1
|
Velando F, Monteagudo-Cascales E, Matilla MA, Krell T. Differential CheR Affinity for Chemoreceptor C-Terminal Pentapeptides Modulates Chemotactic Responses. Mol Microbiol 2024; 122:465-476. [PMID: 39180229 DOI: 10.1111/mmi.15305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/26/2024]
Abstract
Many chemoreceptors contain a C-terminal pentapeptide at the end of a linker. In Escherichia coli, this pentapeptide forms a high-affinity binding site for CheR and phosphorylated CheB, and its removal interferes with chemoreceptor adaptation. Analysis of chemoreceptors revealed significant variation in their pentapeptide sequences, and bacteria often possess multiple chemoreceptors with differing pentapeptides. To assess whether this sequence variation alters CheR affinity and chemotaxis, we used Pectobacterium atrosepticum SCRI1043 as a model. SCRI1043 has 36 chemoreceptors, with 19 of them containing a C-terminal pentapeptide. We show that the affinity of CheR for the different pentapeptides varies up to 11-fold (KD 90 nM to 1 μM). Pentapeptides with the highest and lowest affinities differ only in a single amino acid. Deletion of the cheR gene abolishes chemotaxis. The replacement of the pentapeptide in the PacC chemoreceptor with those of the highest and lowest affinities significantly reduced chemotaxis to its cognate chemoeffector, L-Asp. Altering the PacC pentapeptide also reduced chemotaxis to L-Ser, but not to nitrate, which are responses mediated by the nontethered PacB and PacN chemoreceptors, respectively. Changes in the pentapeptide sequence thus modulate the response of the cognate receptor and that of another chemoreceptor.
Collapse
Affiliation(s)
- Félix Velando
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Elizabet Monteagudo-Cascales
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Miguel A Matilla
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Tino Krell
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
2
|
Guo L, Wang YH, Cui R, Huang Z, Hong Y, Qian JW, Ni B, Xu AM, Jiang CY, Zhulin IB, Liu SJ, Li DF. Attractant and repellent induce opposing changes in the four-helix bundle ligand-binding domain of a bacterial chemoreceptor. PLoS Biol 2023; 21:e3002429. [PMID: 38079456 PMCID: PMC10735184 DOI: 10.1371/journal.pbio.3002429] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/21/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
Motile bacteria navigate toward favorable conditions and away from unfavorable environments using chemotaxis. Mechanisms of sensing attractants are well understood; however, molecular aspects of how bacteria sense repellents have not been established. Here, we identified malate as a repellent recognized by the MCP2201 chemoreceptor in a bacterium Comamonas testosteroni and showed that it binds to the same site as an attractant citrate. Binding determinants for a repellent and an attractant had only minor differences, and a single amino acid substitution in the binding site inverted the response to malate from a repellent to an attractant. We found that malate and citrate affect the oligomerization state of the ligand-binding domain in opposing way. We also observed opposing effects of repellent and attractant binding on the orientation of an alpha helix connecting the sensory domain to the transmembrane helix. We propose a model to illustrate how positive and negative signals might be generated.
Collapse
Affiliation(s)
- Lu Guo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yun-Hao Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Rui Cui
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhou Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yuan Hong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jia-Wei Qian
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Bin Ni
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - An-Ming Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Igor B. Zhulin
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States of America
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - De-Feng Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Bodhankar GA, Tohidifar P, Foust ZL, Ordal GW, Rao CV. Characterization of Opposing Responses to Phenol by Bacillus subtilis Chemoreceptors. J Bacteriol 2022; 204:e0044121. [PMID: 35007157 PMCID: PMC9017305 DOI: 10.1128/jb.00441-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/04/2022] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis employs 10 chemoreceptors to move in response to chemicals in its environment. While the sensing mechanisms have been determined for many attractants, little is known about the sensing mechanisms for repellents. In this work, we investigated phenol chemotaxis in B. subtilis. Phenol is an attractant at low, micromolar concentrations and a repellent at high, millimolar concentrations. McpA was found to be the principal chemoreceptor governing the repellent response to phenol and other related aromatic compounds. In addition, the chemoreceptors McpC and HemAT were found to govern the attractant response to phenol and related compounds. Using chemoreceptor chimeras, McpA was found to sense phenol using its signaling domain rather than its sensing domain. These observations were substantiated in vitro, where direct binding of phenol to the signaling domain of McpA was observed using saturation transfer difference nuclear magnetic resonance. These results further advance our understanding of B. subtilis chemotaxis and further demonstrate that the signaling domain of B. subtilis chemoreceptors can directly sense chemoeffectors. IMPORTANCE Bacterial chemotaxis is commonly thought to employ a sensing mechanism involving the extracellular sensing domain of chemoreceptors. Some ligands, however, appear to be sensed by the signaling domain. Phenolic compounds, commonly found in soil and root exudates, provide environmental cues for soil microbes like Bacillus subtilis. We show that phenol is sensed as both an attractant and a repellent. While the mechanism for sensing phenol as an attractant is still unknown, we found that phenol is sensed as a repellent by the signaling domain of the chemoreceptor McpA. This study furthers our understanding of the unconventional sensing mechanisms employed by the B. subtilis chemotaxis pathway.
Collapse
Affiliation(s)
- Girija A. Bodhankar
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Payman Tohidifar
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Zachary L. Foust
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - George W. Ordal
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Christopher V. Rao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
4
|
Chemotaxis Towards Aromatic Compounds: Insights from Comamonas testosteroni. Int J Mol Sci 2019; 20:ijms20112701. [PMID: 31159416 PMCID: PMC6600141 DOI: 10.3390/ijms20112701] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 02/07/2023] Open
Abstract
Chemotaxis is an important physiological adaptation that allows many motile bacteria to orientate themselves for better niche adaptation. Chemotaxis is best understood in Escherichia coli. Other representative bacteria, such as Rhodobacter sphaeroides, Pseudomonas species, Helicobacter pylori, and Bacillus subtilis, also have been deeply studied and systemically summarized. These bacteria belong to α-, γ-, ε-Proteobacteria, or Firmicutes. However, β-Proteobacteria, of which many members have been identified as holding chemotactic pathways, lack a summary of chemotaxis. Comamonas testosteroni, belonging to β-Proteobacteria, grows with and chemotactically responds to a range of aromatic compounds. This paper summarizes the latest research on chemotaxis towards aromatic compounds, mainly from investigations of C. testosteroni and other Comamonas species.
Collapse
|
5
|
Abstract
Chemoreceptors in bacteria detect a variety of signals and feed this information into chemosensory pathways that represent a major mode of signal transduction. The five chemoreceptors from Escherichia coli have served as traditional models in the study of this protein family. Genome analyses revealed that many bacteria contain much larger numbers of chemoreceptors with broader sensory capabilities. Chemoreceptors differ in topology, sensing mode, cellular location, and, above all, the type of ligand binding domain (LBD). Here, we highlight LBD diversity using well-established and emerging model organisms as well as genomic surveys. Nearly a hundred different types of protein domains that are found in chemoreceptor sequences are known or predicted LBDs, but only a few of them are ubiquitous. LBDs of the same class recognize different ligands, and conversely, the same ligand can be recognized by structurally different LBDs; however, recent studies began to reveal common characteristics in signal-LBD relationships. Although signals can stimulate chemoreceptors in a variety of different ways, diverse LBDs appear to employ a universal transmembrane signaling mechanism. Current and future studies aim to establish relationships between LBD types, the nature of signals that they recognize, and the mechanisms of signal recognition and transduction.
Collapse
|
6
|
Hoffmann S, Schmidt C, Walter S, Bender JK, Gerlach RG. Scarless deletion of up to seven methyl-accepting chemotaxis genes with an optimized method highlights key function of CheM in Salmonella Typhimurium. PLoS One 2017; 12:e0172630. [PMID: 28212413 PMCID: PMC5315404 DOI: 10.1371/journal.pone.0172630] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/07/2017] [Indexed: 11/19/2022] Open
Abstract
Site-directed scarless mutagenesis is an essential tool of modern pathogenesis research. We describe an optimized two-step protocol for genome editing in Salmonella enterica serovar Typhimurium to enable multiple sequential mutagenesis steps in a single strain. The system is based on the λ Red recombinase-catalyzed integration of a selectable antibiotics resistance marker followed by replacement of this cassette. Markerless mutants are selected by expressing the meganuclease I-SceI which induces double-strand breaks in bacteria still harboring the resistance locus. Our new dual-functional plasmid pWRG730 allows for heat-inducible expression of the λ Red recombinase and tet-inducible production of I-SceI. Methyl-accepting chemotaxis proteins (MCP) are transmembrane chemoreceptors for a vast set of environmental signals including amino acids, sugars, ions and oxygen. Based on the sensory input of MCPs, chemotaxis is a key component for Salmonella virulence. To determine the contribution of individual MCPs we sequentially deleted seven MCP genes. The individual mutations were validated by PCR and genetic integrity of the final seven MCP mutant WRG279 was confirmed by whole genome sequencing. The successive MCP mutants were functionally tested in a HeLa cell infection model which revealed increased invasion rates for non-chemotactic mutants and strains lacking the MCP CheM (Tar). The phenotype of WRG279 was reversed with plasmid-based expression of CheM. The complemented WRG279 mutant showed also partially restored chemotaxis in swarming assays on semi-solid agar. Our optimized scarless deletion protocol enables efficient and precise manipulation of the Salmonella genome. As demonstrated with whole genome sequencing, multiple subsequent mutagenesis steps can be realized without the introduction of unwanted mutations. The sequential deletion of seven MCP genes revealed a significant role of CheM for the interaction of S. Typhimurium with host cells which might give new insights into mechanisms of Salmonella host cell sensing.
