated. The mutations responsible for this phenotype proved to be alleles of the adenylate kinase (adk) gene, as shown by genetic mapping, sequencing of the cloned mutant alleles, complementation with the Escherichia coli adk gene, and assay of Adk enzyme activity in crude extracts. One of the mutations was in the untranslated leader of the adk mRNA, a second was in the putative Shine-Dalgarno sequence, and a third was in the coding region of the gene. The loss of osmoprotection by GB was shown to be due to the fact that the accumulation of this solute actually resulted in a severe inhibition of growth in the adk mutants. The addition of GB in the presence of 0.5 M NaCl resulted in a rapid decline in the ATP pool and a dramatic increase in the AMP pool in the mutants. Proline, which is not toxic to the adk mutants, did not have any significant effects on the cellular levels of ATP and AMP. The mutants exhibited two different phenotypes with respect to the utilization of other osmoprotectants: they were also inhibited by propiothiobetaine, L-carnitine, and gamma-butyrobetaine, but they were stimulated normally in media of high osmolality by proline, choline-O-sulfate, and stachydrine.
Collapse
Affiliation(s)
- J A Gutierrez
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392
| | | |
Collapse
|
37
|
Jubete Y, Zabala JC, Juárez A, de la Cruz F. hlyM, a transcriptional silencer downstream of the promoter in the hly operon of Escherichia coli. J Bacteriol 1995; 177:242-6. [PMID: 7798139 PMCID: PMC176580 DOI: 10.1128/jb.177.1.242-246.1995] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Transcription of the hly operon of transmissible plasmids in Escherichia coli is subject to a tight regulation which also involves various chromosomal genes, such as hha. We have identified a 200-bp region within the hlyC gene, designated hlyM, which modulates hemolysin expression. The deletion of hlyM increased the activity of hly::galK fusion 20-fold. hlyM does not contain any internal promoter, nor is it capable of acting in trans. Our data suggest that the chromosomal Hha protein interacts with hlyM in order to silence the hly promoter. In addition, hlyR, a positive activator of hemolysin expression, seems to suppress the modulatory effect dictated by the Hha protein on the hlyM region.
Collapse
Affiliation(s)
- Y Jubete
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | | | | | | |
Collapse
|
38
|
Mellies J, Wise A, Villarejo M. Two different Escherichia coli proP promoters respond to osmotic and growth phase signals. J Bacteriol 1995; 177:144-51. [PMID: 8002611 PMCID: PMC176566 DOI: 10.1128/jb.177.1.144-151.1995] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
proP of Escherichia coli encodes an active transport system for proline and glycine betaine which is activated by both hyperosmolarity and amino acid-limited growth. proP DNA sequences far upstream from the translational start site are strongly homologous to the promoter of proU, an operon that specifies another osmoregulated glycine betaine transport system. Mutation and deletion analysis of proP and primer extension experiments established that this promoter, P1, was responsible for proP's strong expression in minimal medium and its response to osmotic signals. When cells were grown in complex medium, expression from a proP-lacZ fusion was induced three- to fourfold as growth slowed and cells entered stationary phase. Stationary-phase induction was dependent on rpoS, which encodes a stationary-phase sigma factor. Deletion of 158 bp of the untranslated leader sequence between P1 and the proP structural gene abolished rpoS-dependent stationary-phase regulation. Transcription initiation detected by primer extension within this region was absent in an rpoS mutant. proP is therefore a member of the growing class of sigma S-dependent genes which respond to both stationary-phase and hyperosmolarity signals.
Collapse
Affiliation(s)
- J Mellies
- Section of Microbiology, University of California, Davis 95616
| | | | | |
Collapse
|
39
|
Csonka LN, Ikeda TP, Fletcher SA, Kustu S. The accumulation of glutamate is necessary for optimal growth of Salmonella typhimurium in media of high osmolality but not induction of the proU operon. J Bacteriol 1994; 176:6324-33. [PMID: 7929004 PMCID: PMC196974 DOI: 10.1128/jb.176.20.6324-6333.1994] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Synthesis of glutamate can be limited in bacterial strains carrying mutations to loss of function of glutamate synthase (2-oxoglutarate:glutamine aminotransferase) by using low concentrations of NH4+ in the growth medium. By using such gltB/D mutant strains of Salmonella typhimurium, we demonstrated that: (i) a large glutamate pool, previously observed to correlate with growth at high external osmolality, is actually required for optimal growth under these conditions; (ii) the osmoprotectant glycine betaine (N,N,N-trimethylglycine) apparently cannot substitute for glutamate; and (iii) accumulation of glutamate is not necessary for high levels of induction of the proU operon in vivo. Expression of the proU operon, which encodes a transport system for the osmoprotectants proline and glycine betaine, is induced > 100-fold in the wild-type strain under conditions of high external osmolality. Ramirez et al. (R. M. Ramirez, W. S. Prince, E. Bremer, and M. Villarejo, Proc. Natl. Acad. Sci. USA 86:1153-1157, 1989) observed and we confirmed that in vitro expression of the lacZ gene from the wild-type proU promoter is stimulated by 0.2 to 0.3 M K glutamate. However, we observed a very similar stimulation for lacZ expressed from the lacUV5 promoter and from the proU promoter when an important negative regulatory element downstream of this promoter (the silencer) was deleted. Since the lacUV5 promoter is not osmotically regulated in vivo and osmotic regulation of the proU promoter is largely lost as a result of deletion of the silencer, we conclude that stimulation of proU expression by K glutamate in vitro is not a specific osmoregulatory response but probably a manifestation of the optimization of in vitro transcription-translation at high concentrations of this solute. Our in vitro and in vivo results demonstrate that glutamate is not an obligatory component of the transcriptional regulation of the proU operon.
