1
|
Kruchinin SE, Kislinskaya EE, Chuev GN, Fedotova MV. Protein 3D Hydration: A Case of Bovine Pancreatic Trypsin Inhibitor. Int J Mol Sci 2022; 23:ijms232314785. [PMID: 36499117 PMCID: PMC9737982 DOI: 10.3390/ijms232314785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Characterization of the hydrated state of a protein is crucial for understanding its structural stability and function. In the present study, we have investigated the 3D hydration structure of the protein BPTI (bovine pancreatic trypsin inhibitor) by molecular dynamics (MD) and the integral equation method in the three-dimensional reference interaction site model (3D-RISM) approach. Both methods have found a well-defined hydration layer around the protein and revealed the localization of BPTI buried water molecules corresponding to the X-ray crystallography data. Moreover, under 3D-RISM calculations, the obtained positions of waters bound firmly to the BPTI sites are in reasonable agreement with the experimental results mentioned above for the BPTI crystal form. The analysis of the 3D hydration structure (thickness of hydration shell and hydration numbers) was performed for the entire protein and its polar and non-polar parts using various cut-off distances taken from the literature as well as by a straightforward procedure proposed here for determining the thickness of the hydration layer. Using the thickness of the hydration shell from this procedure allows for calculating the total hydration number of biomolecules properly under both methods. Following this approach, we have obtained the thickness of the BPTI hydration layer of 3.6 Å with 369 water molecules in the case of MD simulation and 3.9 Å with 333 water molecules in the case of the 3D-RISM approach. The above procedure was also applied for a more detailed description of the BPTI hydration structure near the polar charged and uncharged radicals as well as non-polar radicals. The results presented for the BPTI as an example bring new knowledge to the understanding of protein hydration.
Collapse
Affiliation(s)
- Sergey E. Kruchinin
- G.A. Krestov Institute of Solution Chemistry, The Russian Academy of Sciences, Akademicheskaya St., 1, 153045 Ivanovo, Russia
| | - Ekaterina E. Kislinskaya
- Department of Fundamental and Applied Chemistry, Institute of Mathematics, Information Technology and Science, Ivanovo State University, Ermak St., 39, 153025 Ivanovo, Russia
| | - Gennady N. Chuev
- Institute of Theoretical and Experimental Biophysics, The Russian Academy of Sciences, Institutskaya St., Pushchino, 142290 Moscow, Russia
- Correspondence: (G.N.C.); (M.V.F.)
| | - Marina V. Fedotova
- G.A. Krestov Institute of Solution Chemistry, The Russian Academy of Sciences, Akademicheskaya St., 1, 153045 Ivanovo, Russia
- Correspondence: (G.N.C.); (M.V.F.)
| |
Collapse
|
2
|
de Almeida Barros R, Meriño-Cabrera Y, Castro JS, da Silva Junior NR, de Oliveira JVA, Schultz H, de Andrade RJ, de Oliveira Ramos HJ, de Almeida Oliveira MG. Bovine pancreatic trypsin inhibitor and soybean Kunitz trypsin inhibitor: Differential effects on proteases and larval development of the soybean pest Anticarsia gemmatalis (Lepidoptera: Noctuidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 187:105188. [PMID: 36127063 DOI: 10.1016/j.pestbp.2022.105188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Pest management is challenged with resistant herbivores and problems regarding human health and environmental issues. Indeed, the greatest challenge to modern agriculture is to protect crops from pests and still maintain environmental quality. This study aimed to analyze by in silico, in vitro, and in vivo approaches to the feasibility of using the inhibitory protein extracted from mammals - Bovine Pancreatic Trypsin Inhibitor (BPTI) as a potential inhibitor of digestive trypsins from the pest Anticarsia gemmatalis and comparing the results with the host-plant inhibitor - Soybean Kunitz Trypsin Inhibitor (SKTI). BPTI and SKTI interacts with A. gemmatalis trypsin-like enzyme competitively, through hydrogen and hydrophobic bonds. A. gemmatalis larvae exposed to BPTI did not show two common adaptative mechanisms i.e., proteolytic degradation and overproduction of proteases, presenting highly reduced trypsin-like activity. On the other hand, SKTI-fed larvae did not show reduced trypsin-like activity, presenting overproduction of proteases and SKTI digestion. In addition, the larval survival was reduced by BPTI similarly to SKTI, and additionally caused a decrease in pupal weight. The non-plant protease inhibitor BPTI presents intriguing element to compose biopesticide formulations to help decrease the use of conventional refractory pesticides into integrated pest management programs.