Collapse
Affiliation(s)
| | | | - Steffi Walter
- Project Group 5, Robert Koch Institute, Wernigerode, Germany
| | - Jennifer K. Bender
- Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode, Germany
| | | |
Collapse
|
7
|
Martín-Mora D, Ortega A, Reyes-Darias JA, García V, López-Farfán D, Matilla MA, Krell T. Identification of a Chemoreceptor in Pseudomonas aeruginosa That Specifically Mediates Chemotaxis Toward α-Ketoglutarate. Front Microbiol 2016; 7:1937. [PMID: 27965656 PMCID: PMC5126104 DOI: 10.3389/fmicb.2016.01937] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/17/2016] [Indexed: 12/21/2022] Open
Abstract
Pseudomonas aeruginosa is an ubiquitous pathogen able to infect humans, animals, and plants. Chemotaxis was found to be associated with the virulence of this and other pathogens. Although established as a model for chemotaxis research, the majority of the 26 P. aeruginosa chemoreceptors remain functionally un-annotated. We report here the identification of PA5072 (named McpK) as chemoreceptor for α-ketoglutarate (αKG). High-throughput thermal shift assays and isothermal titration calorimetry studies (ITC) of the recombinant McpK ligand binding domain (LBD) showed that it recognizes exclusively α-ketoglutarate. The ITC analysis indicated that the ligand bound with positive cooperativity (Kd1 = 301 μM, Kd2 = 81 μM). McpK is predicted to possess a helical bimodular (HBM) type of LBD and this and other studies suggest that this domain type may be associated with the recognition of organic acids. Analytical ultracentrifugation (AUC) studies revealed that McpK-LBD is present in monomer-dimer equilibrium. Alpha-KG binding stabilized the dimer and dimer self-dissociation constants of 55 μM and 5.9 μM were derived for ligand-free and αKG-bound forms of McpK-LBD, respectively. Ligand-induced LBD dimer stabilization has been observed for other HBM domain containing receptors and may correspond to a general mechanism of this protein family. Quantitative capillary chemotaxis assays demonstrated that P. aeruginosa showed chemotaxis to a broad range of αKG concentrations with maximal responses at 500 μM. Deletion of the mcpK gene reduced chemotaxis over the entire concentration range to close to background levels and wild type like chemotaxis was recovered following complementation. Real-time PCR studies indicated that the presence of αKG does not modulate mcpK expression. Since αKG is present in plant root exudates it was investigated whether the deletion of mcpK altered maize root colonization. However, no significant changes with respect to the wild type strain were observed. The existence of a chemoreceptor specific for αKG may be due to its central metabolic role as well as to its function as signaling molecule. This work expands the range of known chemoreceptor types and underlines the important physiological role of chemotaxis toward tricarboxylic acid cycle intermediates.
Collapse
Affiliation(s)
- David Martín-Mora
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| | - Alvaro Ortega
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| | - José A Reyes-Darias
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| | - Vanina García
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| | - Diana López-Farfán
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| | - Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| |
Collapse
|
8
|
Ortega DR, Zhulin IB. Evolutionary Genomics Suggests That CheV Is an Additional Adaptor for Accommodating Specific Chemoreceptors within the Chemotaxis Signaling Complex. PLoS Comput Biol 2016; 12:e1004723. [PMID: 26844549 PMCID: PMC4742279 DOI: 10.1371/journal.pcbi.1004723] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 12/29/2015] [Indexed: 12/30/2022] Open
Abstract
Escherichia coli and Salmonella enterica are models for many experiments in molecular biology including chemotaxis, and most of the results obtained with one organism have been generalized to another. While most components of the chemotaxis pathway are strongly conserved between the two species, Salmonella genomes contain some chemoreceptors and an additional protein, CheV, that are not found in E. coli. The role of CheV was examined in distantly related species Bacillus subtilis and Helicobacter pylori, but its role in bacterial chemotaxis is still not well understood. We tested a hypothesis that in enterobacteria CheV functions as an additional adaptor linking the CheA kinase to certain types of chemoreceptors that cannot be effectively accommodated by the universal adaptor CheW. Phylogenetic profiling, genomic context and comparative protein sequence analyses suggested that CheV interacts with specific domains of CheA and chemoreceptors from an orthologous group exemplified by the Salmonella McpC protein. Structural consideration of the conservation patterns suggests that CheV and CheW share the same binding spot on the chemoreceptor structure, but have some affinity bias towards chemoreceptors from different orthologous groups. Finally, published experimental results and data newly obtained via comparative genomics support the idea that CheV functions as a “phosphate sink” possibly to off-set the over-stimulation of the kinase by certain types of chemoreceptors. Overall, our results strongly suggest that CheV is an additional adaptor for accommodating specific chemoreceptors within the chemotaxis signaling complex. Due to the overwhelming complexity and diversity of biological systems, the functional roles of the majority of proteins encoded in sequenced genomes remain unknown or poorly understood. The multi-protein pathway controlling chemotaxis in bacteria and archaea is an example of such complexity and diversity. Chemotaxis pathway in E. coli is one of the best understood signal transduction networks in nature; however, this model organism lacks some of the system components, such as CheV, that are found in many other species. The biological role of CheV is still under avid debate. CheV is an auxiliary component of many chemotaxis systems and is present in important human pathogens, such as Salmonella and Helicobacter, where chemotaxis is being studied as an important virulence trait. Here we established the evolutionary history of the chemotaxis pathway in enterobacteria and combined a computational genomics approach with available structural information to propose a role for CheV. Our results show that CheV in enterics evolved as an adaptor for a specific type of chemoreceptors. Furthermore, we propose that some CheV-associated chemoreceptors might increase the kinase activity above the base level, and in these cases CheV acts as an attenuator.
Collapse
Affiliation(s)
- Davi R. Ortega
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Igor B. Zhulin
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
9
|
Corral-Lugo A, De la Torre J, Matilla MA, Fernández M, Morel B, Espinosa-Urgel M, Krell T. Assessment of the contribution of chemoreceptor-based signalling to biofilm formation. Environ Microbiol 2016; 18:3355-3372. [PMID: 26662997 DOI: 10.1111/1462-2920.13170] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 11/30/2015] [Indexed: 12/01/2022]
Abstract
Although it is well established that one- and two-component regulatory systems participate in regulating biofilm formation, there also exists evidence suggesting that chemosensory pathways are also involved. However, little information exists about which chemoreceptors and signals modulate this process. Here we report the generation of the complete set of chemoreceptor mutants of Pseudomonas putida KT2440 and the identification of four mutants with significantly altered biofilm phenotypes. These receptors are a WspA homologue of Pseudomonas aeruginosa, previously identified to control biofilm formation by regulating c-di-GMP levels, and three uncharacterized chemoreceptors. One of these receptors, named McpU, was found to mediate chemotaxis towards different polyamines. The functional annotation of McpU was initiated by high-throughput thermal shift assays of the receptor ligand binding domain (LBD). Isothermal titration calorimetry showed that McpU-LBD specifically binds putrescine, cadaverine and spermidine, indicating that McpU represents a novel chemoreceptor type. Another uncharacterized receptor, named McpA, specifically binds 12 different proteinogenic amino acids and mediates chemotaxis towards these compounds. We also show that mutants in McpU and WspA-Pp have a significantly reduced ability to colonize plant roots. Data agree with other reports showing that polyamines are signal molecules involved in the regulation of bacteria-plant communication and biofilm formation.