Collapse
Affiliation(s)
- L N Csonka
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392
| | | | | | | |
Collapse
|
40
|
Manna D, Gowrishankar J. Evidence for involvement of proteins HU and RpoS in transcription of the osmoresponsive proU operon in Escherichia coli. J Bacteriol 1994; 176:5378-84. [PMID: 8071215 PMCID: PMC196724 DOI: 10.1128/jb.176.17.5378-5384.1994] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Transcription of the proU operon of Escherichia coli is induced several hundred-fold upon growth at elevated osmolarity, but the underlying mechanisms are incompletely understood. Three cis elements appear to act additively to mediate proU osmoresponsivity: (i) sequences around a promoter, P1, which is situated 250 bp upstream of the first structural gene proV; (ii) sequences around another (sigma 70-dependent) promoter, P2, which is situated 60 bp upstream of proV; and (iii) a negative regulatory element present within the proV coding region. These three cis elements are designated, respectively, P1R, P2R, and NRE. trans-acting mutants with partially derepressed proU expression have been obtained earlier, and a vast majority of the mutations affect the gene encoding the nucleoid protein HNS. In this study we employed a selection for trans-acting mutants with reduced proU+ expression, and we obtained a derivative that had suffered mutations in two separate loci designated dpeA and dpeB. The dpeB mutation caused a marked reduction in promoter P1 expression and was allelic to rpoS, the structural gene for the stationary-phase-specific sigma factor of RNA polymerase. Expression from P1 was markedly induced, in an RpoS-dependent manner, in stationary-phase cultures. In contrast to the behavior of the isolated P1 promoter, transcription from a construct carrying the entire proU cis-regulatory region (P1R plus P2R plus NRE) was not significantly affected by either growth phase or RpoS. The dpeA locus was allelic to hupB, which along with hupA encodes the nucleoid protein HU. hupA hupB double mutants exhibited a pronounced reduction in proU osmotic inducibility. HU appears to affect proU regulation through the P2R mechanism, whereas the effect of HNS is mediated through the NRE.
Collapse
Affiliation(s)
- D Manna
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | | |
Collapse
|
41
|
Mellies J, Brems R, Villarejo M. The Escherichia coli proU promoter element and its contribution to osmotically signaled transcription activation. J Bacteriol 1994; 176:3638-45. [PMID: 8206842 PMCID: PMC205553 DOI: 10.1128/jb.176.12.3638-3645.1994] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The proU operon of Escherichia coli encodes a high-affinity glycine betaine transport system which is osmotically inducible and enables the organism to recover from the deleterious effects of hyperosmotic shock. Regulation occurs at the transcriptional level. KMnO4 footprinting showed that the preponderance of transcription initiated at a single primary promoter region and that proU transcription activation did not occur differentially at alternate promoters in response to various levels of salt shock. Mutational analysis confirmed the location of the primary promoter and identified an extended -10 region required for promoter activity. Specific nucleotides within the spacer, between position -10 and position -35, were important for maximal expression, but every mutant which retained transcriptional activity remained responsive to osmotic signals. A chromosomal 90-bp minimal promoter fragment fused to lacZ was not significantly osmotically inducible. However, transcription from this fragment was resistant to inhibition by salt shock. A mutation in osmZ, which encodes the DNA-binding protein H-NS, derepressed wild-type proU expression by sevenfold but did not alter expression from the minimal promoter. The current data support a model in which the role of the proU promoter is to function efficiently at high ionic strength while other cis-acting elements receive and respond to the osmotic signal.