Collapse
Affiliation(s)
- Rafael de Almeida Barros
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Minas Gerais, Brazil; Instituto de Biotecnologia aplicada à Agropecuária, BIOAGRO-UFV, Viçosa, Minas Gerais, Brazil
| | - Yaremis Meriño-Cabrera
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Minas Gerais, Brazil; Instituto de Biotecnologia aplicada à Agropecuária, BIOAGRO-UFV, Viçosa, Minas Gerais, Brazil
| | - José Severiche Castro
- Departamento de Física, Universidad de Sucre, Sincelejo, Colombia; Instituto de Biotecnologia aplicada à Agropecuária, BIOAGRO-UFV, Viçosa, Minas Gerais, Brazil
| | - Neilier Rodrigues da Silva Junior
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Minas Gerais, Brazil; Instituto de Biotecnologia aplicada à Agropecuária, BIOAGRO-UFV, Viçosa, Minas Gerais, Brazil
| | - João Vitor Aguilar de Oliveira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Minas Gerais, Brazil; Instituto de Biotecnologia aplicada à Agropecuária, BIOAGRO-UFV, Viçosa, Minas Gerais, Brazil
| | - Halina Schultz
- Departamento de Entomologia, Universidade Federal de Viçosa, Minas Gerais, Brazil; Instituto de Biotecnologia aplicada à Agropecuária, BIOAGRO-UFV, Viçosa, Minas Gerais, Brazil
| | - Rafael Júnior de Andrade
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Minas Gerais, Brazil; Instituto de Biotecnologia aplicada à Agropecuária, BIOAGRO-UFV, Viçosa, Minas Gerais, Brazil
| | - Humberto Josué de Oliveira Ramos
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Minas Gerais, Brazil; Instituto de Biotecnologia aplicada à Agropecuária, BIOAGRO-UFV, Viçosa, Minas Gerais, Brazil
| | - Maria Goreti de Almeida Oliveira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Minas Gerais, Brazil; Instituto de Biotecnologia aplicada à Agropecuária, BIOAGRO-UFV, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
3
|
Tissot G, Canard H, Nadai M, Martone A, Botterman J, Dubald M. Translocation of aprotinin, a therapeutic protease inhibitor, into the thylakoid lumen of genetically engineered tobacco chloroplasts. PLANT BIOTECHNOLOGY JOURNAL 2008; 6:309-20. [PMID: 18266824 DOI: 10.1111/j.1467-7652.2008.00321.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Aprotinin, a bovine protease inhibitor of important therapeutic value, was expressed in tobacco plastid transformants. This disulphide bond-containing protein was targeted to the lumen of thylakoids using signal peptides derived from nuclear genes which encode lumenal proteins. Translocation was attempted via either the general secretion (Sec) or the twin-arginine translocation (Tat) pathway. In both cases, this strategy allowed the production of genuine aprotinin with its N-terminal arginine residue. The recombinant protease inhibitor was efficiently secreted within the lumen of thylakoids, accumulated in older leaves and was bound to trypsin, suggesting that the three disulphide bonds of aprotinin are correctly folded and paired in this chloroplast compartment. Mass spectrometric analysis indicated that translocation via the Sec pathway, unlike the Tat pathway, led predominantly to an oxidized protein. Translocation via the Tat pathway was linked to a slightly decreased growth rate, a pale-green leaf phenotype and supplementary expression products associated with the thylakoids.