Collapse
Affiliation(s)
- Andrés Corral-Lugo
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda 1, 18008, Granada, Spain
| | - Jesús De la Torre
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda 1, 18008, Granada, Spain
| | - Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda 1, 18008, Granada, Spain
| | - Matilde Fernández
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda 1, 18008, Granada, Spain
| | - Bertrand Morel
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda 1, 18008, Granada, Spain
| | - Manuel Espinosa-Urgel
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda 1, 18008, Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda 1, 18008, Granada, Spain.
| |
Collapse
|
10
|
Martín-Mora D, Reyes-Darias JA, Ortega Á, Corral-Lugo A, Matilla MA, Krell T. McpQ is a specific citrate chemoreceptor that responds preferentially to citrate/metal ion complexes. Environ Microbiol 2015; 18:3284-3295. [DOI: 10.1111/1462-2920.13030] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 08/11/2015] [Accepted: 08/15/2015] [Indexed: 02/05/2023]
Affiliation(s)
- David Martín-Mora
- Department of Environmental Protection; Estación Experimental del Zaidín; Consejo Superior de Investigaciones Científicas; C/ Prof. Albareda, 1 18008 Granada Spain
| | - Jose-Antonio Reyes-Darias
- Department of Environmental Protection; Estación Experimental del Zaidín; Consejo Superior de Investigaciones Científicas; C/ Prof. Albareda, 1 18008 Granada Spain
| | - Álvaro Ortega
- Department of Environmental Protection; Estación Experimental del Zaidín; Consejo Superior de Investigaciones Científicas; C/ Prof. Albareda, 1 18008 Granada Spain
| | - Andrés Corral-Lugo
- Department of Environmental Protection; Estación Experimental del Zaidín; Consejo Superior de Investigaciones Científicas; C/ Prof. Albareda, 1 18008 Granada Spain
| | - Miguel A. Matilla
- Department of Environmental Protection; Estación Experimental del Zaidín; Consejo Superior de Investigaciones Científicas; C/ Prof. Albareda, 1 18008 Granada Spain
| | - Tino Krell
- Department of Environmental Protection; Estación Experimental del Zaidín; Consejo Superior de Investigaciones Científicas; C/ Prof. Albareda, 1 18008 Granada Spain
| |
Collapse
|
11
|
Río-Álvarez I, Muñoz-Gómez C, Navas-Vásquez M, Martínez-García PM, Antúnez-Lamas M, Rodríguez-Palenzuela P, López-Solanilla E. Role of Dickeya dadantii 3937 chemoreceptors in the entry to Arabidopsis leaves through wounds. MOLECULAR PLANT PATHOLOGY 2015; 16:685-98. [PMID: 25487519 PMCID: PMC6638404 DOI: 10.1111/mpp.12227] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Chemotaxis enables bacteria to move towards an optimal environment in response to chemical signals. In the case of plant-pathogenic bacteria, chemotaxis allows pathogens to explore the plant surface for potential entry sites with the ultimate aim to prosper inside plant tissues and to cause disease. Chemoreceptors, which constitute the sensory core of the chemotaxis system, are usually transmembrane proteins which change their conformation when sensing chemicals in the periplasm and transduce the signal through a kinase pathway to the flagellar motor. In the particular case of the soft-rot pathogen Dickeya dadantii 3937, jasmonic acid released in a plant wound has been found to be a strong chemoattractant which drives pathogen entry into the plant apoplast. In order to identify candidate chemoreceptors sensing wound-derived plant compounds, we carried out a bioinformatics search of candidate chemoreceptors in the genome of Dickeya dadantii 3937. The study of the chemotactic response to several compounds and the analysis of the entry process to Arabidopsis leaves of 10 selected mutants in chemoreceptors allowed us to determine the implications of at least two of them (ABF-0020167 and ABF-0046680) in the chemotaxis-driven entry process through plant wounds. Our data suggest that ABF-0020167 and ABF-0046680 may be candidate receptors of jasmonic acid and xylose, respectively.
Collapse
Affiliation(s)
- Isabel Río-Álvarez
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, UPM, Avda, Complutense S/N, 28040, Madrid, Spain
| | - Cristina Muñoz-Gómez
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, UPM, Avda, Complutense S/N, 28040, Madrid, Spain
| | - Mariela Navas-Vásquez
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, UPM, Avda, Complutense S/N, 28040, Madrid, Spain
| | - Pedro M Martínez-García
- Área de Genética, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Universidad de Málaga, E-29071, Málaga, Spain
| | - María Antúnez-Lamas
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, UPM, Avda, Complutense S/N, 28040, Madrid, Spain
| | - Pablo Rodríguez-Palenzuela
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, UPM, Avda, Complutense S/N, 28040, Madrid, Spain
| | - Emilia López-Solanilla
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, UPM, Avda, Complutense S/N, 28040, Madrid, Spain
| |
Collapse
|
12
|
Solórzano C, Srikumar S, Canals R, Juárez A, Paytubi S, Madrid C. Hha has a defined regulatory role that is not dependent upon H-NS or StpA. Front Microbiol 2015; 6:773. [PMID: 26284052 PMCID: PMC4519777 DOI: 10.3389/fmicb.2015.00773] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/14/2015] [Indexed: 11/13/2022] Open
Abstract
The Hha family of proteins is involved in the regulation of gene expression in enterobacteria by forming complexes with H-NS-like proteins. Whereas several amino acid residues of both proteins participate in the interaction, some of them play a key role. Residue D48 of Hha protein is essential for the interaction with H-NS, thus the D48N substitution in Hha protein abrogates H-NS/Hha interaction. Despite being a paralog of H-NS protein, StpA interacts with HhaD48N with higher affinity than with the wild type Hha protein. To analyze whether Hha is capable of acting independently of H-NS and StpA, we conducted transcriptomic analysis on the hha and stpA deletion strains and the hhaD48N substitution strain of Salmonella Typhimurium using a custom microarray. The results obtained allowed the identification of 120 genes regulated by Hha in an H-NS/StpA-independent manner, 38% of which are horizontally acquired genes. A significant number of the identified genes are involved in functions related to cell motility, iron uptake, and pathogenicity. Thus, motility assays, siderophore detection and intra-macrophage replication assays were performed to confirm the transcriptomic data. Our findings point out the importance of Hha protein as an independent regulator in S. Typhimurium, highlighting a regulatory role on virulence.
Collapse
Affiliation(s)
- Carla Solórzano
- Departament de Microbiologia, Universitat de Barcelona Barcelona, Spain
| | | | - Rocío Canals
- Institute of Integrative Biology, University of Liverpool Liverpool, UK
| | - Antonio Juárez
- Departament de Microbiologia, Universitat de Barcelona Barcelona, Spain ; Institut de Bioenginyeria de Catalunya, Parc Científic de Barcelona Barcelona, Spain
| | - Sonia Paytubi
- Departament de Microbiologia, Universitat de Barcelona Barcelona, Spain
| | - Cristina Madrid
- Departament de Microbiologia, Universitat de Barcelona Barcelona, Spain
| |
Collapse
|
13
|
Identification of a Chemoreceptor for C2 and C3 Carboxylic Acids. Appl Environ Microbiol 2015; 81:5449-57. [PMID: 26048936 DOI: 10.1128/aem.01529-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 05/27/2015] [Indexed: 12/13/2022] Open
Abstract
Chemoreceptors are at the beginnings of chemosensory signaling cascades that mediate chemotaxis. Most bacterial chemoreceptors are functionally unannotated and are characterized by a diversity in the structure of their ligand binding domains (LBDs). The data available indicate that there are two major chemoreceptor families at the functional level, namely, those that respond to amino acids or to Krebs cycle intermediates. Since pseudomonads show chemotaxis to many different compounds and possess different types of chemoreceptors, they are model organisms to establish relationships between chemoreceptor structure and function. Here, we identify PP2861 (termed McpP) of Pseudomonas putida KT2440 as a chemoreceptor with a novel ligand profile. We show that the recombinant McpP LBD recognizes acetate, pyruvate, propionate, and l-lactate, with KD (equilibrium dissociation constant) values ranging from 34 to 107 μM. Deletion of the mcpP gene resulted in a dramatic reduction in chemotaxis toward these ligands, and complementation restored a native-like phenotype, indicating that McpP is the major chemoreceptor for these compounds. McpP has a CACHE-type LBD, and we present data indicating that CACHE-containing chemoreceptors of other species also mediate taxis to C2 and C3 carboxylic acids. In addition, the LBD of NbaY of Pseudomonas fluorescens, an McpP homologue mediating chemotaxis to 2-nitrobenzoate, bound neither nitrobenzoates nor the McpP ligands. This work provides further insight into receptor structure-function relationships and will be helpful to annotate chemoreceptors of other bacteria.