Collapse
Affiliation(s)
- J Mellies
- Section of Microbiology, University of California, Davis 95616
| | | | | |
Collapse
|
42
|
Lucht JM, Bremer E. Adaptation of Escherichia coli to high osmolarity environments: osmoregulation of the high-affinity glycine betaine transport system proU. FEMS Microbiol Rev 1994; 14:3-20. [PMID: 8011357 DOI: 10.1111/j.1574-6976.1994.tb00067.x] [Citation(s) in RCA: 205] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A sudden increase in the osmolarity of the environment is highly detrimental to the growth and survival of Escherichia coli and Salmonella typhimurium since it triggers a rapid efflux of water from the cell, resulting in a decreased turgor. Changes in the external osmolarity must therefore be sensed by the microorganisms and this information must be converted into an adaptation process that aims at the restoration of turgor. The physiological reaction of the cell to the changing environmental condition is a highly coordinated process. Loss of turgor triggers a rapid influx of K+ ions into the cell via specific transporters and the concomitant synthesis of counterions, such as glutamate. The increased intracellular concentration of K(+)-glutamate allows the adaptation of the cell to environments of moderately high osmolarities. At high osmolarity, K(+)-glutamate is insufficient to ensure cell growth, and the bacteria therefore replace the accumulated K+ ions with compounds that are less deleterious for the cell's physiology. These compatible solutes include polyoles such as trehalose, amino acids such as proline, and methyl-amines such as glycine betaine. One of the most important compatible solutes for bacteria is glycine betaine. This potent osmoprotectant is widespread in nature, and its intracellular accumulation is achieved through uptake from the environment or synthesis from its precursor choline. In this overview, we discuss the properties of the high-affinity glycine betaine transport system ProU and the osmotic regulation of its structural genes.
Collapse
Affiliation(s)
- J M Lucht
- University of Konstanz, Department of Biology, FRG
| | | |
Collapse
|
43
|
Zuber F, Kotlarz D, Rimsky S, Buc H. Modulated expression of promoters containing upstream curved DNA sequences by the Escherichia coli nucleoid protein H-NS. Mol Microbiol 1994; 12:231-40. [PMID: 8057848 DOI: 10.1111/j.1365-2958.1994.tb01012.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Replacement of the CRP-binding site of the gal control region by curved sequences can lead to the restoration of promoter strength in vivo. One curved sequence called 5A6A, however, failed to do so. The gene hns exerts a strong negative control on the resulting 5A6A gal promoter as well as on the distant bla promoter, specifically in a 5A6A gal context. The product of this gene, H-NS, displays a better affinity for this particular insert compared to other curved sequences. Mechanisms by which H-NS may repress promoters both at short and long distances from a favoured binding site are discussed.
Collapse
Affiliation(s)
- F Zuber
- Unité de Physicochimie des Macromolécules Biologiques (URA 1149 du CNRS), Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|
44
|
Forsberg AJ, Pavitt GD, Higgins CF. Use of transcriptional fusions to monitor gene expression: a cautionary tale. J Bacteriol 1994; 176:2128-32. [PMID: 8144484 PMCID: PMC205324 DOI: 10.1128/jb.176.7.2128-2132.1994] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Gene fusions are frequently used to facilitate studies of gene expression and promoter activity. We have found that certain reporter genes can, themselves, influence promoter activity. For example, the commonly used luxAB reporter genes can activate or repress transcription from a subset of promoters, generating data apparently at odds with those obtained with other reporter genes. These effects are probably related to an intrinsically curved DNA segment in the 5' coding sequence of the luxA gene. Thus, caution must be observed when one is interpreting results obtained with a single reporter gene system such as luxAB.
Collapse
Affiliation(s)
- A J Forsberg
- Imperial Cancer Research Fund Laboratories, University of Oxford, John Radcliffe Hospital, United Kingdom
| | | | | |
Collapse
|
45
|
Lucht J, Dersch P, Kempf B, Bremer E. Interactions of the nucleoid-associated DNA-binding protein H-NS with the regulatory region of the osmotically controlled proU operon of Escherichia coli. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37411-2] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
46
|
Karem K, Foster JW. The influence of DNA topology on the environmental regulation of a pH-regulated locus in Salmonella typhimurium. Mol Microbiol 1993; 10:75-86. [PMID: 7968521 DOI: 10.1111/j.1365-2958.1993.tb00905.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Salmonella typhimurium is exposed to major shifts in H+ concentration both in its natural and pathogenic environments. The organism undergoes extensive changes in gene expression in response to these pH fluctuations. A current question of regulatory biology is how a change in external pH selectively modulates transcription. We have analysed the expression of one such pH-regulated locus, aniG, and found it is controlled by several additional environmental conditions including osmolarity and oxygen. For factors such as osmolarity and anaerobiosis, an environmentally triggered change in DNA supercoiling has been suggested as a means for controlling gene expression. Thus, environmentally induced changes in DNA topology were explored as a possible common means for establishing the multiple controls on aniG. The involvement of DNA supercoiling in the genetic response of S. typhimurium to external pH has not previously been defined. This report establishes that alkaline environments lower the linking number of reporter plasmids when compared to acidic environments. A consistent pattern was then established whereby conditions or mutations leading to either increased or decreased negative supercoiling were associated with altered expression of aniG. A similar relationship was observed for another environmentally regulated locus, proU. The DNA topology effects on aniG expression were dependent on the presence of EarA, the negative regulator of aniG. These data can be explained by a model in which repressor-operator interactions are very sensitive to changes in operator conformation. These environmentally induced topological influences on operator DNA structure contribute to the magnitude of pH control exerted upon aniG.
Collapse
Affiliation(s)
- K Karem
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile 36688
| | | |
Collapse
|