Collapse
|
4
|
Baker Brachmann C, Boeke JD. Overview: Fusion proteins: Fundamental and therapeutic applications. Expert Opin Ther Pat 2008. [DOI: 10.1517/13543776.4.9.1037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Rivera V, Levieux A, Levieux D. Characterisation of Ag1, the major species-specific contaminant of bovine crude heparin, and its identification as an aprotinin/heparin complex. J Pharm Biomed Anal 2002; 29:443-58. [PMID: 12062645 DOI: 10.1016/s0731-7085(02)00084-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Heparin is a potent anticoagulant polysaccharide purified for decades from ruminants or porcine tissues. However, with the emergence of bovine spongiform encephalopathy (BSE), the source of pharmaceutical heparin is currently restricted to porcine intestinal mucosa. A major species-specific contaminant, called Ag1, has recently been identified in bovine crude heparin [Rivera et al., J. Pharm. Biomed. Anal., submitted] and used to develop an enzyme-linked immunosorbent assay (ELISA) for the species origin control of crude heparins [Levieux et al., J. Immunoassay, submitted]. In this report, we describe the different investigations, which were carried out to identify Ag1. This antigen was first localised by immunohistological studies essentially in the connective tissue of the bovine small intestine. After extraction from an intestinal extract by immuno-affinity chromatography, Ag1 was isolated as a single band by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Ag1 was then partly sequenced and identified as an aprotinin/heparin complex. Aprotinin, also known as the bovine pancreatic trypsin inhibitor (BPTI), is present with heparin in mast cells, and is very resistant to heat, pH, chemical treatments and proteolytic digestion. The stability of Ag1 towards the different treatments performed during heparin extraction process allows this protein to remain in sufficient amounts in crude heparin and makes it an ideal target for the immunochemical control of the absence of bovine material in crude heparins.
Collapse
Affiliation(s)
- Vincent Rivera
- INRA, Station de Recherches sur la Viande, Immunochimie, Theix, 63122 Saint-Genès-Champanelle, France
| | | | | |
Collapse
|
6
|
Sheridan DL, Berlot CH, Robert A, Inglis FM, Jakobsdottir KB, Howe JR, Hughes TE. A new way to rapidly create functional, fluorescent fusion proteins: random insertion of GFP with an in vitro transposition reaction. BMC Neurosci 2002; 3:7. [PMID: 12086589 PMCID: PMC117241 DOI: 10.1186/1471-2202-3-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2002] [Accepted: 06/19/2002] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The jellyfish green fluorescent protein (GFP) can be inserted into the middle of another protein to produce a functional, fluorescent fusion protein. Finding permissive sites for insertion, however, can be difficult. Here we describe a transposon-based approach for rapidly creating libraries of GFP fusion proteins. RESULTS We tested our approach on the glutamate receptor subunit, GluR1, and the G protein subunit, alphas. All of the in-frame GFP insertions produced a fluorescent protein, consistent with the idea that GFP will fold and form a fluorophore when inserted into virtually any domain of another protein. Some of the proteins retained their signaling function, and the random nature of the transposition process revealed permissive sites for insertion that would not have been predicted on the basis of structural or functional models of how that protein works. CONCLUSION This technique should greatly speed the discovery of functional fusion proteins, genetically encodable sensors, and optimized fluorescence resonance energy transfer pairs.
Collapse
Affiliation(s)
- Douglas L Sheridan
- Interdepartmental Neuroscience Program, Yale University Medical School, 330 Cedar St, New Haven, CT 06520, USA
| | - Catherine H Berlot
- Department of Cellular and Molecular Physiology, Yale University Medical School, 330 Cedar St, New Haven, CT 06520, USA
| | - Antoine Robert
- Department of Pharmacology, Yale University Medical School, 330 Cedar St, New Haven, CT 06520, USA
| | - Fiona M Inglis
- Department of Pharmacology, Yale University Medical School, 330 Cedar St, New Haven, CT 06520, USA
| | - Klara B Jakobsdottir
- Department of Ophthalmology & Visual Science, Yale University Medical School, 330 Cedar St, New Haven, CT 06520, USA
| | - James R Howe
- Department of Pharmacology, Yale University Medical School, 330 Cedar St, New Haven, CT 06520, USA
| | - Thomas E Hughes
- Department of Ophthalmology & Visual Science, Yale University Medical School, 330 Cedar St, New Haven, CT 06520, USA
| |
Collapse
|
7
|