Collapse
|
14
|
A novel chemoreceptor MCP2983 from Comamonas testosteroni specifically binds to cis-aconitate and triggers chemotaxis towards diverse organic compounds. Appl Microbiol Biotechnol 2014; 99:2773-81. [DOI: 10.1007/s00253-014-6216-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/28/2014] [Accepted: 11/01/2014] [Indexed: 01/25/2023]
|
15
|
Ni B, Huang Z, Fan Z, Jiang CY, Liu SJ. Comamonas testosteroniuses a chemoreceptor for tricarboxylic acid cycle intermediates to trigger chemotactic responses towards aromatic compounds. Mol Microbiol 2013; 90:813-23. [DOI: 10.1111/mmi.12400] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2013] [Indexed: 01/26/2023]
Affiliation(s)
- Bin Ni
- State Key Laboratory of Microbial Resources; Chinese Academy of Sciences; Beijing 100101 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Zhou Huang
- State Key Laboratory of Microbial Resources; Chinese Academy of Sciences; Beijing 100101 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Zheng Fan
- Core facility at Institute of Microbiology; Chinese Academy of Sciences; Beijing 100101 China
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources; Chinese Academy of Sciences; Beijing 100101 China
- Environmental Microbiology Research Center; Chinese Academy of Sciences; Beijing 100101 China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources; Chinese Academy of Sciences; Beijing 100101 China
- Environmental Microbiology Research Center; Chinese Academy of Sciences; Beijing 100101 China
| |
Collapse
|
16
|
Parales RE, Luu RA, Chen GY, Liu X, Wu V, Lin P, Hughes JG, Nesteryuk V, Parales JV, Ditty JL. Pseudomonas putida F1 has multiple chemoreceptors with overlapping specificity for organic acids. MICROBIOLOGY-SGM 2013; 159:1086-1096. [PMID: 23618999 DOI: 10.1099/mic.0.065698-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Previous studies have demonstrated that Pseudomonas putida strains are not only capable of growth on a wide range of organic substrates, but also chemotactic towards many of these compounds. However, in most cases the specific chemoreceptors that are involved have not been identified. The complete genome sequences of P. putida strains F1 and KT2440 revealed that each strain is predicted to encode 27 methyl-accepting chemotaxis proteins (MCPs) or MCP-like proteins, 25 of which are shared by both strains. It was expected that orthologous MCPs in closely related strains of the same species would be functionally equivalent. However, deletion of the gene encoding the P. putida F1 orthologue (locus tag Pput_4520, designated mcfS) of McpS, a known receptor for organic acids in P. putida KT2440, did not result in an obvious chemotaxis phenotype. Therefore, we constructed individual markerless MCP gene deletion mutants in P. putida F1 and screened for defective sensory responses to succinate, malate, fumarate and citrate. This screen resulted in the identification of a receptor, McfQ (locus tag Pput_4894), which responds to citrate and fumarate. An additional receptor, McfR (locus tag Pput_0339), which detects succinate, malate and fumarate, was found by individually expressing each of the 18 genes encoding canonical MCPs from strain F1 in a KT2440 mcpS-deletion mutant. Expression of mcfS in the same mcpS deletion mutant demonstrated that, like McfR, McfS responds to succinate, malate, citrate and fumarate. Therefore, at least three receptors, McfR, McfS, and McfQ, work in concert to detect organic acids in P. putida F1.
Collapse
Affiliation(s)
- Rebecca E Parales
- Department of Microbiology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Rita A Luu
- Department of Microbiology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Grischa Y Chen
- Department of Microbiology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Xianxian Liu
- Department of Microbiology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Victoria Wu
- Department of Microbiology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Pamela Lin
- Department of Microbiology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Jonathan G Hughes
- Department of Microbiology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Vasyl Nesteryuk
- Department of Microbiology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Juanito V Parales
- Department of Microbiology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Jayna L Ditty
- Department of Biology, University of St. Thomas, St. Paul, MN, USA
| |
Collapse
|
17
|
Adase CA, Draheim RR, Rueda G, Desai R, Manson MD. Residues at the cytoplasmic end of transmembrane helix 2 determine the signal output of the TarEc chemoreceptor. Biochemistry 2013; 52:2729-38. [PMID: 23495653 DOI: 10.1021/bi4002002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Baseline signal output and communication between the periplasmic and cytoplasmic domains of the Escherichia coli aspartate chemoreceptor Tar(Ec) are both strongly influenced by residues at the C-terminus of transmembrane helix 2 (TM2). In particular, the cytoplasmic aromatic anchor, composed of residues Trp-209 and Tyr-210 in wild-type Tar(Ec), is important for determining the CheA kinase-stimulating activity of the receptor and its ability to respond to chemoeffector-induced stimuli. Here, we have studied the effect on Tar(Ec) function of the six-residue sequence at positions 207-212. Moving various combinations of aromatic residues among these positions generates substantial changes in receptor activity. Trp has the largest effect on function, both in maintaining normal activity and in altering activity when it is moved. Tyr has a weaker effect, and Phe has the weakest; however, all three aromatic residues can alter signal output when they are placed in novel positions. We also find that Gly-211 plays an important role in receptor function, perhaps because of the flexibility it introduces into the TM2-HAMP domain connector. The conservation of this Gly residue in the high-abundance chemoreceptors of E. coli and Salmonella enterica suggests that it may be important for the nuanced, bidirectional transmembrane signaling that occurs in these proteins.
Collapse
|
18
|
Seo JS, Keum YS, Li QX. Metabolomic and proteomic insights into carbaryl catabolism by Burkholderia sp. C3 and degradation of ten N-methylcarbamates. Biodegradation 2013; 24:795-811. [PMID: 23463356 DOI: 10.1007/s10532-013-9629-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 02/19/2013] [Indexed: 10/27/2022]
Abstract
Burkholderia sp. C3, an efficient polycyclic aromatic hydrocarbon degrader, can utilize nine of the ten N-methylcarbamate insecticides including carbaryl as a sole source of carbon. Rapid hydrolysis of carbaryl in C3 is followed by slow catabolism of the resulting 1-naphthol. This study focused on metabolomes and proteomes in C3 cells utilizing carbaryl in comparison to those using glucose or nutrient broth. Sixty of the 867 detected proteins were involved in primary metabolism, adaptive sensing and regulation, transport, stress response, and detoxification. Among the 41 proteins expressed in response to carbaryl were formate dehydrogenase, aldehyde-alcohol dehydrogenase and ethanolamine utilization protein involved in one carbon metabolism. Acetate kinase and phasin were 2 of the 19 proteins that were not detected in carbaryl-supported C3 cells, but detected in glucose-supported C3 cells. Down-production of phasin and polyhydroxyalkanoates in carbaryl-supported C3 cells suggests insufficient carbon sources and lower levels of primary metabolites to maintain an ordinary level of metabolism. Differential metabolomes (~196 identified polar metabolites) showed up-production of metabolites in pentose phosphate pathways and metabolisms of cysteine, cystine and some other amino acids, disaccharides and nicotinate, in contract to down-production of most of the other amino acids and hexoses. The proteomic and metabolomic analyses showed that carbaryl-supported C3 cells experienced strong toxic effects, oxidative stresses, DNA/RNA damages and carbon nutrient deficiency.
Collapse
Affiliation(s)
- Jong-Su Seo
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, 1955 East-West Road, Honolulu, HI, 96822, USA
| | | | | |
Collapse
|
19
|
Choi E, Chang HK, Lim CY, Kim T, Park J. Concentration gradient generation of multiple chemicals using spatially controlled self-assembly of particles in microchannels. LAB ON A CHIP 2012; 12:3968-75. [PMID: 22907568 DOI: 10.1039/c2lc40450h] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We present a robust microfluidic platform for the stable generation of multiple chemical gradients simultaneously using in situ self-assembly of particles in microchannels. This proposed device enables us to generate stable and reproducible diffusion-based gradients rapidly without convection flow: gradients are stabilized within 5 min and are maintained steady for several hours. Using this device, we demonstrate the dynamic position control of bacteria by introducing the sequential directional change of chemical gradients. Green Fluorescent Protein (GFP)-expressing bacterial cells, allowing quantitative monitoring, show not only tracking motion according to the directional control of chemical gradients, but also the gradual loss of sensitivity when exposed to the sequential attractants because of receptor saturation. In addition, the proposed system can be used to study the preferential chemotaxis assay of bacteria toward multiple chemical sources, since it is possible to produce multiple chemical gradients in the main chamber; aspartate induces the most preferential chemotaxis over galactose and ribose. The microfluidic device can be easily fabricated with a simple and cost effective process based on capillary pressure and evaporation for particle assembly. The assembled particles create uniform porous membranes in microchannels and its porosity can be easily controlled with different size particles. Moreover, the membrane is biocompatible and more robust than hydrogel-based porous membranes. The proposed system is expected to be a useful tool for the characterization of bacterial responses to various chemical sources, screening of bacterial cells, synthetic biology and understanding many cellular activities.
Collapse
Affiliation(s)
- Eunpyo Choi
- Department of Mechanical Engineering, Sogang University, Sinsu-dong, Mapo-gu, Seoul 121-742, Korea
| | | | | | | | | |
Collapse
|
20
|
Lazova MD, Butler MT, Shimizu TS, Harshey RM. Salmonella chemoreceptors McpB and McpC mediate a repellent response to L-cystine: a potential mechanism to avoid oxidative conditions. Mol Microbiol 2012; 84:697-711. [PMID: 22486902 DOI: 10.1111/j.1365-2958.2012.08051.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chemoreceptors McpB and McpC in Salmonella enterica have been reported to promote chemotaxis in LB motility-plate assays. Of the chemicals tested as potential effectors of these receptors, the only response was towards L-cysteine and its oxidized form, L-cystine. Although enhanced radial migration in plates suggested positive chemotaxis to both amino acids, capillary assays failed to show an attractant response to either, in cells expressing only these two chemoreceptors. In vivo fluorescence resonance energy transfer (FRET) measurements of kinase activity revealed that in wild-type bacteria, cysteine and cystine are chemoeffectors of opposing sign, the reduced form being a chemoattractant and the oxidized form a repellent. The attractant response to cysteine was mediated primarily by Tsr, as reported earlier for Escherichia coli. The repellent response to cystine was mediated by McpB/C. Adaptive recovery upon cystine exposure required the methyl-transferase/-esterase pair, CheR/CheB, but restoration of kinase activity was never complete (i.e. imperfect adaptation). We provide a plausible explanation for the attractant-like responses to both cystine and cysteine in motility plates, and speculate that the opposing signs of response to this redox pair might afford Salmonella a mechanism to gauge and avoid oxidative environments.
Collapse
Affiliation(s)
- Milena D Lazova
- FOM Institute for Atomic and Molecular Physics, 1098 XG Amsterdam, the Netherlands
| | | | | | | |
Collapse
|
21
|
Abstract
After a childhood in Germany and being a youth in Grand Forks, North Dakota, I went to Harvard University, then to graduate school in biochemistry at the University of Wisconsin. Then to Washington University and Stanford University for postdoctoral training in biochemistry and genetics. Then at the University of Wisconsin, as a professor in the Department of Biochemistry and the Department of Genetics, I initiated research on bacterial chemotaxis. Here, I review this research by me and by many, many others up to the present moment. During the past few years, I have been studying chemotaxis and related behavior in animals, namely in Drosophila fruit flies, and some of these results are presented here. My current thinking is described.
Collapse
Affiliation(s)
- Julius Adler
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706-1544, USA.
| |
Collapse
|
22
|
Lacal J, García-Fontana C, Callejo-García C, Ramos JL, Krell T. Physiologically relevant divalent cations modulate citrate recognition by the McpS chemoreceptor. J Mol Recognit 2011; 24:378-85. [PMID: 21360620 DOI: 10.1002/jmr.1101] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The McpS chemoreceptor of Pseudomonas putida KT2440 recognizes six different tricarboxylic acid (TCA) cycle intermediates. However, the magnitude of the chemotactic response towards these compounds differs largely, which has led to distinguish between strong attractants (malate, succinate, fumarate, oxaloacetate) and weak attractants (citrate, isocitrate). Citrate is abundantly present in plant tissues and root exudates and can serve as the only carbon source for growth. Citrate is known to form complexes with divalent cations which are also abundantly present in natural habitats of this bacterium. We have used isothermal titration calorimetry to study the formation of citrate-metal ion complexes. In all cases binding was entropy driven but significant differences in affinity were observed ranging from K(D)=157 µM (for Mg(2+)) to 3 µM (for Ni(2+)). Complex formation occurred over a range of pH and ionic strength. The ligand binding domain of McpS (McpS-LBD) was found to bind free citrate, but not complexes with physiologically relevant Mg(2+) and Ca(2+). In contrast, complexes with divalent cations which are present as trace elements (Co(2+), Cd(2+) and Ni(2+)) were recognized by McpS-LBD. This discrimination differs from other citrate sensing proteins. These results are discussed in the context of the three dimensional structure of free citrate and its complex with Mg(2+). Chemotaxis assays using P. putida revealed that taxis towards the strong attractant malate is strongly reduced in the presence of free citrate. However, this reduction is much less important in the presence of citrate-Mg(2+) complexes. The physiological relevance of these findings is discussed.
Collapse
Affiliation(s)
- Jesús Lacal
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda, 1, Granada 18008, Spain
| | | | | | | | | |
Collapse
|
23
|
Lacal J, Alfonso C, Liu X, Parales RE, Morel B, Conejero-Lara F, Rivas G, Duque E, Ramos JL, Krell T. Identification of a chemoreceptor for tricarboxylic acid cycle intermediates: differential chemotactic response towards receptor ligands. J Biol Chem 2010; 285:23126-36. [PMID: 20498372 PMCID: PMC2906306 DOI: 10.1074/jbc.m110.110403] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 05/12/2010] [Indexed: 11/06/2022] Open
Abstract
We report the identification of McpS as the specific chemoreceptor for 6 tricarboxylic acid (TCA) cycle intermediates and butyrate in Pseudomonas putida. The analysis of the bacterial mutant deficient in mcpS and complementation assays demonstrate that McpS is the only chemoreceptor of TCA cycle intermediates in the strain under study. TCA cycle intermediates are abundantly present in root exudates, and taxis toward these compounds is proposed to facilitate the access to carbon sources. McpS has an unusually large ligand-binding domain (LBD) that is un-annotated in InterPro and is predicted to contain 6 helices. The ligand profile of McpS was determined by isothermal titration calorimetry of purified recombinant LBD (McpS-LBD). McpS recognizes TCA cycle intermediates but does not bind very close structural homologues and derivatives like maleate, aspartate, or tricarballylate. This implies that functional similarity of ligands, such as being part of the same pathway, and not structural similarity is the primary element, which has driven the evolution of receptor specificity. The magnitude of chemotactic responses toward these 7 chemoattractants, as determined by qualitative and quantitative chemotaxis assays, differed largely. Ligands that cause a strong chemotactic response (malate, succinate, and fumarate) were found by differential scanning calorimetry to increase significantly the midpoint of protein unfolding (T(m)) and unfolding enthalpy (DeltaH) of McpS-LBD. Equilibrium sedimentation studies show that malate, the chemoattractant that causes the strongest chemotactic response, stabilizes the dimeric state of McpS-LBD. In this respect clear parallels exist to the Tar receptor and other eukaryotic receptors, which are discussed.
Collapse
Affiliation(s)
- Jesús Lacal
- From the
Department of Environmental Protection, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Carlos Alfonso
- the
Centro de Investigaciones Biológicas, CSIC, 28040 Madrid, Spain
| | - Xianxian Liu
- the
Department of Microbiology, University of California, Davis, California 95616, and
| | - Rebecca E. Parales
- the
Department of Microbiology, University of California, Davis, California 95616, and
| | - Bertrand Morel
- the
Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Francisco Conejero-Lara
- the
Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Germán Rivas
- the
Centro de Investigaciones Biológicas, CSIC, 28040 Madrid, Spain
| | - Estrella Duque
- From the
Department of Environmental Protection, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Juan L. Ramos
- From the
Department of Environmental Protection, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Tino Krell
- From the
Department of Environmental Protection, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| |
Collapse
|
24
|
Iwama T, Ito Y, Aoki H, Sakamoto H, Yamagata S, Kawai K, Kawagishi I. Differential recognition of citrate and a metal-citrate complex by the bacterial chemoreceptor Tcp. J Biol Chem 2006; 281:17727-35. [PMID: 16636062 DOI: 10.1074/jbc.m601038200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The chemoreceptor Tcp of Salmonella enterica serovar Typhimurium can sense citrate and a metal-citrate complex as distinct attractants. In this study, we tried to investigate the molecular mechanism of this discrimination. That citrate binds directly to Tcp was verified by the site-specific thiol modification assays using membrane fractions prepared from Escherichia coli cells expressing the mutant Tcp receptors in which single Cys residues were introduced at positions in the putative ligand-binding pocket. To determine the region responsible for the ligand discrimination, we screened for mutations defective in taxis to magnesium in the presence of citrate. All of the isolated mutants from random mutagenesis with hydroxylamine were defective in both citrate and metal-citrate sensing, and the mutated residues are located in or near the alpha1-alpha2 and alpha3-alpha4 loops within the periplasmic domain. Further analyses with site-directed replacements around these regions demonstrated that the residue Asn(67), which is presumed to lie at the subunit interface of the Tcp homodimer, plays a critical role in the recognition of the metal-citrate complex but not that of citrate. Various amino acids at this position differentially affect the citrate and metal-citrate sensing abilities. Thus, for the first time, the abilities to sense the two attractants were genetically dissected. Based on the results obtained in this study, we propose models in which the discrimination of the metal-citrate complex from citrate involves cooperative interaction at Asn(67) and allosteric switching.