Favre I, Moss GW, Goldenberg DP, Otlewski J, Moczydlowski E. Structure-activity relationships for the interaction of bovine pancreatic trypsin inhibitor with an intracellular site on a large conductance Ca(2+)-activated K(+) channel. Biochemistry 2000; 39:2001-12. [PMID: 10684650 DOI: 10.1021/bi992140v] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Large conductance Ca(2+)-activated K(+) channels (BK(Ca)) contain an intracellular binding site for bovine pancreatic trypsin inhibitor (BPTI), a well-known inhibitor of various serine proteinase (SerP) enzymes. To investigate the structural basis of this interaction, we examined the activity of 11 BPTI mutants using single BK(Ca) channels from rat skeletal muscle incorporated into planar lipid bilayers. All of the mutants induced discrete substate events at the single-channel level. The dwell time of the substate, which is inversely related to the dissociation rate constant of BPTI, exhibited relatively small changes (<9-fold) for the various mutants. However, the apparent association rate constant varied up to 190-fold and exhibited a positive correlation with the net charge of the molecule, suggesting the presence of a negative electrostatic surface potential in the vicinity of the binding site. The substate current level was unaffected by most of the mutations except for substitutions of Lys15. Different residues at this position were found to modulate the apparent conductance of the BPTI-induced substate to 0% (K15G), 10% (K15F), 30% (K15 wild-type), and 55% (K15V) of the open state at +20 mV. Lys15 is located on a loop of BPTI that forms the primary contact region for binding to many SerPs such as trypsin, chymotrypsin, and elastase. The finding that Lys15 is a determinant of the conductance behavior of the BK(Ca) channel when BPTI is bound implies that the same inhibitory loop that contacts SerP's is located close to the protein interface in the BK(Ca) channel complex. This supports the hypothesis that the C-terminal region of the BK(Ca) channel protein contains a domain homologous to SerP's. We propose a domain interaction model for the mechanism of substate production by Kunitz inhibitors based on current ideas for allosteric activation of BK(Ca) channels by voltage and Ca(2+).
Collapse
Affiliation(s)
- I Favre
- Department of Pharmacology, Yale University School of Medicine, Sterling Hall of Medicine, P.O. Box 208066, New Haven, Connecticut 06520-8066, USA
| | | | | | | | | |
Collapse
|
8
|
Merkulov GV, Boeke JD. Libraries of green fluorescent protein fusions generated by transposition in vitro. Gene X 1998; 222:213-22. [PMID: 9831655 DOI: 10.1016/s0378-1119(98)00503-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Two artificial transposons have been constructed that carry a gene encoding Green Fluorescent Protein and can be used for generating libraries of GFP fusions in a gene of interest. One such element, AT2GFP, can be used to generate GFP insertions in frame with the amino acid sequence of the protein of interest, with a stop codon at the end of the GFP coding sequence; AT2GFP also contains a selectable marker that confers trimethoprim resistance in bacteria. The second element, GS, can be used to generate tribrid GFP fusions because there is no stop codon in the GFP transposon, and the resulting fusion proteins contain the entire amino acid sequence encoded by the gene. The GS element consists of a gfp open reading frame and a supF amber suppressor tRNA gene; the supF portion of the GS transposon can be utilized as a selectable marker in bacteria. Its sequence contains a fortuitous open reading frame, and thus it can be translated continuously with the gfp amino acid sequence. As a target for GFP insertions, we used a plasmid carrying the native Ty1 retrotransposon of the yeast Sacharomyces cerevisiae. The resulting multiple GFP fusions to Ty1 capsid protein Gag and Ty1 integrase were useful in determining the cellular localization of these proteins. Libraries of GFP fusions generated by transposition in vitro represent a novel and potentially powerful method to study the cell distribution and cellular localization signals of proteins.
Collapse
Affiliation(s)
- G V Merkulov
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
9
|
Abstract
Most attempts to engineer the properties of proteins have employed single or multiple substitution mutations, which typically produce minor changes in structure. Recent structural and stability studies of insertion and deletion mutants clearly indicate that relatively large structural perturbations can be induced by altering the spacing of residues along the polypeptide backbone, often without major losses in protein stability. Although their effects are difficult to anticipate, insertions and deletions provide important new tools for altering protein structures in directions not achievable with substitutions alone.
Collapse
Affiliation(s)
- D Shortle
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
10
|
Borjigin J, Nathans J. Insertional mutagenesis as a probe of rhodopsin's topography, stability, and activity. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36684-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|