Collapse
Affiliation(s)
- Tomonori Iwama
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan.
| | | | | | | | | | | | | |
Collapse
|
25
|
Kasinskas RW, Forbes NS. Salmonella typhimurium specifically chemotax and proliferate in heterogeneous tumor tissue in vitro. Biotechnol Bioeng 2006; 94:710-21. [PMID: 16470601 DOI: 10.1002/bit.20883] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Multi-drug resistance greatly limits the efficacy of conventional blood-born chemotherapeutics, which have limited ability to penetrate tumor tissue and are ineffective at killing quiescent cells far from tumor vasculature. Nonpathogenic, motile bacteria can overcome both of theses limitations. We hypothesize that the accumulation of S. typhimurium in tumors is controlled by two mechanisms: (1) chemotaxis towards compounds produced by quiescent cancer cells and (2) preferential growth within tumor tissue. We tested this hypothesis by quantifying the relative contributions of these mechanisms using the tumor cylindroid model, which mimics the microenvironments of in vivo tumors. Time-lapse fluorescence microscopy was used to measure the accumulation of GFP-labeled S. typhimurium into cylindroids of different size. Cylindroids larger than 500 microm in diameter contain quiescent cells, whereas cylindroids smaller than 500 microm do not. Spatio-temporal profiles of bacterial concentration were fit to a mathematical model to calculate two parameters that describe bacterial interaction with tumors: intratumoral bacterial growth, M, and intratumoral bacterial chemoattraction, K. It was observed that S. typhimurium is attracted to cylindroids and accumulate at long time points in the central region of large cylindroids. Both intratumoral bacterial growth and chemotaxis were significantly greater in large cylindroids, suggesting that quiescent cells secrete bacterial chemoattractants and the presence of necrotic and quiescent cells enable S. typhimurium to replicate in tumor tissue. In this study, several mechanisms of S. typhimurium accumulation in solid tumors have been quantified, which we believe is an important step in the development of bacterial-based therapeutics to target tumor quiescence.
Collapse
Affiliation(s)
- Rachel W Kasinskas
- Department of Chemical Engineering, University of Massachusetts, 686 North Pleasant Street, Amherst, Massachusetts 01003, USA
| | | |
Collapse
|
26
|
Abstract
Leucine concentration jumps (applied by photolysis of inert derivatives) triggered swim or tumble responses in Escherichia coli mutants lacking Tsr or Tar, respectively. Wild-type E. coli bacteria were attracted in spatial assays when the initial leucine concentration difference was 5 to 120 micro M but were repulsed when it was over 0.5 mM. Their responses to concentration jumps confirmed earlier deductions regarding biphasic excitation.
Collapse
Affiliation(s)
- Shahid Khan
- Molecular Biology Consortium, Chicago, Illinois 60612, USA.
| | | |
Collapse
|
27
|
Pandey G, Jain RK. Bacterial chemotaxis toward environmental pollutants: role in bioremediation. Appl Environ Microbiol 2002; 68:5789-95. [PMID: 12450797 PMCID: PMC134409 DOI: 10.1128/aem.68.12.5789-5795.2002] [Citation(s) in RCA: 223] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Gunjan Pandey
- Institute of Microbial Technology, Chandigarh-160036, India
| | - Rakesh K. Jain
- Institute of Microbial Technology, Chandigarh-160036, India
| |
Collapse
|
28
|
Yi X, Weis RM. The receptor docking segment and S-adenosyl-L-homocysteine bind independently to the methyltransferase of bacterial chemotaxis. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1596:28-35. [PMID: 11983418 DOI: 10.1016/s0167-4838(01)00314-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To mediate adaptation to stimuli, the methyltransferase (CheR) catalyzes methyl group transfer from S-adenosyl-L-methionine (SAM) to glutamyl residues in the transmembrane receptors of the bacterial chemosensory signaling pathway. The interaction between receptors and CheR occurs at two sites: a methylation site-active site interaction, and a 'docking' site interaction that is separated both from the methylation sites and the CheR active site. It is not certain if the docking site interaction functions merely to localize the transferase in close proximity to the methylation sites, or if it also increases CheR catalytic activity. Isothermal titration calorimetry experiments are conducted to test for allosteric interactions between the docking and active sites on CheR, which are expected to be present if docking activates CheR. The binding parameters (DeltaG, DeltaH, DeltaS) of a substrate analog of SAM, S-adenosyl-L-homocysteine (SAH), are measured both in the absence and presence of saturating concentrations of a pentapeptide (NWETF) that defines the docking receptor docking segment. SAH binding is unaffected by the presence of saturating NWETF, providing evidence that an allosteric activation of CheR does not take place upon docking, and thus supports the idea that the CheR-NWETF interaction merely functions to localize CheR near the sites of methylation.
Collapse
Affiliation(s)
- X Yi
- Department of Chemistry, University of Massachusetts, Box 34510, Amherst, MA 01003-9336, USA
| | | |
Collapse
|
29
|
Shiomi D, Okumura H, Homma M, Kawagishi I. The aspartate chemoreceptor Tar is effectively methylated by binding to the methyltransferase mainly through hydrophobic interaction. Mol Microbiol 2000; 36:132-40. [PMID: 10760170 DOI: 10.1046/j.1365-2958.2000.01834.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the chemotaxis of Escherichia coli, adaptation requires the methylation and demethylation of transmembrane receptors, which are catalysed by the methyltransferase CheR and the methylesterase CheB respectively. CheR binds to major chemoreceptors through their C-terminal motif NWETF, which is distinct from the methylation sites. In this study, we carried out a systematic mutagenesis of the pentapeptide sequence of Tar. Receptor methylation and adaptation were severely impaired by the alanine substitution of residue W550 and, to a lesser extent, by that of F553. Substitution of residues N549, E551 and T552 had only a slight or little effect. The defects of the W550A and F553A mutations were suppressed by high- and low-level overproduction of CheR respectively. Expression of a fusion protein containing the NWETF sequence, but not its W550A and F553A versions, inhibited chemotaxis of the Che+ strain. In an in vitro assay, CheR bound to the wild-type version but not to the mutant versions. These results and further mutagenesis suggest that the hydrophobicity and the size of residues W550 and F553 are critical in the interaction with CheR, a conclusion that is consistent with the crystal structure of a CheR-NWETF complex. On the other hand, the negatively charged side chain of E551 and the polar side chains of N549 and T552 may not be strictly required, although the presence of a salt bridge and hydrogen bonds between these residues and residues from CheR has been noted in the co-crystal.
Collapse
Affiliation(s)
- D Shiomi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | | | |
Collapse
|
30
|
Iwama T, Nakao KI, Nakazato H, Yamagata S, Homma M, Kawagishi I. Mutational analysis of ligand recognition by tcp, the citrate chemoreceptor of Salmonella enterica serovar typhimurium. J Bacteriol 2000; 182:1437-41. [PMID: 10671471 PMCID: PMC94436 DOI: 10.1128/jb.182.5.1437-1441.2000] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The chemoreceptor Tcp mediates taxis to citrate. To identify citrate-binding residues, we substituted cysteine for seven basic or polar residues that are chosen based on the comparison of Tcp with the well-characterized chemoreceptors. The results suggest that Arg-63, Arg-68, Arg-72, Lys-75, and Tyr-150 (and probably other unidentified residues) are involved in the recognition of citrate.
Collapse
Affiliation(s)
- T Iwama
- Department of Biotechnology, Division of Utilization of Biological Resources, Faculty of Agriculture, Gifu University, Gifu 501-1193, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Many, if not most, bacterial species swim. The synthesis and operation of the flagellum, the most complex organelle of a bacterium, takes a significant percentage of cellular energy, particularly in the nutrient limited environments in which many motile species are found. It is obvious that motility accords cells a survival advantage over non-motile mutants under normal, poorly mixed conditions and is an important determinant in the development of many associations between bacteria and other organisms, whether as pathogens or symbionts and in colonization of niches and the development of biofilms. This survival advantage is the result of sensory control of swimming behaviour. Although too small to sense a gradient along the length of the cell, and unable to swim great distances because of buffetting by Brownian motion and the curvature resulting from a rotating flagellum, bacteria can bias their random swimming direction towards a more favourable environment. The favourable environment will vary from species to species and there is now evidence that in many species this can change depending on the current physiological growth state of the cell. In general, bacteria sense changes in a range of nutrients and toxins, compounds altering electron transport, acceptors or donors into the electron transport chain, pH, temperature and even the magnetic field of the Earth. The sensory signals are balanced, and may be balanced with other sensory pathways such as quorum sensing, to identify the optimum current environment. The central sensory pathway in this process is common to most bacteria and most effectors. The environmental change is sensed by a sensory protein. In most species examined this is a transmembrane protein, sensing the external environment, but there is increasing evidence for additional cytoplasmic receptors in many species. All receptors, whether sensing sugars, amino acids or oxygen, share a cytoplasmic signalling domain that controls the activity of a histidine protein kinase, CheA, via a linker protein, CheW. A reduction in an attractant generally leads to the increased autophosphorylation of CheA. CheA passes its phosphate to a small, single domain response regulator, CheY. CheY-P can interact with the flagellar motor to cause it to change rotational direction or stop. Signal termination either via a protein, CheZ, which increases the dephosphorylation rate of CheY-P or via a second CheY which acts as a phosphate sink, allows the cell to swim off again, usually in a new direction. In addition to signal termination the receptor must be reset, and this occurs via methylation of the receptor to return it to a non-signalling conformation. The way in which bacteria use these systems to move to optimum environments and the interaction of the different sensory pathways to produce species-specific behavioural response will be the subject of this review.
Collapse
Affiliation(s)
- J P Armitage
- Department of Biochemistry, University of Oxford, UK
| |
Collapse
|
32
|
Kaspar S, Perozzo R, Reinelt S, Meyer M, Pfister K, Scapozza L, Bott M. The periplasmic domain of the histidine autokinase CitA functions as a highly specific citrate receptor. Mol Microbiol 1999; 33:858-72. [PMID: 10447894 DOI: 10.1046/j.1365-2958.1999.01536.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The two-component regulatory system CitA/CitB is essential for induction of the citrate fermentation genes in Klebsiella pneumoniae. CitA represents a membrane-bound sensor kinase consisting of a periplasmic domain flanked by two transmembrane helices, a linker domain and the conserved kinase or transmitter domain. A fusion protein (MalE-CitAC) composed of the maltose-binding protein and the CitA kinase domain (amino acids 327-547) showed constitutive autokinase activity and transferred the gamma-phosphate group of ATP to its cognate response regulator CitB. The autokinase activity of CitA was abolished by an H350L exchange, and phosphorylation of CitB was inhibited by a D56N exchange, indicating that H-350 and D-56 represent the phosphorylation sites of CitA and CitB respectively. In the presence of ATP, CitB-D56N formed a stable complex with MalE-CitAC. To analyse the sensory properties of CitA, the periplasmic domain (amino acids 45-176) was overproduced as a soluble, cytoplasmic protein with a C-terminally attached histidine tag (CitAPHis). Purified CitAPHis bound citrate, but none of the other tri- and dicarboxylates tested, with high affinity (KD approximately 5 microM at pH 7) in a 1:1 stoichiometry. As shown by isothermal titration calorimetry, the binding reaction was driven by the enthalpy change (DeltaH = -76.3 kJ mol-1), whereas the entropy change was opposed (-TDeltaS = + 46.3 kJ mol-1). The pH dependency of the binding reaction indicated that the dianionic form H-citrate2- is the citrate species recognized by CitAPHis. In the presence of Mg2+ ions, the dissociation constant increased significantly, suggesting that the Mg-citrate complex is not bound by CitAPHis. This work defines the periplasmic domain of CitA as a highly specific citrate receptor and elucidates the binding characteristics of CitAPHis.
Collapse
Affiliation(s)
- S Kaspar
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, Schmelzbergstrasse 7, CH-8092 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Recent biochemical and structural studies have provided many new insights into the structure and function of bacterial chemoreceptors. Aspects of their ligand binding, conformational changes, and interactions with other members of the signaling pathway are being defined at the structural level. It is anticipated that the combined effort will soon provide a detailed, unified view of an entire response system.
Collapse
Affiliation(s)
- S L Mowbray
- Department of Molecular Biology, Swedish Agricultural University, Upsala, Sweden.
| | | |
Collapse
|
34
|
Peteu SF, Widman MT, Worden RM. In situ mapping of community-level cellular response with catalytic microbiosensors. Biosens Bioelectron 1998; 13:1197-203. [PMID: 9871975 DOI: 10.1016/s0956-5663(98)00070-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemotaxis, the migration of cells in the direction of a spatial chemical gradient, is important in disease progression, microbial ecology, and bioremediation. The ability to map chemoattractant gradients and the corresponding cellular growth and motility patterns is essential to the study of chemotaxis. Microelectrodes and microbiosensors have the potential to measure chemoattractant gradients with high spatial resolution. In this study, Clark-type amperometric microelectrodes and microbiosensors were used to measure solute concentrations gradients generated by a chemotactic band of Escherichia coli in a semi-solid gel. A computerized image analysis system was used to simultaneously measure the cellular concentration profile across the chemotactic band. The experimental results compared favorably with a mathematical model of solute and cell transport in the gel. Scanning electron micrographs (SEM) of micro(bio)sensor tips taken after 6 months of use showed evidence of degradation, including adhesion of foreign particles to the glass body, the adhesion of a small gel capsule to the sensor tip, and separation of the bio-interface from the tip. A needle-type microbiosensor was constructed to better protect the tip and hence increase the ruggedness of the microbiosensors.
Collapse
Affiliation(s)
- S F Peteu
- Department of Chemical Engineering, Michigan State University, East Lansing 48824, USA.
| | | | | |
Collapse
|
35
|
Delgado M, Toledo H, Jerez CA. Molecular cloning, sequencing, and expression of a chemoreceptor gene from Leptospirillum ferrooxidans. Appl Environ Microbiol 1998; 64:2380-5. [PMID: 9647803 PMCID: PMC106399 DOI: 10.1128/aem.64.7.2380-2385.1998] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We have cloned and sequenced a 2,262-bp chromosomal DNA fragment from the chemolithoautotrophic acidophilic bacterium Leptospirillum ferrooxidans. This DNA contained an open reading frame for a 577-amino-acid protein showing several characteristics of the bacterial chemoreceptors and, therefore, we named this gene lcrI for Leptospirillum chemotaxis receptor I. This is the first sequence reported for a gene from L. ferrooxidans encoding a protein. The lcrI gene showed both sigma 28-like and sigma 70-like putative promoters. The LcrI deduced protein contained two hydrophobic regions most likely corresponding to the two transmembrane regions present in all of the methyl-accepting chemotaxis proteins (MCPs) which make them fold with both periplasmic and cytoplasmic domains. We have proposed a cytoplasmic domain for LcrI, which also contains the highly conserved domain (HCD region), present in all of the chemotactic receptors, and two probable methylation sites. The in vitro expression of a DNA plasmid containing the 2,262-bp fragment showed the synthesis of a 58-kDa protein which was immunoprecipitated by antibodies against the Tar protein (an MCP from Escherichia coli), confirming some degree of antigenic conservation. In addition, this 58-kDa protein was expressed in E. coli, being associated with its cytoplasmic membrane fraction. It was not possible to determine a chemotactic receptor function for LcrI expressed in E. coli. This was most likely due to the fact that the periplasmic pH of E. coli, which differs by 3 to 4 pH units from that of acidophilic chemolithotrophs, does not allow the right conformation for the LcrI periplasmic domain.
Collapse
Affiliation(s)
- M Delgado
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | | | | |
Collapse
|
36
|
Djordjevic S, Stock AM. Chemotaxis receptor recognition by protein methyltransferase CheR. NATURE STRUCTURAL BIOLOGY 1998; 5:446-50. [PMID: 9628482 DOI: 10.1038/nsb0698-446] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Signal transduction processes commonly involve reversible covalent modifications of receptors. Bacterial chemotaxis receptors are reversibly methylated at specific glutamate residues within coiled-coil regions of their cytoplasmic domains. Methylation is catalyzed by an S-adenosylmethionine-dependent protein methyltransferase, CheR, that binds to a specific sequence at the C-termini of some chemotaxis receptors. From this tethering point, CheR methylates neighboring receptor molecules. We report the crystal structure, determined to 2.2 A resolution, of a complex of the Salmonella typhimurium methyltransferase CheR bound to the methylation reaction product, S-adenosylhomocysteine (AdoHcy), and the C-terminal pentapeptide of the aspartate receptor, Tar. The structure indicates the basis for the specificity of interaction between the chemoreceptors and CheR and identifies a specific receptor binding motif incorporated in the CheR methyltransferase domain.
Collapse
Affiliation(s)
- S Djordjevic
- Howard Hughes Medical Institute, Center for Advanced Biotechnology and Medicine, and Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Piscataway 08854-5638, USA
| | | |
Collapse
|
37
|
Okumura H, Nishiyama S, Sasaki A, Homma M, Kawagishi I. Chemotactic adaptation is altered by changes in the carboxy-terminal sequence conserved among the major methyl-accepting chemoreceptors. J Bacteriol 1998; 180:1862-8. [PMID: 9537386 PMCID: PMC107101 DOI: 10.1128/jb.180.7.1862-1868.1998] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In Escherichia coli and Salmonella typhimurium, methylation and demethylation of receptors are responsible for chemotactic adaptation and are catalyzed by the methyltransferase CheR and the methylesterase CheB, respectively. Among the chemoreceptors of these species, Tsr, Tar, and Tcp have a well-conserved carboxy-terminal motif (NWET/SF) that is absent in Trg and Tap. When they are expressed as sole chemoreceptors, Tsr, Tar, and Tcp support good adaptation, but Trg and Tap are poorly methylated and supported only weak adaptation. It was recently discovered that CheR binds to the NWETF sequence of Tsr in vitro. To examine the physiological significance of this binding, we characterized mutant receptors in which this pentapeptide sequence was altered. C-terminally-mutated Tar and Tcp expressed in a receptorless E. coli strain mediated responses to aspartate and citrate, respectively, but their adaptation abilities were severely impaired. Their expression levels and attractant-sensing abilities were similar to those of the wild-type receptors, but the methylation levels of the mutant receptors increased only slightly upon addition of attractants. When CheR was overproduced, both the adaptation and methylation profiles of the mutant Tar receptor became comparable to those of wild-type Tar. Furthermore, overproduction of CheR also enhanced adaptive methylation of wild-type Trg, which lacks the NWETF sequence, in the absence of any other chemoreceptor. These results suggest that the pentapeptide sequence facilitates effective adaptation and methylation by recruiting CheR.
Collapse
Affiliation(s)
- H Okumura
- Division of Biological Science, Graduate School of Science, Nagoya University, Japan
| | | | | | | | | |
Collapse
|
38
|
|
39
|
Kundu TK, Kusano S, Ishihama A. Promoter selectivity of Escherichia coli RNA polymerase sigmaF holoenzyme involved in transcription of flagellar and chemotaxis genes. J Bacteriol 1997; 179:4264-9. [PMID: 9209042 PMCID: PMC179248 DOI: 10.1128/jb.179.13.4264-4269.1997] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The rpoF gene of Escherichia coli codes for the RNA polymerase sigmaF (or sigma28) subunit, which is involved in transcription of the flagellar and chemotaxis genes. Both sigmaF and sigma70 (the major sigma subunit in growing cells) were overexpressed, purified to homogeneity, and compared with respect to activity and specificity. The affinity of sigmaF to core RNA polymerase (E) is higher than that of sigma70, as measured by gel filtration high-pressure liquid chromatography. In an in vitro transcription system, the holoenzyme (E sigmaF) containing sigmaF selectively transcribed the flagellar and chemotaxis genes, all of which could not be transcribed by E sigma70. This strict promoter recognition property of sigmaF is similar to those of other stress response minor sigma subunits but different from those of the principal sigma subunits, sigma70 and sigma38. sigma70-dependent transcription in vitro is inhibited at high concentrations of all salts tested, showing maximum activity at 50 mM. In contrast, sigmaF-dependent transcription was maximum at 50 mM KCI and then decreased to negligible level at 300 mM; in the cases of potassium acetate and potassium glutamate, maximum transcription was between 200 and 300 mM. DNase I foot printing of the fliC and fliD promoters indicated that sigmaF alone is unable to bind DNA, but E sigmaF specifically recognizes -10 and -35 regions of the sigmaF-dependent promoters with rather long upstream protection. Alteration of the promoter structure after binding of E sigmaF was suggested.
Collapse
Affiliation(s)
- T K Kundu
- Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | | | | |
Collapse
|
40
|
Falke JJ, Bass RB, Butler SL, Chervitz SA, Danielson MA. The two-component signaling pathway of bacterial chemotaxis: a molecular view of signal transduction by receptors, kinases, and adaptation enzymes. Annu Rev Cell Dev Biol 1997; 13:457-512. [PMID: 9442881 PMCID: PMC2899694 DOI: 10.1146/annurev.cellbio.13.1.457] [Citation(s) in RCA: 437] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The chemosensory pathway of bacterial chemotaxis has become a paradigm for the two-component superfamily of receptor-regulated phosphorylation pathways. This simple pathway illustrates many of the fundamental principles and unanswered questions in the field of signaling biology. A molecular description of pathway function has progressed rapidly because it is accessible to diverse structural, biochemical, and genetic approaches. As a result, structures are emerging for most of the pathway elements, biochemical studies are elucidating the mechanisms of key signaling events, and genetic methods are revealing the intermolecular interactions that transmit information between components. Recent advances include (a) the first molecular picture of a conformational transmembrane signal in a cell surface receptor, (b) four new structures of kinase domains and adaptation enzymes, and (c) significant new insights into the mechanisms of receptor-mediated kinase regulation, receptor adaptation, and the phospho-activation of signaling proteins. Overall, the chemosensory pathway and the propulsion system it regulates provide an ideal system in which to probe molecular principles underlying complex cellular signaling and behavior.
Collapse
Affiliation(s)
- J J Falke
- Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309-0215, USA.
| | | | | | | | | |
Collapse
|
41
|
Deckers HM, Voordouw G. The dcr gene family of Desulfovibrio: implications from the sequence of dcrH and phylogenetic comparison with other mcp genes. Antonie Van Leeuwenhoek 1996; 70:21-9. [PMID: 8836438 DOI: 10.1007/bf00393566] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Desulfovibrio vulgaris Hildenborough contains a family of genes for methyl-accepting chemotaxis proteins (MCPs). Here we report the complete sequence of the gene for Desulfovibrio chemoreceptor H (dcrH). The deduced amino acid sequence of DcrH protein, which has an enlarged N-terminal, ligand binding domain, indicates a structure similar to that of other MCPs. Comparison of the sequences for DcrA, determined earlier, and DcrH indicated that similarity is essentially limited to the C-terminal excitation region. The dcr gene family differs, in this respect, from mcp gene families in other eubacteria (e.g. Escherichia coli and Bacillus subtilis), where MCPs share significant homology throughout their C-terminal signal transduction domains. This may point to an ancient evolutionary origin of the dcr gene family, which is widely distributed throughout the genus Desulfovibrio. The evolutionary origin of mcp genes was traced by comparing nucleotide sequences for the excitation region that is common to all MCPs. Phylogenetic analysis of sequences for thirty mcp genes from nine eubacterial and one archaebacterial species suggested that multiplication of mcp genes has occurred at least twice since the eubacteria diverged from the archaebacteria.
Collapse
Affiliation(s)
- H M Deckers
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | | |
Collapse
|
42
|
Abstract
We present edition VIII of the genetic map of Salmonella typhimurium LT2. We list a total of 1,159 genes, 1,080 of which have been located on the circular chromosome and 29 of which are on pSLT, the 90-kb plasmid usually found in LT2 lines. The remaining 50 genes are not yet mapped. The coordinate system used in this edition is neither minutes of transfer time in conjugation crosses nor units representing "phage lengths" of DNA of the transducing phage P22, as used in earlier editions, but centisomes and kilobases based on physical analysis of the lengths of DNA segments between genes. Some of these lengths have been determined by digestion of DNA by rare-cutting endonucleases and separation of fragments by pulsed-field gel electrophoresis. Other lengths have been determined by analysis of DNA sequences in GenBank. We have constructed StySeq1, which incorporates all Salmonella DNA sequence data known to us. StySeq1 comprises over 548 kb of nonredundant chromosomal genomic sequences, representing 11.4% of the chromosome, which is estimated to be just over 4,800 kb in length. Most of these sequences were assigned locations on the chromosome, in some cases by analogy with mapped Escherichia coli sequences.
Collapse
Affiliation(s)
- K E Sanderson
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | | | | |
Collapse
|
43
|
|